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Abstract

In this paper, we study the uniqueness of meromorphic fugctions con
generalize some results given by M.L. Fang and S.S. Bho
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ing diffgdntial polynomials, prove two theorems which
anal.
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1. Introduction and results

eromorphic functions. Let a be a finite complex number. We say that f(z),
multiplicities) if f(z), g(z) have the same a-points with the same multiplicities

Let f(z) be a non-constant meromorphic function. Let a be a finite complex number, and k be a positive integer,

we denote by Ny, (r, flTa) (or N o (@, f+a)) the counting function for zeros of f — a with multiplicity < k (ignoring
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multiplicities), and by N (r, f%a) (or N «(r, f—ia)) the counting function for zeros of f — a with multiplicity at least

k (ignoring multiplicities). Set

1 — 1 — 1 — 1
Nk<r, f_a)=N<r, f_a>+N(2<r, f_a>+"'+N(k<r, —f—a>'

We further define

5 1= Ty 7
e D=1= e

Fang [4] proved the following result.

n>2k+4. If [f"1® and [g"]1% share 1 CM, then either f(z) = c1e% and g(z)
three constants satisfying (— l)k(clcz)" (nc)2k =1, or f =tg for a constant t suc

IFLF"(f — DI and [g" (g — D% share 1| CM, then f(z) = g(z).

Recently, S.S. Bhoosnurmath and R.S. Dyavanal [5] extended Th
rem.

and let n, k be two positive integers with
2(2) = cre™ %, where ¢, c) and c; are

Theorem C. Let f(z) and g(z) be two non-constant meromo
n >3k + 8. If [f"1% and [g"1® share 1 CM, then either
three constants satisfying (— 1) (c1c2) (ne)* =1, or f =1g

Rhic functions satisfying ® (oo, ) > %, and let n, k

(g — D1® share 1 CM, then f(z) = g(z).

meromorphic functions, and let n, k be two positive integers with
n>6k+14. If [f11% and [ B/, then either f(z) = c1e“* and g(z) = cre™ %, where ¢, ¢| and ¢y are
1, or f =tg for a constant t such that t"* = 1.

Theorem 2. Let f(z) -constant meromorphic functions satisfying © (oo, f) > n% and let n, k be

F(f = DI and [g" (g — D] share 1 IM, then f(z) = g(z).

e need the following lemmas.

Lemm$ . (z) be a non-constant meromorphic function, aop, ay, . . ., a, be finite complex numbers such

an—lfn71+"'+a0)=nT(r7f)+S(r7f)-

Lemma 2. (See [1].) Let f(z) be a non-constant meromorphic function, k be a positive integer, and let ¢ be a non-zero
finite complex number. Then

— 1 1 1
T(r,f)éN(r,f)—i—N(r, ?>+N<V, m)-N(h W)‘i‘S(V,f)

_ 1 — 1 1
gN(V, f)+Nk+1<r, ?> +N<I", m) —N()(}", W) +S(l", f)

Here No(r, ﬁ) is the counting function which only counts those points such that f &t =0 but f(f® —¢) #0.
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Lemma 3. (See [2].) Let f(2) be a transcendental meromorphic function, and let a1(z2), az(z) be two meromorphic
functions such that T (r,a;) = S(r, ), i =1,2. Then

T(r’f)gﬁ(rvf)—}_N(raﬁ)+N<ry >+S(r’f)

1
f—a

Lemma4. (See [6].) Let f(z) be a non-constant entire function, and let k > 2 be a positive integer. If f(z) f ®(z) #0,
then f = e™*?, where a #0, b are constants.

Lemma 5. Let f(z) and g(z) be two meromorphic functions, and let k be a positive integer. If, share the

value 1 IM and

A= (2k+3)0 (00, f)+ 2k +40O (00, 8) +20(0, /) +360(0, g) + 8k41(0, Sr+1(8
then either fOg®) =1 or f =g.

13 (1)

Proof. Let

f(k+2)(z) f(k-l-l)(z) g(k+2)(z) g(k'H)(Z)
fED@E) T —1 gkt T TgB(z) e

If z is a common simple 1-point of % and g®, substitugiife their Tayl
zero of h(z). Thus, we have

1 1
Nll(r, W) =N11<r, W) <

By our assumptions, 4(z) have poles only
whose multiplicities are not equal to the i e corresponding 1-points of g,
Thus, we deduce from (2) that

h(z) = @)

series at zg into (2), we see that zq is a

SN )+ S0, )+ S, g). 3

N(@r,h) <N, f)+ N,

C)]
Here Ny(r, ﬁ) meaning as in Lemma 2. By Lemma 2, we have
T ! N ! N ! S 5
(r, ? + r,m - Or,m + 8@, f), 5
_ 1 1
k+1(r, §>+N<r, g(k)7_1>_N0<r’ W)‘i‘s(’”,g)- (6)

) share the value 1 IM, we have

g
+N ! +N !
r’ N 4 r’ N 4
" g® Fo ]

| — 1
r, 7 1) +NL(r, P 1) +T(r, f(k)) +0(1)

+1VL(r, : )—I—m(r, FOY+N(r, fP)+ o)
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_ 1 *) _
< N11<r, 7@ = 1) +NL<r, g(k)7—1> + m(r, f)+m<r, fT) + N, f)+kN(r, f)+0(Q1)
1 — 1 _
< N11<r, 7 = 1) +NL<r, W) + TG, f)+kNQ@, )+ S, f). @)
Noting that

N(r 1><]V(r f)—i—ﬁ(r 1)<T<r f)—i—ﬁ(r 1><T(r f(k))—l—lv
@) <N gw ) Vg ) < gw ) e ) < T

f(k) f(k) _ 1 _ —
éN(r,—)—l—m(r,—)—l—N(r,—)+S(r,f)<kN(r,f)+N( )
f f f
— 1 o 1 _ 1 - f(k)
(=) <4 (s g =) - 7w < (e g
f(k+1) o o
\N<r, W>+S(r,f)<N(r,f)+N r, + S(r,
we have
_ 1 — — 1
Similarly
NL<r, %) < (k4 1)N(r, g)+N<r,l (10)
g —1 8

We obtain from (3)—(10) that
1 — 1 1 1

r, —) + 3N(r, —) + Ni+t1 (r, —) + Nit1 (r, —)
f g f g

that there exists a set / with infinite measure such that 7'(r, f) < T(r, g) for

T(r,8) < k+3)N(r, f)

+ 8, f)

Without loss of generalg
r € I. Hence

+100, )] +&}T(r, ) + S(r, 8) (1)

k + 13).

y 1) and (11) that T (r, g) < S(r, g) for r € I, a contradiction.
get h(z) = 0; that is

f(k+1)(Z) g(k+2) (Z) g(kJrl)(Z)

fEDE) TR -1 g™ D) T — 1

By solving this equation, we obtain

1 _ bg® () +a—b
fO@-1" gh@E) -1

where a, b are two constants. Next, we consider three cases.

12)

Casel.b#0and a =b.
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Subcase 1. b = —1. Then, we deduce from (12) that f® g® =1,
Subcase 2. b # —1. Then, we get from (12) that

1 bg®()
fO@) ~ 1+b)g®@) -1
So
N<r ! > < N(r L) (13)
Tg® () — (1/(1+b)) T f®

From (13) and (8), we get

_ 1 — — 1
N(“ g® () — (171 + b>>> SENG )+ N(“ ?) +50 f)

By Lemma 2, we have

_ 1 — 1
T(r,g) <N(r, N, , — N|r, — N
(r,g) (r,g) + k+1(r g>+ (r g(k>—(1/(1+b)))

<N, g) + Niyt <r, é) +kN(r, )+ N<r, %) +5(

<Qk+3)N(r, f)+ Qk+4)N(r,g) +2N <r,

+ 8@, f)+ S, 8).
Thatis T(r,g) < (4k+ 14— A)T(r,g) + S(r, g). T we obta 2) < S(r, g) for r € I, a contradiction.

Case2.b#0and a # b.

Subcase 1. b = —1. Then we obtain f] at
®) () = a
D=E—7—"""-.
= T m vt
Therefore
1 =

Y ( SRy V@) =N ).

— 1
)5 si
y & §® @+ ¢

1 —
k+l<ra g)—{—N(r,f)—}—S(r,f)—}—S(r,g)

2k +3)N(r, f) + Rk +4)N(r, g) + 21V<r, %) + 31v<r, é) + Ni41 <r, %) + Nit1 <r, é)
+S80r, )+ S, 9).

Using the argument as in Case 1, we get a contradiction.
Subcase 2. b # —1. Then we get from (12) that

1 —a
(k) _ —_ =
7@ (1 + b) = P60 +@a—bb)

Therefore

N : N 1 _
= ® () _ 1\ _
N(r, g(k)(z)+(a_b)/b)—N(r,f (2) <1+b>>—N(r, f).
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By Lemma 2, we have

_ 1\ —
T@g%QNMg%HWH<n§>+N(n ab)+Smg)
B

g(k) _|_
_ 1 _

<N, g) + Niyi (r, §> + N, )+ S, )+ S, g

<Qk+3)N(@, )+ Qk+4)N(r, g) +2N (r, %) + 31V<r, é) + Nig1 (r, %) + Nis1 (r, é)

+ 8 )+ 5, 8).

Using the argument as in Case 1, we get a contradiction.

Case 3. b =0.

From (12), we obtain
1
f= —g+P(z), (14)
where P(z) is a polynomial. If P(z) # 0, then by Lemma 3, w
—_ — 1 — 1
I )< N, f)+N<r, ?> +N<r, = P) + S
gﬁ(r,f)+lv<r,l>+1v(r,l>+ .
f g

From (14), we obtain T'(r, f) =T (r, g) + S(, ).
Hence, substituting this into (15), we ge

T(r, /)< {3—-[O(c0, )+ 0O

5)

where

Therefore T (r, f)
Hence, by (1)

at T(r, f) < S(r, f) for r € I, a contradiction.
= (), that is

(16)

) sharing the value 1 IM, we deduce from (16) that g = 1. That is N (r, g(k)%l) =0.

Next, deduce a contradiction as in Case 2. Thus, we get that a = 1, thatis f = g. Thus the proof of Lemma 5

is completed.
3. Proof of Theorem 1

Consider F(z) = f"(z) and G(z) = g"(z). We have
=(2k+3)0 (00, F) + (2k+4)O (00, G) +20(0, F) + 360(0, G) + 8k+1(0, F) + 8¢+1(0, G).
Consider

NG p) =1—Tim N(rf")>1—1—T(rf) n-1

60, F)=1— lim im im
r—oo T(r, F) r—oonT(r, f) r—oonT (r, f) n

A7)
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Similarly
n—1
00,6) >z —, (18)
n
n—1
n
n—1
B0, G) > ——. (20)
n

Next, we have

1 oo 1 N
_ L — (k+DNG@, L _ (k+ ("
8k+1(O,F):1—limM2l— imwzl_ﬁm
r—»oo T(r, F) r—00 T(r, F) r—00 (r,f
k+1 —(k+1
s kAl _n-Gk+D Q1)
n n
Similarly
k+1 —(k+1
50010.G) 51— kL _n=(k+D (22)
n n

From (17)-(22), we get

—1 —1 —1 - — kAt 1
A=(2k+3)"7+(2k+4)"n +2 n g  n-k+D

n n

Since n > 6k + 14, we get A > 4k + 13.

Considering F ) @=I[f" (Z)](k) and G4 — [g" share the value 1 IM, then by Lemma 5, we deduce that
either FOG® =10or F=G.

Next, we consider two cases.

Case 1. FOG® = 1: that is

(23)

(24)

20 of order p, then zg is a zero of [ f"(z)]® of order (6k + k1)p —k =6pk +kip —k
) of order (6k + k1)q + k = 6gk + kig + k, where k; > 14. From (23), we get

— k =6qk +kiq+k,

i.e. (6k + k1)(p — g) = 2k, which is impossible since p and ¢ are integers and k; > 14.
Therefore f # 0 and g # 0. Similarly f # oo and g # oco. From (23) and (24), we get

(/@] %0 and [¢"@)]" 0. (25)

From (23)—(25) and Lemma 4, we get that f(z) = c1e“® and g(z) = cre™ %, where ¢, ¢| and c¢; are three constants
satisfying (—1)*(c1c2)" (nc)* = 1.

Case 2. F = G; thatis f"(z) = g"(z). This implies f =tg for a constant # such that 1" = 1.
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4. Proof of Theorem 2

Let F(z) = f"(f — 1) and G(z) = g" (g — 1). We have
A=2k+3)O(c0, F)+ 2k +4)O(00,G)+20(0, F) + 300, G) + 6¢k+1(0, F) + 6¢+1(0, G).

Using the argument as in the proof of Theorem 1, we get

NG\ =) N P+NC 759 T
0. F)=1— =) _ | _ Tm 7 T’ S| Tm (r, )
f—>°<> (n+DT(, f) rmco  (n+DT(r, f) r—oo (n
> 2 -l (26)
- n+1 n+1"
Similarly
©0.6)> "1 27)
) = n+ 17
n
O, F) > ——, 28
(00, F) o (28)
n
O(0,G) > ——. 29
(00, G) — (29)
Next, we have
5001 (0. F) = 1 — Tim Neq1(r, 7)
k+1(0, F) = A T Ry
—(kk+2)T
>1— Tim w (30)
r=00 (n+ DT (r, figm
Similarly
n—(k+1)
+10,G) 2 ———— (€29)
From (26)—(31),
-1 -1 —(k+1 —(k+1
A=k +3) +20 432 no(k+D) n-@k+D
n+1 n+1 n+1 n+1
Since n > 6k + > 4k 4 13. Considering F (k) (z) and G® (z) share the value 1 IM, then by Lemma 5, we
deduce that gigher =
Next
Case
k k
-1 @[s@ - 1]]" =1. (32)

Suppose that f has a zero zg of order p, then z¢ is a pole of g of order g. From (32), we getnp —k =nq +q +k,
i.e. n(p —q) = q + 2k, which implies that p > g + 1 and g 4+ 2k > n. Therefore p >n — 2k + 1.

Let z; be a zero of f — 1 of order p1, then z; is a zero of [ f"(z)(f — 1)]%® of order p; — k and z; is a pole of g
of order g;. From (32), we get p; —k =nq; +q1 + k,i.e. p1 = (n + 1)q1 + 2k. Therefore p; > n + 2k + 1.

Let z5 be a zero of f’ of order p, that is not a zero of f(f — 1), as above, we obtain from (32) pp — (k — 1) =
ng> +q2 +k.

Therefore p, > n + 2k.

Moreover, in the same manner as above, we have similar results for zeros of [¢" (z)[g(z) — 111%).

On the other hand, suppose that z3 is a pole of f. From (32), we get that z3 is the zero of [g" (2)[g(z) — 111 Thus
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N(r,f)@(r,l)m(r, ! >+zv<r,l)
g g—1 g
Q;N<r,l>+ ! N<r, ! )+ ! N(r,i)
n—2k+1 g n+2k+1 g—1 n+2k g
Since n > 6k + 20, we get
() e ()t ()
4k 421 g 8k +21 g—1 8k +20 g
<lN( 1)+1N<, 1 )+LN(,1)
25 29 -1 28 g

1 1 1
< (E - )m 9)+5(r.8) <O1T(r,g) + S(r, ). (33)

From Lemma 3 and (33), we obtain

NG, f)

T(r, f)<N(r, %) +N<r, )+1V(r, H+S f)

1
f—1

1 1 1 1
25N< f)—i—EN(r,f 1>+O11T(rg)+S(r )

<0.07T (r, £)+0.11T (r, ) + S(r, f). (34)
Similarly, we have
T(r,g) <0.07T(r,g) +0.11T (r, f)+ S, f). (35)
By (34) and (35), we get T (r, f) + T (r,g) < 0.1 T (r, =+ S(r, f), which is a contradiction.

Case 2. I = G; that is
fff=H=g"(g—-D.

(36)

(i) Let H = g be a const llows that H # 1, H" # 1, H"*! £ 1 and g = 11 HIZH = constant,

# g, we have H #£ 1 and hence we deduce that g = lH—”+1 and f =

, where H is a non-constant meromorphic function. It follows that

+ DT H)+ S, f).

nd fundamental theorem, we deduce

> 2 n—=2T(r, H)+ S(r, ),
H—Olj

where oj(#1) (j=1,2,...,n) are distinct roots of the algebraic equation H"l =1,
We have

O (0o, f)=1— T m(n—Z)T(r,H)JrS(r,f)
r—00 T(r f) r—00 T(r f)
K(n—Z)T(r,H)—i—S(r,f)< n—2 3
rooo DT H)+ S f) © nt+l ntl
3

<l-

which contradicts the assumption @ (oo, f) = 7.
Thus f = g. This completes the proof of Theorem 2.
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