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the stationary probability distribution of the Markov chain and the parameters of the
subsystems of the population model. Finally, we illustrate our conclusions through two
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1. Introduction

A famous logistic population model is described by the ordinary differential equation (ODE)

Ṅ(t) = N(t)
(
a − bN(t)

)
, (1.1)

where a is the rate of growth, a/b is the carrying capacity, and both a and b are positive constants. It is well known that
the population survives indefinitely and there is a stable and globally attractive equilibrium point if there is no influence of
environmental noise (see e.g. [1]). However if environmental noise is taken into account, the system will change significantly.

First of all, let us consider one type of environmental noise, namely white noise. Recently many authors have discussed
population systems subject to white noise (see [2–12]). Recall that the parameter a in (1.1) represents the intrinsic growth
rate of the population. In practice we usually estimate it by an average value plus an error which follows a normal dis-
tribution. If we still use a to denote the average growth rate, but incorporate white noise, then the intrinsic growth rate
becomes

a → a + α Ḃ(t),

where Ḃ(t) is white noise and α is a positive number representing the intensity of the noise. As a result, (1.1) becomes a
stochastic differential equation (SDE)
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dN(t) = N(t)
[(

a − bN(t)
)

dt + α dB(t)
]
, (1.2)

where B(t) is the 1-dimensional standard Brownian motion with B(0) = 0. In [6], the authors considered a more complicated
case corresponding to (1.2), namely that the coefficients of (1.2) are all periodic functions with period T . They obtained the
stochastic permanence of (1.2) and global attractivity of one positive solution N p(t) satisfying E[1/N p(t)] = E[1/N p(t + T )].

However, the assumption that all of the parameters of the stochastic differential equation are T -period periodic functions
is not very reasonable since it implies regularity which is inconsistent with the random perturbation. As we know, there are
various types of environmental noise. Let us now take a further step by considering another type of environmental noise,
namely color noise, say telegraph noise (see e.g. [13,14]). In this context, telegraph noise can be described as a random
switching between two or more environmental regimes, which differ in terms of factors such as nutrition or rainfall [15,16].
The switching is memoryless and the waiting time for the next switch has an exponential distribution. We can hence model
the regime switching by a finite-state Markov chain. Assume that there are n regimes and the system obeys

dN(t) = N(t)
[(

a(1) − b(1)N(t)
)

dt + α(1)dB(t)
]
, (1.3)

when it is in regime 1, while it obeys another stochastic logistic model

dN(t) = N(t)
[(

a(2) − b(2)N(t)
)

dt + α(2)dB(t)
]
, (1.4)

in regime 2 and so on. Therefore, the system obeys

dN(t) = N(t)
[(

a(i) − b(i)N(t)
)

dt + α(i)dB(t)
]
, (1.5)

in regime i (1 � i � n). The switching between these n regimes is governed by a Markovian chain r(t) on the state space
S = {1,2, . . . ,n}. The population system under regime switching can therefore be described by the following stochastic
model

dN(t) = N(t)
[(

a
(
r(t)

)− b
(
r(t)

)
N(t)

)
dt + α

(
r(t)

)
dB(t)

]
. (1.6)

This system is operated as follows: If r(0) = i0, the system obeys Eq. (1.5) with i = i0 until time τ1 when the Markov chain
jumps to i1 from i0; the system will then obey Eq. (1.5) with i = i1 from τ1 until τ2 when the Markov chain jumps to i2
from i1. The system will continue to switch as long as the Markov chain jumps. In other words, Eq. (1.6) can be regarded as
Eqs. (1.5) switching from one to another according to the law of the Markov chain. The different Eqs. (1.5) (1 � i � n) are
therefore referred to as the subsystems of Eq. (1.6).

Recently, Takeuchi et al. [13] investigated a 2-dimensional autonomous predator–prey Lotka–Volterra system with regime
switching and revealed a very interesting and surprising result: If two equilibrium states of the subsystems are different,
all positive trajectories of this system always exit from any compact set of R2+ with probability 1; on the other hand, if the
two equilibrium states coincide, then the trajectory either leaves any compact set of R2+ or converges to the equilibrium
state. In practice, two equilibrium states are usually different, in which case Takeuchi et al. [13] showed that the stochastic
population system is neither permanent nor dissipative (see e.g. [17]). This is an important result as it reveals the significant
effect of environmental noise on the population system: both its subsystems develop periodically but switching between
them makes them become neither permanent nor dissipative. Therefore, these factors motivate us to consider the logistic
population system subject to both white noise and color noise, described by (SDE)

dN(t) = N(t)
[(

a
(
r(t)

)− b
(
r(t)

)
N(t)

)
dt + α

(
r(t)

)
dB(t)

]
, (1.7)

where for each i ∈ S , a(i), b(i) and α(i) are all nonnegative constants. Our aim is to reveal how the environmental noise
affects the population system.

In this paper, in order to understand better the dynamic properties of SDE (1.7), in Section 2 we will give the nature of
its solution and show that the solution starting from anywhere in R+ will remain in R+ with probability 1. In the study
of population systems, permanence and extinction are two important and interesting properties, respectively meaning that
the population system will survive or die out in the future. One of our main aims is to investigate these two properties and
their relationship. In Sections 3 and 4, we show that SDE (1.7) is either stochastically permanent or extinctive under some
assumptions, and, moreover, that it is stochastically permanent if and only if a constant related to the stationary probability
distribution of the Markov chain is positive. If SDE (1.7) is stochastically permanent, we estimate in Section 5 the limit
of the average in time of the sample path of its solution by two constants related to the stationary distribution and the
parameters of the population subsystems. Finally, in Section 6 we illustrate our main results through two examples.

2. The nature of global solutions

Throughout this paper, unless otherwise specified, let (Ω, F , {Ft}t�0, P ) be a complete probability space with a filtration
{Ft}t�0 satisfying the usual conditions (i.e. it is right continuous and F0 contains all P-null sets). Let B(t), t � 0, be a scalar
standard Brownian motion defined on this probability space. We also denote by R+ the open interval (0,∞), and denote by
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R̄+ the interval [0,∞). Let r(t) be a right-continuous Markov chain on the probability space, taking values in a finite state
space S = {1,2, . . . ,n}, with the generator Γ = (γuv)n×n given by

P
{

r(t + δ) = v
∣∣ r(t) = u

} =
{

γuvδ + o(δ), if u �= v,

1 + γuvδ + o(δ), if u = v,

where δ > 0. Here γuv is the transition rate from u to v and γuv � 0 if u �= v , while

γuu = −
∑
v �=u

γuv .

We assume that the Markov chain r(·) is independent of the Brownian motion B(·). It is well known that almost every
sample path of r(·) is a right continuous step function with a finite number of jumps in any finite subinterval of R̄+ . As a
standing hypothesis we assume in this paper that the Markov chain r(t) is irreducible. This is a very reasonable assumption,
as it means that the system can switch from any regime to any other regime. This is equivalent to the condition that
for any u, v ∈ S , one can find finite numbers i1, i2, . . . , ik ∈ S such that γu,i1γi1,i2 · · ·γik,v > 0. Note that Γ always has an
eigenvalue 0. The algebraic interpretation of irreducibility is that rank(Γ ) = n − 1. Under this condition, the Markov chain
has a unique stationary (probability) distribution π = (π1,π2, . . . ,πn) ∈ R1×n which can be determined by solving the
following linear equation

πΓ = 0 (2.1)

subject to

n∑
i=1

πi = 1 and πi > 0, ∀i ∈ S.

For convenience and simplicity in the following discussion, define

f̂ = min
i∈S

f (i), f̆ = max
i∈S

f (i),

where { f (i)}i∈S is a constant vector. In this paper, we impose the following assumptions:

Assumption 1. For each i ∈ S , b(i) > 0.

Assumption 2. For some u ∈ S , γiu > 0 (∀i �= u).

Assumption 3.
∑n

i=1 πi[a(i) − 1
2 α2(i)] > 0.

Assumption 4. For each i ∈ S , a(i) − 1
2 α2(i) > 0.

As the state N(t) of SDE (1.7) is the size of the species in the system at time t , it should be nonnegative. We prove not
only the global existence but also the precise nature of the solution to SDE (1.7), giving a positive N(0).

Theorem 2.1. There exists a unique continuous positive solution N(t) to SDE (1.7) for any initial value N(0) = N0 > 0, which is global
and represented by

N(t) = exp{∫ t
0 [a(r(s)) − 1

2α2(r(s))]ds + α(r(s))dB(s)}
1

N0
+ ∫ t

0 b(r(s))exp{∫ s
0 [a(r(u)) − 1

2α2(r(u))]du + α(r(u))dB(u)}ds
. (2.2)

Proof. Since the coefficients of the equation are local Lipschitz continuous for any initial value N0 > 0, there is a unique
local solution N(t) on t ∈ [0, τe), where τe is the explosion time (see [14]).

To show this solution is global, we will derive the nature of the solution. Let

U (t) := exp

{
−

t∫
0

[
a
(
r(s)

)− 1

2
α2(r(s)

)]
ds + α

(
r(s)

)
dB(s)

}

×
[

1

N0
+

t∫
b
(
r(s)

)
exp

{ s∫ [
a
(
r(u)

)− 1

2
α2(r(u)

)]
du + α

(
r(u)

)
dB(u)

}
ds

]
. (2.3)
0 0
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Then by the generalized Itô formula (see [19]), U (t) satisfies the equation

dU (t) = U (t)
[(

α2(r(t))− a
(
r(t)

))
dt − α

(
r(t)

)
dB(t)

]+ b
(
r(t)

)
dt. (2.4)

Let

N(t) := 1

U (t)
,

so N(t) > 0 and N(t) is continuous and global on t ∈ [0,∞). By the Itô formula

dN(t) = − 1

x2(t)
dx(t) + 1

x3(t)

(
dx(t)

)2

= −N(t)
[(

α2(r(t))− a
(
r(t)

))
dt − α

(
r(t)

)
dB(t)

]− b
(
r(t)

)
N2(t)dt + α2(r(t))N(t)dt

= N(t)
[(

a
(
r(t)

)− b
(
r(t)

)
N(t)

)
dt + α

(
r(t)

)
dB(t)

]
.

Thus N(t) defined by (2.2) is a continuous positive solution of SDE (1.7) and is global on t ∈ [0,∞) (i.e. τe = ∞). This
completes the proof of Theorem 2.1. �
3. Stochastic permanence

Theorem 2.1 shows that the solution of SDE (1.7) with a positive initial value will remain positive. This nice property
provides us with a great opportunity to discuss in more detail how the solution varies in R+ . In the study of population
systems permanence is one of the most important and interesting characteristics, meaning that the population system will
survive in the future. In this section, we firstly give the definition of the stochastic permanence and the stochastically
ultimate boundedness of SDE (1.7), and then give some sufficient conditions which guarantee that SDE (1.7) is stochastically
permanent.

Definition 3.1. SDE (1.7) is said to be stochastically permanent if for any ε ∈ (0,1), there exist positive constants δ = δ(ε),
χ = χ(ε) such that

lim inf
t→+∞ P

{
N(t) � χ

}
� 1 − ε, lim inf

t→+∞ P
{

N(t) � δ
}

� 1 − ε,

where N(t) is the solution of SDE (1.7) with any positive initial value.

Definition 3.2. The solutions of SDE (1.7) are called stochastically ultimately bounded, if for any ε ∈ (0,1), there is a positive
constant χ(= χ(ε)), such that the solution of SDE (1.7) with any positive initial value has the property that

lim sup
t→+∞

P
{

N(t) > χ
}

< ε.

It is obvious that if a stochastic equation is stochastically permanent, its solutions must be stochastically ultimately
bounded. So we will begin with the following lemma and make use of it to obtain the stochastically ultimate boundedness
of SDE (1.7).

Lemma 3.1. Under Assumption 1, for an arbitrary given positive constant p, the solution N(t) of SDE (1.7) with any given positive
initial value has the property that

lim sup
t→∞

E
(
N(t)|p) � K (p), (3.1)

where

K (p) :=
⎧⎨
⎩

( ă
b̂
)p, for 0 < p < 1;

[ ă+ 1
2 (p−1)ᾰ2

b̂
]p, for p � 1.

(3.2)

Proof. By the generalized Itô formula, we have

dN p(t) = pN p−1(t)dN(t) + 1

2
p(p − 1)N p−2(t)

(
dN(t)

)2

= pN p(t)
[(

a
(
r(t)

)− b
(
r(t)

)
N(t)

)
dt + α

(
r(t)

)
dB(t)

]+ 1
p(p − 1)N p(t)α2(r(t))dt.
2
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Integrating it from 0 to t and taking expectations of both sides, we obtain that

E
(
N p(t)

)− E
(
N p(0)

) =
t∫

0

pE
[
N p(s)

(
a
(
r(s)

)− b
(
r(s)

)
N(s)

)]
ds +

t∫
0

1

2
p(p − 1)E

[
α2(r(s)

)
N p(s)

]
ds.

Then we have

dE(N p(t))

dt
= pE

[
N p(t)

(
a
(
r(t)

)− b
(
r(t)

)
N(t)

)]+ 1

2
p(p − 1)E

[
α2(r(t))N p(t)

]
. (3.3)

If 0 < p < 1, we obtain

dE(N p(t))

dt
� păE

(
N p(t)

)− pb̂E
(
N p+1(t)

)
� păE

(
N p(t)

)− pb̂
[

E
(
N p(t)

)] p+1
p

� pE
(
N p(t)

){
ă − b̂

[
E
(
N p(t)

)] 1
p
}
, (3.4)

while if p � 1, we obtain

dE(N p(t))

dt
� păE

(
N p(t)

)− pb̂E
(
N p+1(t)

)+ 1

2
p(p − 1)ᾰ2 E

(
N p(t)

)
� păE

(
N p(t)

)− pb̂
[

E
(
N p(t)

)] p+1
p + 1

2
p(p − 1)ᾰ2 E

(
N p(t)

)
� pE

(
N p(t)

){[
ă + 1

2
(p − 1)ᾰ2

]
− b̂

[
E
(
N p(t)

)] 1
p

}
. (3.5)

Therefore, letting z(t) = E(N p(t)), we have

dz(t)

dt
�

{
pz(t)[ă − b̂z

1
p (t)], for 0 < p < 1;

pz(t)[ă + 1
2 (p − 1)ᾰ2 − b̂z

1
p (t)], for p � 1.

(3.6)

Notice that if 0 < p < 1 the solution of equation

dz̄(t)

dt
= pz̄(t)

[
ă − b̂z̄

1
p (t)

]
obeys

z̄(t) →
(

ă

b̂

)p

as t → ∞.

Also, if p � 1 the solution of equation

dz̃(t)

dt
= pz̃(t)

[
ă + 1

2
(p − 1)ᾰ2 − b̂z̃

1
p (t)

]
,

as t → ∞ is such that

z̃(t) →
[

ă + 1
2 (p − 1)ᾰ2

b̂

]p

.

Thus by the comparison argument we get

lim sup
t→∞

z(t) �

⎧⎨
⎩

( ă
b̂
)p, for 0 < p < 1;

[ ă+ 1
2 (p−1)ᾰ2

b̂
]p, for p � 1.

By the definitions of z(t), we obtain the assertion (3.1). �
Remark 3.1. From (3.1) of Lemma 3.1, there is a T > 0, such that

E
(
N p(t)

)
� 2K (p) for all t � T .
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In addition, E(N p(t)) is continuous, and there is a K̃ (p, N0) > 0 such that

E
(
N p(t)

)
� K̃ (p, N0) for t ∈ [0, T ].

Let

L(p) = max
{

2K (p), K̃ (p, N0)
}
,

then we have

E
(
N p(t)

)
� L(p, N0) for all t ∈ [0,∞).

This means the pth moment of any positive solution of SDE (1.7) is bounded.

Theorem 3.1. Solutions of Eq. (1.7) are stochastically ultimately bounded under Assumption 1.

Proof. This can be easily verified by Chebyshev’s inequality and Lemma 3.1. �
Based on the above result, we will prove the other equality in the definition of stochastic permanence. For convenience,

define

β(i) = a(i) − 1

2
α2(i). (3.7)

Under Assumption 3, we know

n∑
i=1

πiβ(i) > 0.

Moreover, let G be a vector or matrix. By G � 0 we mean all elements of G are positive. We also adopt here the traditional
notation by letting

Zn×n = {
A = (aij)n×n: aij � 0, i �= j

}
.

We shall also need two classical results.

Lemma 3.2. (See Mao [19, Lemma 5.3].) If A = (aij) ∈ Zn×n has all of its row sums positive, that is

n∑
j=1

aij > 0 for all 1 � i � n,

then det A > 0.

Lemma 3.3. (See Mao [19, Theorem 2.10].) If A ∈ Zn×n, then the following statements are equivalent:

(1) A is a nonsingular M-matrix.
(2) All of the principal minors of A are positive; that is∣∣∣∣∣∣

a11 · · · a1k
... · · · ...

ak1 · · · akk

∣∣∣∣∣∣ > 0 for every k = 1,2, . . . ,n.

(3) A is semi-positive; that is, there exists x � 0 in Rn such that Ax � 0.

The proof of stochastic permanence is rather technical, so we first present several useful lemmas.

Lemma 3.4. Assumptions 2 and 3 imply that there exists a constant θ > 0 such that the matrix

A(θ) = diag
(
ξ1(θ), ξ2(θ), . . . , ξn(θ)

)− Γ (3.8)

is a nonsingular M-matrix, where

ξi(θ) = θβ(i) − θ2 1

2
α2(i), ∀i ∈ S.
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Proof. It is known that a determinant will not change its value if we switch the ith row with the jth row and then switch
the ith column with the jth column. It is also known that given a nonsingular M-matrix, if we switch the ith row with the
jth row and then switch the ith column with the jth column, then the new matrix is still a nonsingular M-matrix. We may
therefore assume u = n without loss of generality, that is

γin > 0, ∀1 � i � n − 1,

instead of Assumption 2. It is easy to see that

det A(θ) =

∣∣∣∣∣∣∣∣∣∣

ξ1(θ) −γ12 · · · −γ1n

ξ2(θ) ξ2(θ) − γ22 · · · −γ2n
...

... · · · ...

ξn−1(θ) −γn−1,2 · · · −γn−1,n

ξn(θ) −γn2 · · · ξn(θ) − γnn

∣∣∣∣∣∣∣∣∣∣
=

n∑
i=1

ξi(θ)Mi(θ), (3.9)

where Mi(θ) is the corresponding minor of ξi(θ) in the first column. More precisely,

M1(θ) = (−1)1+1

∣∣∣∣∣∣∣∣
ξ2(θ) − γ22 · · · −γ2n

... · · · ...

−γn−1,2 · · · −γn−1,n

−γn2 · · · ξn(θ) − γnn

∣∣∣∣∣∣∣∣
,

...

Mn(θ) = (−1)n+1

∣∣∣∣∣∣∣∣
−γ12 · · · −γ1n

ξ2(θ) − γ22 · · · −γ2n
... · · · ...

−γn−1,2 · · · −γn−1,n

∣∣∣∣∣∣∣∣
.

Noting that

ξi(0) = 0 and
d

dθ
ξi(0) = β(i),

we have

d

dθ
det A(0) =

n∑
i=1

β(i)Mi(0),

which means that

d

dθ
det A(0) =

∣∣∣∣∣∣∣∣
β1 −γ12 · · · −γ1n

β2 −γ22 · · · −γ2n
...

... · · · ...

βn −γn2 · · · −γnn

∣∣∣∣∣∣∣∣
, (3.10)

where we write β(i) = βi . By Appendix A in reference [20], under Assumption 2, Assumption 3 is equivalent to∣∣∣∣∣∣∣∣
β1 −γ12 · · · −γ1n

β2 −γ22 · · · −γ2n
...

... · · · ...

βn −γn2 · · · −γnn

∣∣∣∣∣∣∣∣
> 0.

Together with (3.10), we obtain that

d

dθ
det A(0) > 0. (3.11)

It is easy to see that det A(0) = 0. Hence, we can find a θ > 0 sufficiently small for det A(θ) > 0 and

ξi(θ) = θβ(i) − θ2 1
α2

i > −γin, 1 � i � n − 1. (3.12)

2
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For each k = 1,2, . . . ,n − 1, consider the leading principal sub-matrix

Ak(θ) :=

∣∣∣∣∣∣∣∣
ξ1(θ) − γ11 −γ12 · · · −γ1k

−γ21 ξ2(θ) − γ22 · · · −γ2k
...

... · · · ...

−γk1 −γk2 · · · ξk(θ) − γkk

∣∣∣∣∣∣∣∣
of A(θ). Clearly Ak(θ) ∈ Zk×k . Moreover, by (3.12), each row of this sub-matrix has the sum

ξi(θ) −
k∑

i=1

γi j � ξi(θ) + γin > 0.

By Lemma 3.2, det Ak(θ) > 0. In other words, we have shown that all the leading principal minors of A(θ) are positive. By
Lemma 3.3, we obtain the required assertion. �
Lemma 3.5. Assumption 4 implies that there exists a constant θ > 0 such that the matrix A(θ) is a nonsingular M-matrix.

Proof. Note that for every i ∈ S ,

ξi(0) = 0 and
d

dθ
ξi(0) = β(i) > 0.

We can then choose θ > 0 so small that ξi(θ) > 0 for all 1 � i � n. Consequently, every row of A(θ) has a positive sum. By
Lemma 3.2, we see easily that all the leading principal minors of A(θ) are positive, so A(θ) is a nonsingular M-matrix. �
Lemma 3.6. If there exists a constant θ > 0 such that A(θ) is a nonsingular M-matrix, then the solution N(t) of SDE (1.7) with any
positive initial value has the property that

lim sup
t→∞

E

(
1

Nθ (t)

)
� H, (3.13)

where H is a fixed positive constant (defined by (3.21) in the proof ).

Proof. By Theorem 2.1, the solution N(t) with positive initial value will remain in R+ . Define

U (t) = 1

N(t)
on t � 0. (3.14)

We derive from (2.4) that

dU (t) = U (t)
[−a

(
r(t)

)+ α2(r(t))+ b
(
r(t)

)
N(t)

]
dt − α

(
r(t)

)
U (t)dB(t). (3.15)

By Lemma 3.3, for given θ , there is a vector 	q = (q1,q2, . . . ,qn)T � 0 such that

	λ = (λ1, λ2, . . . , λn)
T := A(θ)	q � 0,

namely,

qi

(
θβ(i) − θ2 α2(i)

2

)
−

n∑
j=1

γi jq j > 0 for all 1 � i � n. (3.16)

Define the function V : R+ × S by

V (U , i) = qi(1 + U )θ . (3.17)

Applying the generalized Itô formula, we have

E V
(
U (t), r(t)

) = V
(
U (0), r(0)

)+ E

t∫
0

LV
(
U (s), r(s)

)
ds,

where
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LV (U , i) = qiθ(1 + U )θ−1U
[−a(i) + α2(i) + b(i)N

]+ qi
θ(θ − 1)

2
(1 + U )θ−2α2(i)U 2 +

n∑
j=1

γi jq j(1 + U )θ

= (1 + U )θ−2

{
qiθ(1 + U )U

[−a(i) + α2(i) + b(i)N
]+ qi

θ(θ − 1)

2
α2

i U 2 +
n∑

j=1

γi jq j(1 + U )2

}

� (1 + U )θ−2

{
−U 2

[
qi

(
θβ(i) − θ2 α2(i)

2

)
−

n∑
j=1

γi jq j

]

+ U

[
qiθ

(
b(i) + α2(i)

)+ 2
n∑

j=1

γi jq j

]
+

[
qiθb(i) +

n∑
j=1

γi jq j

]}
. (3.18)

Now, choose a constant κ > 0 sufficiently small such that it satisfies

	λ − κ	q � 0,

i.e.

qi

(
θβ(i) − θ2 α2(i)

2

)
−

n∑
j=1

γi jq j − κqi > 0 for all 1 � i � n. (3.19)

Then, by the generalized Itô formula again,

E
[
eκt V

(
U (t), r(t)

)] = V
(
U (0), r(0)

)+ E

t∫
0

L
[
eκs V

(
U (s), r(s)

)]
ds,

where

L
[
eκt V (U , i)

] = κeκt V (U , i) + eκt LV (U , i)

� eκt(1 + U )θ−2

{
κqi(1 + U )2 − U 2

[
qi

(
θβ(i) − θ2 α2(i)

2

)
−

n∑
j=1

γi jq j

]

+ U

[
qiθ

(
b(i) + α2(i)

)+ 2
n∑

j=1

γi jq j

]
+

[
qiθb(i) +

n∑
j=1

γi jq j

]}

� eκt(1 + U )θ−2

{
−U 2

[
qi

(
θβ(i) − θ2 α2(i)

2

)
−

n∑
j=1

γi jq j − κqi

]

+ U

[
qiθ

(
b(i) + α2(i)

)+ 2
n∑

j=1

γi jq j + 2κqi

]
+

[
qiθb(i) +

n∑
j=1

γi jq j + κqi

]}

� q̂κ Heκt, (3.20)

H = 1

q̂κ
max

1�i�n

{
sup
x∈R+

{
(1 + x)θ−2

{
−x2

[
qi

(
θβ(i) − θ2 α2(i)

2

)
−

n∑
j=1

γi jq j − κqi

]

+ x

[
qiθ

(
b(i) + α2(i)

)+ 2
n∑

j=1

γi jq j + 2κqi

]
+

[
qiθb(i) +

n∑
j=1

γi jq j + κqi

]}}
,1

}
, (3.21)

in which we put 1 in order to make H positive. This implies

q̂E
[
eκt(1 + U (t)

)θ ] � q̆

(
1 + 1

N0

)θ

+ q̂Heκt .

Then

lim sup
t→∞

E
[
U θ (t)

]
� lim sup

t→∞
E
[(

1 + U (t)
)θ ] � H . (3.22)

Recalling the definition of U (t), we obtain the required assertion (3.13). �



20 X. Li et al. / J. Math. Anal. Appl. 376 (2011) 11–28
Theorem 3.2. Under Assumptions 1, 2 and 3, SDE (1.7) is stochastically permanent.

Proof. Let N(t) be the solution of SDE (1.7) with any given positive initial value. By Lemmas 3.4 and 3.6, we know

lim sup
t→∞

E

(
1

Nθ (t)

)
� H .

Now, for any ε > 0, let δ = ( ε
H )

1
θ . Then

P
{∣∣N(t)

∣∣ < δ
} = P

{
1

|N(t)| >
1

δ

}
�

E( 1
|N(t)|θ )

1
δθ

= δθ E

(
1

|N(t)|θ
)

= δθ E

(
1

Nθ (t)

)
.

Hence,

lim sup
t→+∞

P
{∣∣N(t)

∣∣ < δ
}

� δθ H = ε.

This implies

lim inf
t→+∞ P

{∣∣N(t)
∣∣ � δ

}
� 1 − ε.

The other part of Definition 3.1 required for Theorem 3.2 follows from Theorem 3.1. �
Theorem 3.3. Under Assumptions 1 and 4, SDE (1.7) is stochastically permanent.

Corollary 3.1. Assume for some i ∈ S, b(i) > 0, a(i) > 1
2 α2(i). Then the subsystem

dN(t) = N(t)
[(

a(i) − b(i)N(t)
)

dt + α(i)dB(t)
]

(3.23)

is stochastically permanent.

4. Extinction

In the previous sections we have shown that under certain conditions, the original non-autonomous equation (1.1) and
the associated SDE (1.7) behave similarly in the sense that both have positive solutions which will not explode to infinity in
a finite time and, in fact, will be ultimately bounded and permanent. In other words, we show that under certain conditions
the noise will not spoil these nice properties. However, we will show in this section that if the noise is sufficiently large,
the solution to the associated stochastic SDE (1.7) will become extinct with probability one, although the solution to the
original equation (1.1) may be persistent. It is well known that if a > 0, b > 0, then the solution N(t) of (1.1) is persistent,
because

lim
t→∞ N(t) = a

b
.

However, consider its associated stochastic equation

dN(t) = N(t)
[(

a − bN(t)
)

dt + σ dB(t)
]
, t � 0, (4.1)

where σ > 0. Theorem 4.1 shows that if σ 2 > 2b, then the solution to this stochastic equation will become extinctive with
probability one, namely

lim
t→∞ N(t) = 0 a.s.

In other words, the following theorem reveals the important fact that environmental noise may make the population extinct.

Theorem 4.1. The solution N(t) of SDE (1.7) with any positive initial value has the property that

lim sup
t→∞

log N(t)

t
�

n∑
i=1

πi

[
a(i) − 1

2
α2(i)

]
a.s. (4.2)

Particularly, if
∑n

i=1 πi[a(i) − 1
2 α2(i)] < 0 holds, then

lim
t→∞ N(t) = 0 a.s.
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Proof. By Theorem 2.1, the solution N(t) with initial value N0 ∈ R+ will remain in R+ with probability one. By the gener-
alized Itô formula, we drive from (1.7) that

d
(
log N(t)

) =
[

a
(
r(t)

)− 1

2
α2(r(t))− b

(
r(t)

)
N(t)

]
dt + α

(
r(t)

)
dB(t). (4.3)

Hence,

log N(t) = log N0 +
t∫

0

[
a
(
r(s)

)− 1

2
α2(r(s)

)]
ds −

t∫
0

b
(
r(s)

)
N(s)ds +

t∫
0

α
(
r(s)

)
dB(s)

� log N0 +
t∫

0

[
a
(
r(s)

)− 1

2
α2(r(s)

)]
ds + M(t), (4.4)

where M(t) is a martingale defined by

M(t) =
t∫

0

α
(
r(s)

)
dB(s).

The quadratic variation of this martingale is

〈M, M〉t =
t∫

0

α2(r(s)
)

ds � ᾰ2t.

By the strong law of large numbers for martingales (see [18,19]), we therefore have

lim
t→∞

M(t)

t
= 0 a.s.

It finally follows from (4.4), by dividing by t on both sides and then letting t → ∞, that

lim sup
t→∞

log N(t)

t
� lim sup

t→∞
1

t

t∫
0

[
a
(
r(s)

)− 1

2
α2(r(s)

)]
ds =

n∑
i=1

πi

[
a(i) − 1

2
α2(i)

]
a.s.,

which is the required assertion (4.2). �
Corollary 4.1. Assume for some i ∈ S, a(i) < 1

2 α2(i). Then solutions of subsystem

dN(t) = N(t)
[(

a(i) − b(i)N(t)
)

dt + α(i)dB(t)
]

(4.5)

tend to zero a.s.

5. Asymptotic properties

Lemma 5.1. Under Assumption 1, the solution N(t) of SDE (1.7) with any positive initial value has the property

lim sup
t→∞

log(N(t))

log t
� 1 a.s. (5.1)

Proof. By Theorem 2.1, the solution N(t) with positive initial value will remain in R+ . We know that

dN(t) = N(t)
[(

a
(
r(t)

)− b
(
r(t)

)
N(t)

)
dt + α

(
r(t)

)
dB(t)

]
� ăN(t)dt + α

(
r(t)

)
N(t)dB(t).

We can also derive from this that

E
(

sup
t�u�t+1

N(u)
)

� E
(
N(t)

)+ ă

t+1∫
E
(
N(s)

)
ds + E

(
sup

t�u�t+1

u∫
α
(
r(s)

)
N(s)dB(s)

)
.

t t
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From (3.1) of Lemma 3.1, we know that

lim sup
t→∞

E
(
N(t)

)
� K (1). (5.2)

But, by the well-known Burkholder–Davis–Gundy inequality (see [18,19]) and the Hölder inequality, we derive that

E

(
sup

t�u�t+1

u∫
t

α
(
r(s)

)
N(s)dB(s)

)
� 3E

[ t+1∫
t

(
α
(
r(s)

)
N(s)

)2
ds

] 1
2

� E

[
9ᾰ2

t+1∫
t

N2(s)ds

] 1
2

� E

[
sup

t�u�t+1
N(u) · 9ᾰ2

t+1∫
t

N(s)ds

] 1
2

� E

[(
1

2
sup

t�u�t+1
N(u)

)2

+
(

9ᾰ2

t+1∫
t

N(s)ds

)2] 1
2

� E

[
1

2
sup

t�u�t+1
N(u) + 9ᾰ2

t+1∫
t

N(s)ds

]

� 1

2
E
(

sup
t�u�t+1

N(u)
)

+ 9ᾰ2

t+1∫
t

E
(
N(s)

)
ds. (5.3)

Therefore

E
(

sup
t�u�t+1

N(u)
)

� 2E
(
N(t)

)+ 2ă

t+1∫
t

E
(
N(s)

)
ds + 18ᾰ2

t+1∫
t

E
(
N(s)

)
ds.

This, together with (5.2), yields

lim sup
t→∞

E
(

sup
t�u�t+1

N(u)
)

� 2
(
1 + ă + 9ᾰ2)K (1). (5.4)

To prove assertion (5.1), we observe from (5.4) that there is a positive constant K̄ such that

E
(

sup
k�t�k+1

N(t)
)

� K̄ , k = 1,2, . . . .

Let ε > 0 be arbitrary. Then, by the well-known Chebyshev inequality, we have

P
{

sup
k�t�k+1

N(t) > k1+ε
}

� K̄

k1+ε
, k = 1,2, . . . .

Applying the well-known Borel–Cantelli lemma (see e.g. [18,19]), we obtain that for almost all ω ∈ Ω

sup
k�t�k+1

N(t) � k1+ε (5.5)

holds for all but finitely many k. Hence, there exists a k0(ω), for almost all ω ∈ Ω , for which (5.5) holds whenever k � k0.
Consequently, for almost all ω ∈ Ω , if k � k0 and k � t � k + 1,

log(N(t))

log t
� (1 + ε) log k

log k
= 1 + ε.

Therefore

lim sup
t→∞

log(N(t))

log t
� 1 + ε a.s.

Letting ε → 0 we obtain the desired assertion (5.1). The proof is therefore complete. �
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Lemma 5.2. If there exists a constant θ > 0 such that A(θ) is a nonsingular M-matrix, then the solution N(t) of SDE (1.7) with any
positive initial value has the property that

lim inf
t→∞

log(N(t))

log t
� −1

θ
a.s. (5.6)

Proof. Applying the generalized Itô formula, for the fixed constant θ > 0, we derive from (3.15) that

d
[(

1 + U (t)
)θ ] � θ

(
1 + U (t)

)θ−2
{
−U 2(t)

[
β
(
r(t)

)− 1

2
θα2(r(t))]+ U (t)

[
b
(
r(t)

)+ α2(r(t))]+ b
(
r(t)

)}
dt

− θ
(
1 + U (t)

)θ−1
U (t)α

(
r(t)

)
dB(t)

� θ
(
1 + U (t)

)θ−2
{
−U 2(t)

[
β̂ − 1

2
θᾰ2

]
+ U (t)

[
b̆ + ᾰ2]+ b̆

}
dt

− θ
(
1 + U (t)

)θ−1
U (t)α

(
r(t)

)
dB(t), (5.7)

where U (t) is defined by (3.14). By Lemma 3.6, there exists a positive constant M such that

E
[(

1 + U (t)
)θ ] � M on t � 0. (5.8)

Let δ > 0 be sufficiently small for

θ

{[
β̂ + 2b̆ + 1

2
(θ + 2)ᾰ2

]
δ + 3ᾰδ

1
2

}
<

1

2
. (5.9)

Let k = 1,2, . . . . Then (5.7) implies that

E
[

sup
(k−1)δ�t�kδ

(
1 + U (t)

)θ]

� E
[(

1 + U
(
(k − 1)δ

))θ ]
+ E

(
sup

(k−1)δ�t�kδ

∣∣∣∣∣
t∫

(k−1)δ

θ
(
1 + U (s)

)θ−2
{
−U 2(s)

[
β̂ − 1

2
θᾰ2

]
+ U (s)

[
b̆ + ᾰ2]+ b̆

}
ds

∣∣∣∣∣
)

+ E

(
sup

(k−1)δ�t�kδ

∣∣∣∣∣
t∫

(k−1)δ

θ
(
1 + U (s)

)θ−1
U (s)α

(
r(s)

)
dB(s)

∣∣∣∣∣
)

. (5.10)

We compute

E

(
sup

(k−1)δ�t�kδ

∣∣∣∣∣
t∫

(k−1)δ

θ
(
1 + U (s)

)θ−2
{
−U 2(s)

[
β̂ − 1

2
θᾰ2

]
+ U (s)

[
b̆ + ᾰ2]+ b̆

}
ds

∣∣∣∣∣
)

� E

( kδ∫
(k−1)δ

∣∣∣∣θ(1 + U (s)
)θ−2

{
−U 2(s)

[
β̂ − 1

2
θᾰ2

]
+ U (s)

[
b̆ + ᾰ2]+ b̆

}∣∣∣∣ds

)

� θ E

( kδ∫
(k−1)δ

{(
1 + U (s)

)θ[
β̂ + 1

2
θᾰ2

]
+ (

1 + U (s)
)θ−1[

b̆ + ᾰ2]+ (
1 + U (s)

)θ−2
b̆

}
ds

)

� θ E

( kδ∫
(k−1)δ

[
β̂ + 1

2
θᾰ2 + b̆ + ᾰ2 + b̆

](
1 + U (s)

)θ
ds

)

� θ

[
β̂ + 2b̆ + 1

2
(θ + 2)ᾰ2

]
E

( kδ∫
(k−1)δ

sup
(k−1)δ�s�kδ

(
1 + U (s)

)θ
ds

)

� θ

[
β̂ + 2b̆ + 1

2
(θ + 2)ᾰ2

]
δE

(
sup

(
1 + U (t)

)θ)
. (5.11)
(k−1)δ�t�kδ
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By the Burkholder–Davis–Gundy inequality, we derive that

E

(
sup

(k−1)δ�t�kδ

∣∣∣∣∣
t∫

(k−1)δ

θ
(
1 + U (s)

)θ−1
U (s)α

(
r(s)

)
dB(s)

∣∣∣∣∣
)

� 3E

( kδ∫
(k−1)δ

θ2(1 + U (s)
)2(θ−1)

U 2(s)α2(r(s)
)

ds

) 1
2

� 3θᾰE

( kδ∫
(k−1)δ

(
1 + U (s)

)2θ
ds

) 1
2

� 3θᾰδ
1
2 E

(
sup

(k−1)δ�t�kδ

(
1 + U (t)

)2θ
) 1

2

� 3θᾰδ
1
2 E

(
sup

(k−1)δ�t�kδ

(
1 + U (t)

)θ)
.

Substituting this and (5.11) into (5.10) gives

E
[

sup
(k−1)δ�t�kδ

(
1 + U (t)

)θ] � E
[(

1 + U
(
(k − 1)δ

))θ ]

+ θ

{[
β̂ + 2b̆ + 1

2
(θ + 2)ᾰ2

]
δ + 3ᾰδ

1
2

}
E
(

sup
(k−1)δ�t�kδ

(
1 + U (t)

)θ)
. (5.12)

Making use of (5.8) and (5.9) we obtain that

E
[

sup
(k−1)δ�t�kδ

(
1 + U (t)

)θ] � 2M. (5.13)

Let ε > 0 be arbitrary. Then, by the Chebyshev inequality, we have

P
{
ω: sup

(k−1)δ�t�kδ

(
1 + U (t)

)θ
> (kδ)1+ε

}
� 2M

(kδ)1+ε
, k = 1,2, . . . .

Applying the Borel–Cantelli lemma, we obtain that for almost all ω ∈ Ω

sup
(k−1)δ�t�kδ

(
1 + U (t)

)θ � (kδ)1+ε (5.14)

holds for all but finitely many k. Hence, there exists an integer k0(ω) > 1/δ + 2, for almost all ω ∈ Ω , for which (5.14) holds
whenever k � k0. Consequently, for almost all ω ∈ Ω , if k � k0 and (k − 1)δ � t � kδ,

log(1 + U (t))θ

log t
� (1 + ε) log(kδ)

log((k − 1)δ)
= 1 + ε.

Therefore

lim sup
t→∞

log(1 + U (t))θ

log t
� 1 + ε a.s.

Letting ε → 0, we obtain the desired assertion

lim sup
t→∞

log(1 + U (t))θ

log t
� 1 a.s.

Recalling the definition of U (t), this yields

lim sup
t→∞

log( 1
Nθ (t)

)

log t
� 1 a.s.,

which further implies

lim inf
t→∞

log(N(t))

log t
� −1

θ
a.s.

This is our required assertion (5.6). �
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Theorem 5.1. Under Assumptions 1, 2 and 3, the solution N(t) of SDE (1.7) with any positive initial value obeys

lim sup
t→+∞

1

t

t∫
0

N(s)ds � 1

b̂

n∑
i=1

πi

[
a(i) − 1

2
α2(i)

]
a.s. (5.15)

and

lim inf
t→+∞

1

t

t∫
0

N(s)ds � 1

b̆

n∑
i=1

πi

[
a(i) − 1

2
α2(i)

]
a.s. (5.16)

Proof. By Theorem 2.1, the solution N(t) with any positive initial value will remain in R+ . From Lemmas 5.1, 3.4 and 5.2,
we know that

lim
t→+∞

log N(t)

t
= 0 a.s. (5.17)

We derive from (4.3) that

log N(t) = log N0 +
t∫

0

[
a
(
r(s)

)− 1

2
α2(r(s)

)]
ds −

t∫
0

b
(
r(s)

)
N(s)ds +

t∫
0

α
(
r(s)

)
dB(s). (5.18)

Dividing by t on both sides, then we have

log N(t)

t
= log N0

t
+ 1

t

t∫
0

[
a
(
r(s)

)− 1

2
α2(r(s)

)]
ds − 1

t

t∫
0

b
(
r(s)

)
N(s)ds + 1

t

t∫
0

α
(
r(s)

)
dB(s).

Letting t → ∞, by the strong law of large numbers for martingales and (5.17), we therefore have

lim sup
t→+∞

1

t

t∫
0

N(s)ds � 1

b̂

n∑
i=1

πi

[
a(i) − 1

2
α2(i)

]
a.s.

and

lim inf
t→+∞

1

t

t∫
0

N(s)ds � 1

b̆

n∑
i=1

πi

[
a(i) − 1

2
α2(i)

]
a.s.,

which are the required assertions (5.15) and (5.16). �
Similarly, using Lemmas 5.1, 3.5 and 5.2, we can show:

Theorem 5.2. Under Assumptions 1 and 4, the solution N(t) of SDE (1.7) with any positive initial value obeys

lim sup
t→+∞

1

t

t∫
0

N(s)ds � 1

b̂

n∑
i=1

πi

[
a(i) − 1

2
α2(i)

]
a.s. (5.19)

and

lim inf
t→+∞

1

t

t∫
0

N(s)ds � 1

b̆

n∑
i=1

πi

[
a(i) − 1

2
α2(i)

]
a.s. (5.20)

Corollary 5.1. Assume for some i ∈ S, b(i) > 0, a(i) > 1
2 α2(i). Then the solution with positive initial value to subsystem

dN(t) = N(t)
[(

a(i) − b(i)N(t)
)

dt + α(i)dB(t)
]

(5.21)

has the property that

lim
t→+∞

1

t

t∫
0

N(s)ds = a(i) − 1
2α2(i)

b(i)
a.s.
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We observe that if the growth rates b(i) are the same in different regimes, then the results in Theorems 5.1 and 5.2
become limits. More precisely, consider the logistic population system subject to both white noise and color noise described
by

dN(t) = N(t)
[(

a
(
r(t)

)− bN(t)
)

dt + α
(
r(t)

)
dB(t)

]
, (5.22)

where for each i ∈ S , a(i), α(i) are all nonnegative constants and b > 0.

Corollary 5.2. Under Assumptions 2 and 3, the solution N(t) of SDE (5.22) with any positive initial value has the property that

lim
t→+∞

1

t

t∫
0

N(s)ds = 1

b

n∑
i=1

πi

[
a(i) − 1

2
α2(i)

]
a.s.

6. Conclusions and examples

It is interesting to find that if b(i) > 0 and a(i) > 1
2 α2(i) for some i ∈ S , then the equation

dN(t) = N(t)
[(

a(i) − b(i)N(t)
)

dt + α(i)dB(t)
]

(6.1)

is stochastically permanent. Hence Theorem 3.3 tells us that if every individual equation

dN(t) = N(t)
[(

a(i) − b(i)N(t)
)

dt + α(i)dB(t)
]
, 1 � i � n, (6.2)

is stochastically permanent, then as the result of Markovian switching, the overall behavior, i.e. SDE (1.7), remains stochas-
tically permanent. On the other hand, if a(i) < 1

2 α2(i) for some i ∈ S , then Eq. (6.1) is extinctive. Hence Theorem 4.1 tells
us that if every individual Eq. (6.2) is extinctive, then as the result of Markovian switching, the overall behavior of SDE (1.7)
remains extinctive. However, Theorems 3.2 and 4.1 provide a more interesting result that if some individual equations in
(6.2) are stochastically permanent while some are extinctive, again as the result of Markovian switching, the overall behav-
ior of SDE (1.7) may be stochastically permanent or extinctive, depending on the sign of the value

∑n
i=1 πi[a(i) − 1

2 α2(i)].
In order to see this point clearly, we state the following necessary and sufficient conditions for stochastic permanence or
extinction of SDE (1.7) which follow from Theorems 3.2 and 4.1.

Theorem 6.1. Let Assumptions 1 and 2 hold and assume
∑n

i=1 πi[a(i) − 1
2 α2(i)] �= 0. Then the SDE (1.7) is either stochastically

permanent or extinctive. That is, it is stochastically permanent if and only if
∑n

i=1 πi[a(i) − 1
2 α2(i)] > 0, while it is extinctive if and

only if
∑n

i=1 πi[a(i) − 1
2 α2(i)] < 0.

Making use of Theorems 5.1 and 5.2, we can also estimate the limit of the average in time of the sample path of the
solution by two constants related to the stationary distribution and the parameters a(i), b(i), α(i), i ∈ S . We shall illustrate
these conclusions through the following examples.

Example 6.1. To obtain more precise conditions to guarantee that SDE (1.7) is stochastically permanent or extinctive, let us
assume that the Markov chain r(t) is on the state space S = {1,2} with the generator

Γ =
(−γ12 γ12

γ21 −γ21

)
,

where γ12 > 0 and γ21 > 0. It is easy to see that the Markov chain has its stationary probability distribution π = (π1,π2)

given by

π1 = γ21

γ12 + γ21
and π2 = γ12

γ12 + γ21
,

noting that
∑n

i=1 πi[a(i) − 1
2 α2(i)] has the form

n∑
i=1

πi

[
a(i) − 1

2
α2(i)

]
= γ21

γ12 + γ21

[
a(1) − 1

2
α2(1)

]
+ γ12

γ12 + γ21

[
a(2) − 1

2
α2(2)

]
.

As pointed out in Section 1, we may regard SDE (1.7) as the result of the following two equations:

dN(t) = N(t)
[(

a(1) − b(1)N(t)
)

dt + α(1)dB(t)
]
, (6.3)

where b(1) > 0 and a(1) − 1 α2(1) > 0, and
2
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dN(t) = N(t)
[(

a(2) − b(2)N(t)
)

dt + α(2)dB(t)
]
, (6.4)

where b(2) > 0 and a(2) − 1
2 α2(2) < 0, switching from one to the other according to the movement of the Markov chain

r(t). We observe that Eq. (6.3) is stochastically permanent while Eq. (6.4) is extinctive. However, as the result of Marko-
vian switching, the overall behavior of SDE (1.7) will be stochastically permanent as long as the transition rate γ21 from

extinctive Eq. (6.4) to permanent Eq. (6.3) is greater than α2(2)−2a(2)

2a(1)−α2(1)
times the transition rate γ12 from permanent Eq. (6.3)

to extinctive Eq. (6.4). On the other hand, as the result of Markovian switching, the overall behavior of SDE (1.7) will be

extinctive as long as the transition rate γ21 from extinctive Eq. (6.4) to permanent Eq. (6.3) is less than α2(2)−2a(2)

2a(1)−α2(1)
times

the transition rate γ12 from permanent Eq. (6.3) to extinctive Eq. (6.4).

Example 6.2. Consider a 3-dimensional stochastic differential equation with Markovian switching of the form

dN(t) = N(t)
[(

a
(
r(t)

)− b
(
r(t)

)
N(t)

)
dt + α

(
r(t)

)
dB(t)

]
on t � 0, (6.5)

where r(t) is a right-continuous Markov chain taking values in S = {1,2,3}, and r(t) and B(t) are independent. Here

a(1) = 2, b(1) = 3, α(1) = 1;
a(2) = 1, b(2) = 2, α(2) = 2;
a(3) = 4, b(3) = 1, α(3) = 3.

We compute

a(1) − 1

2
α2(1) = 2

3
; a(2) − 1

2
α2(2) = −1; a(3) − 1

2
α2(3) = −1

2
.

Case 1. Let the generator of the Markov chain r(t) be

Γ =
(−2 1 1

3 −4 1
1 1 −2

)
.

By solving the linear equation (2.1) we obtain the unique stationary (probability) distribution

π = (π1,π2,π3) =
(

7

15
,

1

5
,

1

3

)
.

Then

3∑
i=1

πi

[
a(i) − 1

2
α2(i)

]
= 1

3
> 0.

Therefore, by Theorems 5.1 and 6.1, Eq. (6.5) is stochastically permanent and its solution N(t) with any positive initial value
has the following properties:

1

9
� lim inf

t→+∞
1

t

t∫
0

N(s)ds � lim sup
t→+∞

1

t

t∫
0

N(s)ds � 1

3
a.s.

Case 2. Let the generator of the Markov chain r(t) be

Γ =
(−5 2 3

1 −1 0
3 0 −3

)
.

By solving the linear equation (2.1) we obtain the unique stationary distribution

π = (π1,π2,π3) =
(

1

4
,

1

2
,

1

4

)
.

Then

3∑
i=1

πi

[
a(i) − 1

2
α2(i)

]
= −1

4
< 0.

Therefore, by Theorem 6.1, Eq. (6.5) is extinctive.
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