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Let Γ denote an uncountable set. We consider the questions if a Banach space X of
the form C(K ) of a given class (1) has a complemented copy of c0(Γ ) or (2) for every
c0(Γ ) ⊆ X has a complemented c0(E) for an uncountable E ⊆ Γ or (3) has a decomposition
X = A ⊕ B where both A and B are nonseparable. The results concern a superclass of the
class of nonmetrizable Eberlein compacts, namely K s such that C(K ) is Lindelöf in the
weak topology and we restrict our attention to K s scattered of countable height. We show
that the answers to all these questions for these C(K )s depend on additional combinatorial
axioms which are independent of ZFC ± CH. If we assume the P -ideal dichotomy, for every
c0(Γ ) ⊆ C(K ) there is a complemented c0(E) for an uncountable E ⊆ Γ , which yields
the positive answer to the remaining questions. If we assume ♣, then we construct a
nonseparable weakly Lindelöf C(K ) for K of height ω + 1 where every operator is of the
form cI + S for c ∈ R and S with separable range and conclude from this that there are
no decompositions as above which yields the negative answer to all the above questions.
Since, in the case of a scattered compact K , the weak topology on C(K ) and the pointwise
convergence topology coincide on bounded sets, and so the Lindelöf properties of these
two topologies are equivalent, many results concern also the space C p(K ).

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

This paper is concerned with two directions of research presented in the literature. The first direction provides conditions
under which nonseparable Banach spaces have rich structure of complemented canonical subspaces which in turn implies
that the entire space has many operators and decompositions. The second direction is represented by constructions of
nonseparable Banach spaces with few operators in the sense that there are only operators of the form T = cI + S where
c ∈ R and S has a separable range. We restrict ourselves to the class of Banach spaces C(K ) of real-valued continuous
functions on a Hausdorff compact, scattered space of countable height. Recall that a compact K is scattered if and only if
every nonempty L ⊆ K has an isolated point. By the Sierpiński and Mazurkiewicz theorem all scattered compact metrizable
spaces are homeomorphic to ordinal intervals [0,α] with the order topology where α is a countable ordinal. On the other
hand the class of nonmetrizable scattered compact spaces is very far from its classification.
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Scattered compact spaces play special role in functional analysis, namely a C(K ) is an Asplund space if and only if K is
scattered [8, Theorem 12.29]. There are many other analytic characterizations of this class of Banach spaces (see [16]). If K
is scattered we can define its Cantor–Bendixson derivative X (α) for each ordinal α by the inductive conditions: K (0) = K ,
K (α+1) = (K (α))′ and K (λ) = ⋂

α<λ K (α) where X ′ is the set of all nonisolated points of X . The minimal ordinal α such that
K (α) = ∅ is called the height of K and denoted ht(K ). In particular we will use the fact that if L ⊆ K is a closed subset
of a scattered K , then L is scattered and ht(L) � ht(K ). Also it is well known that scattered compact spaces are totally
disconnected.

Amir and Lindenstrauss introduced in [1] a quite successful generalization of reflexive and separable spaces, namely
the weakly compactly generated spaces, WCG. As proved in [1] there are many operators with separable ranges on such
spaces, many complemented separable subspaces and nice extension results hold. In [2] the question of nonseparable com-
plemented subspaces, in particular copies of c0(Γ ) for uncountable Γ in WCG spaces was addressed. A special case of
[2, Theorems 1.1, 1.2] is that every copy of c0(ω1) in a WCG Banach space is complemented and for every copy of c0(Γ )

in a WCG Banach space and Γ of uncountable cofinality there is E ⊆ Γ of the same cardinality as Γ such that c0(E) is
complemented. Of course complemented copies of c0(Γ ) yield not only projections but also a rich algebra of operators, for
example obtained by composing the projection with operators on c0(Γ ) induced by permutations of Γ .

These results of [2] were obtained for a superclass V of WCG spaces namely spaces with Valdivia compact dual ball. We
address similar questions for another superclass of WCG spaces of the form C(K ), namely Banach spaces of the form C(K )

which are Lindelöf in the weak topology, also called weakly Lindelöf. We restrict our attention to K s scattered of countable
height for which C(K ) necessarily contain a copy of c0(ω1) for K nonmetrizable. Note that it is well known that every WCG
space is weakly Lindelöf [8, Theorem 12.34]. The first example of a weakly Lindelöf Banach space which is not WCG was
obtained in [18]. It is of the form C(K ) where K is the ladder system space. We recall this example in details as it is a
fundamental example of the class of Banach spaces we consider in this paper. Here we use the notation valid for the entire
paper: S(ω1) is the set of all countable ordinals which are successor ordinals and L(ω1) is the set of all countable ordinals
which are limit ordinals.

Example (The ladder system space). (See [18], IV.7.1 of [5].) For each α ∈ L(ω1) choose Sα ⊆ S(ω1) of order type ω such that
the only accumulation point of Sα in the order topology is α. The ladder system space is the Stone space of the Boolean
subalgebra of ℘(ω1) generated by finite subsets of S(ω1) and the ladders Sα ∪ {α} for α < ω1. Its points can be identified
with elements of ω1 or with one extra ultrafilter which contains all cofinite subsets of S(ω1) and all complements of
Sα ∪ {α}s. This point will be denoted by ω1 and the underlying set of the space will be identified with [0,ω1]. Of course
such a topology depends on the choice of the ladders (Sα: α < ω1). It is well known that such a space is scattered and of
height three.

This example does not fall in the class V , on the other hand C([0,ω1]) is in V but is not weakly Lindelöf (and [0,ω1]
has uncountable height). It is easy and probably well known to see that already the above space has an uncomplemented
copy of c0(ω1) (see 2.7). So our positive results must be weaker from a version of Sobczyk’s theorem.

If C(K ) is nonseparable WCG, then K is a nonmetrizable Eberlein compact, and so, it contains c0(ω1) by [8, Theo-
rem 12.9]. The same holds for nonseparable weakly Lindelöf C(K ) for K scattered of countable height. Namely, K has to be
uncountable and nonseparable by [17] and so K \ K (1) is an uncountable set of isolated points in K which easily gives rise
to an isometric copy of c0(ω1). Thus, we always have copies of c0(ω1) in our spaces.

Our results are that if K is nonmetrizable scattered compact of countable height such that C(K ) is weakly Lindelöf then
the questions:

(1) Must C(K ) have a complemented copy of c0(Γ ) for Γ uncountable?
(2) If Γ is uncountable and c0(Γ ) ⊆ C(K ), is there a complemented c0(E) for an uncountable E ⊆ Γ ?
(3) Is there a decomposition C(K ) = A ⊕ B where both A and B are nonseparable?

all depend on additional combinatorial axioms which are independent from ZFC ± CH. We could note here that if the height
of K is finite, all these questions have positive answers.

In the following, second section, we prove some useful facts about weakly Lindelöf C(K )s which do not require any
additional set-theoretic assumptions. It is well known that for bounded sets in C(K ) for K scattered, the weak topology
coincides with the topology of pointwise convergence. This implies that for these K s each of these topologies has the
Lindelöf property if and only if the other has it as well. So the results of this section also refer to C p(K ) spaces which are
weakly Lindelöf. [5] contains many interesting results on the Lindelöf property of C p(K ) spaces, in particular Chapter IV.7 of
[5] refers to compact scattered K s. In this section we note that C(K ) has uncomplemented copies of c0(ω1) where K is the
ladder system space but also there are always complemented copies of c0(ω1) in any weakly Lindelöf C(K ) for K compact
scattered nonmetrizable and of finite height. Recall that if C(K ) is WCG and K is of finite height and weight < ωω , then,
by a result of Godefroy, Kalton and Lancien [9], C(K ) is already isomorphic to a c0(Γ ) for some Γ . Here the assumption
on the weight is essential by a result of Marciszewski [14]. Our results suggest also the possibility of a characterization of
compact K s of countable height such that C(K ) is weakly Lindelöf (possibly of weights < ωω) as those K s where closures
of countable sets are countable (see Question 2.6).
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The first axiom we consider, in Section 3, is the P -ideal dichotomy. A P -ideal I of subsets of a set X is a family of
subsets which is closed under taking subsets and finite unions and for every sequence of elements An ∈ I for n ∈ N there is
an A ∈ I such that An \ A is at most finite for each n ∈ N.

Definition 1.1. (See [25].) The P -ideal dichotomy is the following statement: For every P -ideal I of countable subsets of
some set S , either

(1) there is an uncountable A ⊆ S such that [A]ω ⊆ I , or
(2) S can be decomposed into countably many sets orthogonal to I , that is such Ans that [An]ω ∩ I = [An]<ω for each n ∈ N.

We prove that it implies positive answers to all the above questions (1)–(3) because it gives the positive answer to
question (2) (see 3.2). It is known (see [25]) that the P -ideal dichotomy is consistent with ZFC ± CH. We only use the P -
ideal dichotomy for S of cardinality ω1 which is considerably weaker than the full strength of the axiom. On the other hand
in Section 4 we consider ♣, also consistent with ZFC ± CH (see [15,22]) which implies the negative answers to the above
questions because assuming ♣ we construct a space K0 which does not have decompositions as in question (3) (see 4.11).
Moreover ♣ already implies the existence of K s of finite height which constitute counterexamples to question (2). Recall
the formulation of this axiom:

Definition 1.2. (See [15].) ♣ is the following sentence: There is a sequence (Sα)α∈L(ω1) such that for each α ∈ L(ω1):

(1) Sα ⊆ α,
(2) Sα converges to α in the order topology,
(3) for every uncountable X ⊆ ω1 there is α ∈ L(ω1) such that Sα ⊆ X .

Actually, our construction of a C(K0) from ♣ goes further and is related to the subject of nonseparable Banach spaces
with few operators, i.e., Banach spaces X on which the only operators are of the form T = cI + S where I is the identity
on X , c is a scalar and S is an operator with separable range. Our construction has this property and this is how we prove
the nonexistence of the decompositions of our C(K0) into two nonseparable factors. In fact, we can even control the factors.
As shown in 4.11, one factor is isomorphic to c0 or C0(ω

ω) and the other is isomorphic to C(K0). This is related to few
decompositions as in [12] and [4].

The first construction of a Banach space (not of the form C(K )) X on which the only operators are of the form T = cI + S
where I is the identity on X , c is a scalar and S is an operator with a separable range is due to Shelah [21] and was obtained
under ♦. In [23] a weaker, modified version of it was given which did not require any additional set-theoretic assumptions
and use Todorcevic’s anti-Ramsey results from [24]. H. Wark in [26] modified this example obtaining a reflexive space (and
so WCG) with this property. All the above constructions (as ours) have a transfinite basis of length ω1, which in the case
of a WCG space is a necessary condition. Thus, there are lots of projections on separable subspaces. Finally Argyros, Lopez-
Abad and Todorcevic obtained in [3] reflexive spaces with transfinite basis of length ω1 where all operators are of the above
form where S is strictly singular.

In [11] we investigated the versions of the above property of having few operators in WCG spaces with transfinite bases
of length bigger than ω1. The spaces of [21,23,26,3,11] are not of the form C(K ). We do not know if such C(K )s with few
operators in the above sense exist in ZFC (if they are of the form C(K ) they cannot be WCG but K must be scattered). In
[12] we obtain such a space of the form C(K ) assuming CH. As shown in Section 3, CH does not imply the existence of such
a C(K ) which is additionally weakly Lindelöf.

2. The Lindelöf property in the weak topology in ZFC

Lemma 2.1. If L ⊆ K are compact spaces such that C(K ) is weakly Lindelöf, then C(L) is weakly Lindelöf as well.

Proof. Under the assumption of the lemma the Banach space C(L) is a quotient of the Banach space C(K ). So the canonical
map T : C(K ) → C(L) given by T ( f ) = f |L is continuous with respect to the weak topologies. Now it is enough to recall
(Theorem 3.8.7 of [7]) that a continuous image of a Lindelöf space is a Lindelöf space. �
Lemma 2.2. If K is a compact scattered space of countable height such that C(K ) is weakly Lindelöf, then the closures of countable
sets in K are countable.

Proof. If for any countable X ⊆ K its closure L is uncountable, we obtain a separable subspace L of K which is scattered
and of countable height. By a result of Pol (Theorem 2 of [17]), C(L) is not weakly Lindelöf, and hence C(K ) is not weakly
Lindelöf by 2.1. �
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By a theorem of Reznichenko (IV.8.16 of [5]), Martin’s axiom and the negation of CH imply that for any compact scattered
K such that C(K ) is weakly Lindelöf we have closures in of countable sets countable (this is equivalent to ℵ0-monoliticity
of [5] for compact spaces).

Lemma 2.3. If K is a compact scattered space of countable height such that C(K ) is weakly Lindelöf, then K is a Frechet topological
space.

Proof. First, let us prove that K has countable tightness. Let A ⊆ K and x ∈ A. Working in the scattered compact space A
of countable height, we prove by induction on the height of the point y that there is a countable B y ⊆ A such that y ∈ B y .
The inductive step follows from the fact that each nonisolated point in a scattered space of countable height is the limit of
a convergent sequence of points of smaller heights.

Now, knowing that K has countable tightness suppose that x ∈ K is in the closure A. So we may w.l.o.g. assume that A is
countable. By 2.2 A is countable, compact and hence is a metrizable compact space and so there is a sequence of elements
of A convergent to x, which completes the proof. �

Following [18], we will say that a space X has the strong condensation property if and only if every uncountable subset
A ⊆ X has an uncountable subset B ⊆ A which is concentrated around a point x of X , which means that for every neighbor-
hood V of x, the set B \ V is at most countable. We will use the following version of a lemma from [18]. Here C(K , {0,1})
is the family of all characteristic functions of clopen sets of K with the pointwise convergence topology (which coincides
for scattered K s on bounded sets with the weak topology).

Lemma 2.4. (See Lemma 4 of [18].) Suppose that K is a scattered compact space of weight ω1 and x ∈ K . Let G = { f ∈
C(K , {0,1}): f (x) = 0}. If there is a set E ⊆ G such that

(1) for every f ∈ G there exist f1, . . . , fm ∈ E such that f = f1 + · · · + fm,
(2) the space E has the strong condensation property,

then the space C(K ) is weakly Lindelöf.

Theorem 2.5. Suppose that K is a compact scattered space of countable height and weight ω1 where closures of countable sets are
countable and there is only one point x0 ∈ K which does not have a countable neighborhood. Then C(K ) is weakly Lindelöf.

Proof. First note that, by the compactness, each clopen set a ⊆ K missing x0 must be at most countable. We will closely
follow [18]. To use 2.4 consider G = { f ∈ C(K , {0,1}): f (x0) = 0}. Let E = G , i.e., G is the set of characteristic functions of
clopen sets missing x0. So, we need to prove that E has the strong condensation property.

Claim 1. If aξ s for ξ < ω1 are clopen sets all containing a point x ∈ K \ {x0}, then there is a clopen a ⊆ K such that x ∈ a ⊆ aξ for
uncountably many ξ s.

Proof. By the hypothesis about x0 each point in K \ {x0} has a countable, compact, and so, metrizable neighborhood. Thus,
it has a countable clopen basis, so one element of such a basis works for uncountably many ξ s. �

For a subset a ⊆ K define

ht∗(a) = min
{
α � ht(K ): a ∩ K (α) = ∅}

.

Note that if a is closed, then ht∗(a) is a successor ordinal, that ht∗(a) � ht(K ) and a ∩ K (ht∗(a)−1) is finite.

Claim 2. Suppose that {aξ : ξ < ω1} is a sequence of clopen sets missing x0 such that ht∗(aξ ) = α for each ξ ∈ ω1 . Then there is an
uncountable X ⊆ ω1 and clopen sets a, bξ , cξ for ξ ∈ X such that

(1) aξ = a ∪ bξ ∪ cξ ,
(2) bξ , cξ and a are pairwise disjoint for each ξ ∈ X,
(3) bξ s are pairwise disjoint for all ξ ∈ X,
(4) ht∗(cξ ) < α for all ξ ∈ X.

Proof. Let Fξ = aξ ∩ K (α)−1. As we noted above, Fξ s are finite. Applying the �-system lemma (Chapter 2, 1.5 of [13]) we
may assume that there is a finite F ⊆ K (α−1) such that F = Fξ ∩ Fη for distinct ξ,η ∈ ω1. By Claim 1 there is a clopen
a′ ⊆ K such that F ⊆ a′ ⊆ aξ . Note that proving the claim for aξ \ a′ would be sufficient as we would add a′ to a to cover
the case of the original family. Thus w.l.o.g. we may assume that Fξ ’s are pairwise disjoint.
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Now, by induction on α < ω1 we construct a sequence of clopen sets bα and ξα ∈ ω1 such that

(1) Fξα ⊆ bα ⊆ aξα ,
(2) bαs are countable and pairwise disjoint.

The inductive step α < ω1 follows from the fact that
⋃

β<α bβ is countable, and hence has countable closure by the hypoth-
esis on K , so there is an Fξα outside of this closure. We pick bα as its clopen neighborhood included in aξ disjoint from⋃

β<α bβ . The set bα is countable because it is missing x0. Now put cα = aαξ \ bαξ . This completes the proof of Claim 2. �
Let {χaξ : ξ < ω1} be a subset of E such that aξ s are all distinct. As the height of K is countable, we may assume w.l.o.g.

that for all ξ ∈ ω1 we have ht∗(aξ ) = α for some α � ht(K ). By induction on α we will prove that {χaξ : ξ < ω1} has an
uncountable set which is concentrated around a point in E . Suppose it is true for β < α and assume aξ = a ∪ bξ ∪ cξ as
in Claim 2. By the inductive hypothesis w.l.o.g. we may assume that all χcξ s are concentrated around some χc . By the
disjointness of all cξ s with a we have a ∩ c = ∅. Now, note that {χaξ : ξ < ω1} is concentrated in the topology of pointwise
convergence around χa∪c . This follows from Claim 2. �
Question 2.6. Suppose that K is compact scattered of countable height such that closures of countable sets are countable. Is it true that
C(K ) is weakly Lindelöf? Consistently? For K of weight < ωω?

Theorem 2.7. There is a compact scattered space of height three, such that C(K ) is weakly Lindelöf and has an uncomplemented copy
of c0(ω1).

Proof. Consider as K the ladder system space which is scattered and of height three and the C(K ) has the weak Lindelöf
property (see [18,5]). Of course {1{ξ}: ξ ∈ S(ω1)} generates a copy of c0(ω1). Call this copy X ⊆ C(K ). Let C0(K ) = { f ∈
C(K ): f (ω1) = 0}. It is a hyperplane of C(K ) containing X and so, complemented in C(K ), hence it is enough to prove that
there is no projection from C0(K ) onto X . We will use the fact that the dual to C0(K ) is isometric to the space of Radon
measures on [0,ω1] which vanish on {ω1}.

Suppose P : C0(K ) → X is a projection onto X . For ξ ∈ S(ω1) consider the measures μξ = P∗(δξ ). Note that P∗(δξ )({ξ}) =
P (1{ξ})(ξ) = 1{ξ}(ξ) = 1 and P∗(δξ )({η}) = P (1{η})(ξ) = 1{η}(ξ) = 0 for any distinct ξ,η ∈ S(ω1). That is, for each ξ ∈ S(ω1)

we have μξ ({ξ}) = 1 and |μξ |(S(ω1) \ {ξ}) = 0, since all measures are atomic.
Using the standard closure argument and the fact that the supports of Radon measures in the dual to C0(K ) are countable

and do not contain ω1, it is easy to find an α ∈ L(ω1) such that for each ξ < α we have |μξ |([α,ω1]) = 0. Now note that
for ξ < α we have

P (1Sα∪{α})(ξ) = μξ

(
Sα ∪ {α}) = μξ (Sα) = 1Sα (ξ).

However there is no such function in X which completes the proof of the theorem. �
Note that three is the smallest possible height of a scattered space where we can have the above result. This is because

in the case of height two, K (1) = K ′ must be finite, and so K is finite union of one-point compactifications of discrete
spaces and so, for example, a version of Sobczyk’s theorem obtained in [2] applies. Also a similar argument and the result
of Godefroy, Kalton and Lancien (Theorem 4.8 of [9]) implies that there cannot be such C(K ) which is WCG.

However any weakly Lindelöf C(K ) for K nonmetrizable of finite height also has a complemented copy of c0(ω1):

Theorem 2.8. For every weakly Lindelöf C(K ) with K compact nonmetrizable scattered of finite height there is a complemented copy
of c0(ω1) in C(K ).

Proof. Take a point x ∈ K of the smallest height which does not have a countable neighborhood. The compactness and the
fact that K is nonmetrizable and so, uncountable imply the existence of such an x. Say x ∈ K (n+1) . Let V be a neighborhood
of x witnessing that it is isolated in K (n+1) . Let m < n + 1 be the biggest integer such that V ∩ K (m) is uncountable and let
U be the union of some countable neighborhoods of the countably many points of [K (m+1) \ K (n+1)] ∩ V . Take {xξ : ξ ∈ ω1}
from V ∩ (K (m) \ U ). This means that x is the unique accumulation point of {xξ : ξ ∈ ω1}. Now by induction on α < ω1 we
construct a sequence of clopen sets Uα and ξα ∈ ω1 such that

(1) xξα ∈ Uα ⊆ V ,
(2) Uαs are countable and pairwise disjoint.

The inductive step α < ω1 follows from the fact that
⋃

β<α Uβ is countable, and hence has countable closure by 2.2, so
there is ξα outside of this closure. We pick Uα as its clopen neighborhood included in V which moreover may be assumed
to be countable by the choice of x.
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Now, consider the space generated by {χUα : α < ω1}. It is isomorphic to c0(ω1) because for every (tα)α<ω1 ∈ c0(ω1) the
function

∑
α∈ω1

tαχUα is in C(K ). Now if f ∈ C(K ), then ( f (xξα )− f (x))α∈ω1 is in c0(ω1) because x is the only accumulation
point of {xξ : ξ ∈ ω1}.

Define an operator

P ( f ) =
∑
α∈ω1

(
f (xξα ) − f (x)

)
χUα .

It is the required projection. �
3. A consequence of the P -ideal dichotomy

Lemma 3.1. Suppose that K is an uncountable compact scattered space where closures of countable sets are countable, Y ⊆ K and
x0 ∈ K . Then

Ix0,Y = {
A ∈ [Y ]�ω; A does not have accumulation points different than x0

}
is a P -ideal of countable subsets of Y .

Proof. Note that closed subsets of K which miss x0 may intersect an element of I only on a finite set.
Let An ∈ I for n ∈ N. Letting X ⊆ K be the closure of

⋃
n∈N

An , by the hypothesis we can enumerate X \ {x0} as
{yn: n ∈ N}. Let Un be an open neighborhood of yn such that x0 /∈ Un . Put

A =
⋃
k∈N

(
Ak \ (U1 ∪ · · · ∪ Uk)

)
.

First we will prove that An \ A is finite for each n ∈ N:

An \ A = An \
⋃
k∈N

(
Ak \ (U1 ∪ · · · ∪ Uk)

)

=
⋂
k∈N

[
An \ (

Ak \ (U1 ∪ · · · ∪ Un)
)] ⊆ An \ (

An \ (U1 ∪ · · · ∪ Un)
)

= An ∩ (U1 ∪ · · · ∪ Un) = (An ∩ U1) ∪ · · · ∪ (An ∩ Un).

But the last set is finite because An ∩ Ui is finite for each i,n ∈ N by the first sentence of this proof.
Now let us prove that A ∈ I . Note that A is a subset of the closed set {yn: n ∈ N} ∪ {x0} so the only accumulation points

of A could be yns or x0, but for each n ∈ N the intersection of A with the neighborhood Un of yn is finite, hence A ∈ I , as
required. �
Theorem 3.2. Assume the P -ideal dichotomy. Let K be an uncountable scattered compact space of countable height such that C(K )

is weakly Lindelöf. Suppose T : c0(ω1) → C(K ) is an isomorphism onto its image. Then there is an uncountable E ⊆ ω1 such that
T [c0(E)] is complemented in C(K ).

Proof. Let fξ = T (1{ξ}) and let xξ ∈ K and ε > 0 be such that | fξ (xξ )| > ε holds for each ξ ∈ ω1.
Note that ‖1{ξ1} + · · · + 1{ξn}‖ = 1 and for each x ∈ K we have ‖T (1{ξ1} + · · · + 1{ξn})‖ � |∑1�i�n fξi (x)|, so given x ∈ K

can be equal to at most finitely many xξ s, and so we may assume that all xξ ’a are distinct.

Claim. There is an uncountable E0 ⊆ ω1 such that {xξ : ξ ∈ E0} is discrete and its closure is the one point compactification of
{xξ : ξ ∈ E0}.

Proof. Consider K0 ⊆ K equal to the closure of {xξ : ξ ∈ ω1} in K . It is, by 2.1, like K , a compact scattered space of
countable height such that C(K0) is weakly Lindelöf. By compactness and the fact that K0 is uncountable, there must be a
point x∞ ∈ K0 without a countable neighborhood. Assume that x∞ is such a point of the smallest possible height. Consider
a clopen neighborhood U of x∞ consisting of points of smaller heights. Note that U contains uncountably many points xξ s
because otherwise the density of {xξ : ξ ∈ ω1} in K0 would contradict the countability of closures of countable sets 2.2.

The considerations of the previous paragraph and 2.1 imply that by taking U instead of K we may assume that K has
only one point x∞ which does not have countable neighborhoods.

Now we will use the P -ideal dichotomy to obtain E0 such that the only accumulation point of {xξ : ξ ∈ E0} is x∞ . Let
Y = {xξ : ξ ∈ ω1} and consider the ideal I = Ix∞,Y . It is impossible to have an uncountable subset A of Y such that A ⊥ I ,
because the only complete accumulation point of an uncountable set can be x∞ (other points have countable neighborhoods)
but by 2.3 this would give a countable infinite B ⊆ A such that B ∈ I . So, the second alternative of the P -ideal dichotomy
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fails, thus the first must hold, that is, there is an uncountable X ⊆ Y such that all countable subsets of X are in the ideal.
By 2.3, this means that x∞ is the only accumulation point of X and so X ∪ {x∞} is the one-point compactification of X . Let
E0 be such that X = {xξ : ξ ∈ E0} which completes the proof of the claim. �

It is clear that {xξ : ξ ∈ E0} ∪ {x∞} is homeomorphic to a one-point compactification of ω1 = |X |.
Note that for all but countably many ξ ∈ E0 we must have fξ (x∞) = 0, because otherwise there would be fξ1 , . . . , fξn

such that | fξ1 (x∞) + · · · + fξn (x∞)| > ‖T ‖ which would contradict the fact that 1{ξ1,...,ξn} = 1ξ1 + · · · + 1ξn has norm one in
c0(ω1). Let E1 ⊆ E0 be cocountable such that fξ (x∞) = 0 for all ξ ∈ E1.

A similar argument shows that for any countable F ⊆ E1 for all but countably many ξ ∈ E1 we have fξ |F = 0.
Since {xξ : ξ ∈ E1} ∪ {x∞} is homeomorphic to one-point compactification of {xξ : ξ ∈ E1} it follows from the choice of

E1 that for each ξ ∈ E1 we have that fξ (xη) = 0 for all but countably many η ∈ E1.
The last two observations imply that by induction we may construct an uncountable set E ⊆ E1 such that fξ (xη) = 0 for

any distinct ξ,η ∈ E .

Now we claim that T [c0(E)] is complemented in C(K ). Note that for each f ∈ C(K ) the sequence (
f (xξ )− f (x∞)

fξ (xξ )
)ξ∈E is in

c0(E) ⊆ c0(ω1). Consider the operator:

P ( f ) = T

[(
f (xξ ) − f (x∞)

fξ (xξ )

)
ξ∈E

]

for f ∈ C(K ). Then P ( fη) = T (1{η}) = fη for η ∈ E and hence P is the identity on its image and so a projection. �
Corollary 3.3. Assume the P -ideal dichotomy. Let K be an uncountable scattered compact space of countable height such that C(K ) is
weakly Lindelöf. Then C(K ) has complemented copies of c0(ω1).

Proof. K \ K (1) of such a space must be uncountable by 2.2. So it is enough to note that the closure of finite linear
combinations of characteristic functions of elements of K \ K (1) is a copy of c0(ω1) in C(K ). Now apply 3.2. �
4. A construction of a weakly Lindelöf C(K ) with few operators

Although the main result of this section concerns a space of height ω + 1, let us first note that ♣ already has an impact
on scattered spaces of finite height. The following result shows that the conclusion of 3.2 cannot be obtained in ZFC ± CH
alone. Also compare it with 2.7.

Theorem 4.1. Assume ♣. There is a compact scattered K of height three such that C(K ) is weakly Lindelöf and there is a copy of c0(ω1)

in the C(K ) such that for no uncountable E ⊆ ω1 the space c0(E) is complemented in C(K ).

Proof. Let Sαs be from ♣, see Definition 1.2. For all α ∈ L(ω1) define

Tα = {ξ + 1: ξ ∈ Sα}.
It is clear that:

(1) Tα ⊆ α and Tα ⊆ S(ω1),
(2) Tα converges to α,
(3) for every uncountable X ⊆ S(ω1) there is α ∈ L(ω1) such that Tα ⊆ X .

Let K be the ladder system space obtained using the above Tαs. The proof is similar to that of 2.7. We will use the
same notation with the exception that instead of X we will consider c0(E) equal to the closure of {1{ξ}: ξ ∈ E} for any
uncountable E ⊆ S(ω1). Also we will shorten some arguments which are already in the proof of 2.7. Of course c0(E) is a
copy of c0(ω1). Again it is enough to prove that there is no projection from C0(K ) onto c0(E).

Suppose P E : C0(K ) → c0(E) is a projection onto c0(E). For ξ ∈ E consider the Radon measures on K given by μξ =
P∗

E(δξ ). For ξ ∈ E we have μξ ({ξ}) = 1 and μξ ({η}) = 0 for η ∈ E ∪ {ω1} and ξ ∈ E distinct than η.
Using the standard closure argument and the fact that Radon measures on scattered spaces have countable carriers, it is

easy to find a closed and unbounded C E ⊆ L(ω1) such that for each α ∈ C E and for each ξ ∈ E ∩α we have |μξ |([α,ω1]) = 0.
Thin out E to an uncountable E1 ⊆ E such that the only accumulation points of E1 in the order topology are in C E , for
example by choosing at most one element of E between any two consecutive points of C E . Now apply (3) to find α ∈ L(ω1)

such that Tα ⊆ E1. By the choice of E1 we have that α ∈ C E since Tα converges to α in the order topology. Now for ξ ∈ Tα

P E(χTα∪{α})(ξ) = P∗
E(δξ )

(
Tα ∪ {α}) = P∗

E(δξ )
({ξ}) = 1.

As Tα is infinite, P E (χTα∪{α}) does not belong to c0(E), a contradiction. �
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To describe the main construction of this section, we will need more terminology and some lemmas. Let α � ω1. Put
F0(α) = α = {β: β < α} and for n > 0 let Fn+1(α) consist of all finite sequences of elements of Fn(α). Finally, define
F (α) = ⋃

n∈N
Fn(α). For x ∈ F (α) such that x ∈ Fn(α), define by induction on n ∈ N the support of x denoted supp(x) as the

union of all sets supp(y) where y is a term of the sequence x with supp(x) = {x} for x ∈ F0(α). If x, y ∈ F (α),α � ω1, then
we say that x < y if and only if ξ < η for every ξ ∈ supp(x) and η ∈ supp(y). If S ⊆ F (α), we say that it is consecutive if and
only if x < y or y < x whenever x and y are two distinct elements of S . If S ⊆ F (α) is infinite, we say that it converges to
γ ∈ L(ω1) if and only if S is consecutive and for every β < γ the set

{
x ∈ S: supp(x) � (β,γ )

}
is finite.

If F ∈ F1(α) for some α < ω1, abusing the notation, we may identify it with the set of its terms.

Lemma 4.2. If S ⊆ F (ω1) is uncountable made of elements with pairwise disjoint supports, then there is an uncountable S ′ ⊆ S which
is consecutive.

Definition 4.3. ♣′ is the following sentence: There is a sequence (S ′
α)α∈L(ω1) such that for each α ∈ L(ω1):

(1) S ′
α ⊆ F (α),

(2) S ′
α converges to α,

(3) for every uncountable consecutive X ⊆ F (ω1) there is α ∈ L(ω1) such that S ′
α ⊆ X .

Similar axiom as ♣′ was considered, for example, in [10] in a Boolean algebraic context not distant from ours.

Lemma 4.4. ♣ and ♣′ are equivalent.

Proof. There is a bijection φ : ω1 → F (ω1). Using the standard closure argument one can show that the set Cφ of all α ∈ ω1
such that φ[α] = F (α) is closed and unbounded in ω1 (Chapter 2, §6 of [13]).

Define S ′
α = φ[Sα] if such an S ′

α is included in F (α) and converges to α and otherwise S ′
α is any sequence in F (α)

convergent to α. Let X ⊆ F (ω1) be uncountable and consecutive. Consider Y ′ = φ−1[X] and

Y = {
min

(
Y ′ ∩ [α,β

)
): α,β ∈ Cφ, [α,β) ∩ Cφ = {α}, Y ′ ∩ [α,β) �= ∅}

,

that is, we allow in Y ⊆ Y ′ just one element of Y ′ from the interval between two consecutive elements of Cφ .
Now use ♣ to find Sα ⊆ Y . Note that the construction of Y guarantees that the elements of φ[Sα] ⊆ X have their

supports included and unbounded in α. But this, together with the hypothesis that X is consecutive and Sα converges to α,
implies that φ[Sα] converges to α and so S ′

α = φ[Sα] and S ′
α ⊆ X , as required in ♣′ .

The other direction is clear. �
Lemma 4.5. Suppose that K is a compact space, (μα)α∈ω1 is a sequence of Radon measures on K such that for each finite � ⊆ K we
have |μα |(�) = 0 for all but countably many α ∈ ω1 . Assume that ε > 0 and that F ′

αs for α ∈ ω1 are finite subsets of K such that
|μα |(K \ F ′

α) < ε for each α ∈ ω1 . Then there is an uncountable X ⊆ ω1 and Fα ⊆ F ′
α for α ∈ X such that |μα |(K \ Fα) < ε and the

sequence (Fα)α∈X is pairwise disjoint.

Proof. Apply the �-system lemma (Chapter 2, 1.5 of [13]) to (F ′
α)α∈ω1 obtaining an uncountable X ′ ⊆ ω1 such that (F ′

α)α∈X ′
forms a �-system with root �. Now take such a cocountable X ⊆ X ′ that |μα |(�) = 0 for α ∈ X and put Fα = F ′

α \ �. �
Lemma 4.6. Suppose K is a compact space and x0 ∈ K is the only point in K which does not have countable neighborhoods. Let
C0(K ) = { f ∈ C(K ): f (x0) = 0}. Let T : C0(K ) → C0(K ) be a bounded linear operator and T ∗ its adjoint. For α ∈ ω1 let xα ’s be
distinct points of K \ {x0}. Then for each finite � ⊆ K \ {x0}, for all but countably many α ∈ ω1 we have |T ∗(δxα )|(�) = 0.

Proof. If the lemma is false, then w.l.o.g. we may assume that |T ∗(δxα )|(�) > ε for some ε > 0 and for all α ∈ ω1 and
moreover that � is a singleton {y}.

Let V be a countable and so metrizable neighborhood of y. For each α ∈ ω1 find an open Vα ⊆ V from a fixed countable
basis at y of V such that |μα |(Vα \ {y}) < ε/2 where μα = T ∗(δxα ). For uncountable set X ⊆ ω1 the set Vα is the same,
say U .

Find a function f ∈ C(K ) of norm one and such that supp( f ) ⊆ U and f (y) = 1. Then | ∫ f dμα | > ε − ε/2 = ε/2 for
α ∈ X . In other words |T ( f )(xα)| > ε/2 for all α ∈ X . But x0 can be the only complete accumulation point of {xα: α ∈ X}
since other points have countable neighborhoods. So T ( f )(x0) �= 0, contradicting the hypothesis that T is into C0(K ). �

Now we proceed to the main result of this section. First we will construct a topology on [0,ω1] whose properties will
be proved in what follows. The construction is based on Ostaszewski’s construction [15] the way it is presented in [19]. The
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difference is that we want to take care of operators and so we need to work with F (ω1) and ♣′ instead of ♣, moreover we
want to make sure that the space has height ω + 1 unlike the Ostaszewski space. However we do not need CH.

By induction on γ < ω1 we will construct a topology τγ on [0, γ ] such that [0, γ ] with the topology τγ is:

(1) 0-dimensional, locally compact,
(2) scattered of height not bigger than ω,
(3) τγ refines the order topology on [0, γ ].

If γ < γ ′ < ω1, then [0, γ ] with τγ is an open subspace of [0, γ ′] with τγ ′ , that τγ ′ is a conservative extension of τγ

(see [19, 2.3]).
The topology is given by local bases B(γ ) at γ . If γ is a successor then we put B(γ ) = {{γ }}. If γ is a limit ordinal,

then let τ ′
γ be the topology on [0, γ ) defined as the simple limit

∑
β<γ τβ of the topologies τβ for β < γ (see [19, 2.3]). It

easily follows from the inductive assumption that [0, γ ) with τ ′
γ is 0-dimensional, locally compact, scattered of height not

bigger than ω and τ ′
γ refines the order topology on [0, γ ).

In the case of γ ∈ L(ω1) we consider S ′
γ from ♣′ . In this case we also put B(γ ) = {{γ }} unless S ′

γ consists only
of quadruples from ω1 × ω1 × ω<ω

1 × ω<ω
1 such that the first two terms of all elements of S ′

γ are distinct and have their
heights in τ ′

γ uniformly bounded by some k ∈ N. If this is the case, then B(γ ) and its description requires some introductory
comments. As S ′

γ converges to γ , we can enumerate it as sn(γ ) = (ξn(γ ),ηn(γ ), Fn(γ ), Hn(γ )) for n ∈ N, so that m < n
implies supp(sm(γ )) < supp(sn(γ )). Now we will use the inductive hypotheses (1)–(3) to construct two sequences of τ ′

γ -

open sets W 0
n (γ ) and W 1

n (γ ) for n ∈ N such that

• ξn(γ ) ∈ W 0
n (γ ), ηn(γ ) ∈ W 1

n (γ ),
• the heights in τ ′

γ of all points of W 0
n (γ ) and W 1

n (γ ) are not bigger than k,

• W 0
n (γ ) and W 1

n (γ ) are compact,
• W 0

n (γ ) ⊆ (max(supp(sn−1(γ ))), ξn(γ )], W 1
n (γ ) ⊆ (max(supp(sn−1)(γ )),ηn(γ )],

• W 0
n (γ ) ∩ (({ηn(γ )} ∪ Fn(γ ) ∪ Hn(γ )) \ {ξn(γ )}) = ∅ and W 1

n (γ ) ∩ (({ξn(γ )} ∪ Fn(γ ) ∪ Hn(γ )) \ {ηn(γ )}) = ∅.

The construction is straightforward, as all intervals (β,β ′] with β < β ′ < γ must be τ ′
γ open by the fact that τ ′

γ refines the
order topology. Above, abusing the notation, we identified Hn(γ )s and Fn(γ )s with the sets of their terms.

For n ∈ N put Wn(γ ) = W 0
n (γ ) ∪ W 1

n (γ ) for n odd and Wn(γ ) = W 0
n (γ ) for n even. Note that, in particular Wn(γ )s

are pairwise disjoint, compact and open. Now we are ready to define B(γ ) completing the definition of τγ . B(γ ) is the
collection of sets of the form

Vm(γ ) =
⋃{

Wn(γ ): n > m
} ∪ {γ }

where m ∈ N.
This completes the inductive step. We check that (1)–(3) hold for τγ . (1) is standard, e.g. as in [19, 5.3]. (2) follows from

the fact that the height of the only new point cannot be bigger than k + 1 ∈ N because all points of Vm(γ )s have heights
not bigger than k. (3) follows from the fact that for every β < γ there will be Vm(γ ) such that Vm(γ ) ⊆ (β,γ ]. The final
topology τω1 on [0,ω1] is the one-point compactification of [0,ω1) with the topology given as the simple limit

∑
γ <ω1

τγ .
[0,ω1] with this topology will be denoted K0.

The construction implies that we have the following two lemmas:

Lemma 4.7. Suppose γ < ω1 . Then we have:

(1) ξn(γ ) ∈ Vm(γ ) iff n > m,
(2) for n ∈ N odd we have ηn(γ ) ∈ Vm(γ ) iff n > m,
(3) for n ∈ N even and any m ∈ N we have ηn(γ ) /∈ Vm(γ ),
(4) Vm(γ ) ∩ [(Fn(γ ) ∪ Hn(γ )) \ {ξn(γ ),ηn(γ )}] = ∅ for each n,m ∈ N.

Lemma 4.8. K0 is a compact, scattered space of height � ω + 1 whose topology restricted to [0,ω1) refines the order topology of ω1 .
The only point of K0 which does not have a countable neighborhood is ω1 . Closures of countable sets in K0 are countable.

Proof. The properties follow from the construction. The statement on countable closures follows from the fact that for
α < ω1 the subspaces [0,α] ∪ {ω1} are closed in K0 as (α + 1,ω1) is open in the order topology. �

Now we proceed to the properties of the C0(K0) = { f ∈ C(K0): f (ω1) = 0}. Let T : C0(K0) → C0(K0) be an operator. For
each α ∈ ω1 define cT

α = T ∗(δα)({α}). We will often skip the superscript T if it is clear from the context.

Lemma 4.9. Suppose T : C0(K0) → C0(K0) is a linear operator. There is c ∈ R, such that eventually for α < ω1 we have cT
α = c.
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Proof. Fix T : C0(K0) → C0(K0) and suppose that the lemma does not hold. We will obtain a contradiction from this
assumption. First note that by the regularity of the cardinal ω1 and by the fact that uncountable sets of the reals have
uncountably many concentration points, there must be two disjoint uncountable A, B ⊆ ω1 and two rationals p, q such that
for all ξ ∈ A and for all η ∈ B

cξ < p < q < cη.

For each η ∈ B choose a finite Gη ⊆ ω1, such that

∣∣T ∗(δη)
∣∣(K \ Gη) <

q − p

6
.

We may assume that Gηs form a �-system with root G ⊆ γ for some γ < ω1. Now we construct recursively two sequences
(ξα)α∈ω1 , (ηα)α∈ω1 ⊆ ω1 \ γ , which for each α ∈ ω1 satisfy the following

ξα ∈ A, ηα ∈ B,

ξα,ηα < ξα′ , ηα′ if α < α′ < ω1,

T ∗(δξα )
({ηα}) = 0,

∣∣T ∗(δηα )
∣∣({ξα}) <

q − p

6
.

This can be done in the following way. First choose ξα ∈ A bigger than the previously chosen terms of the sequences and
bigger than γ . Note that there is at most one η ∈ B such that ξα ∈ Gη . So now choose ηα ∈ B outside the countable support
of T ∗(δξα ) and ηα �= η. This completes the construction of the sequences.

Now again use the fact that the measures T ∗(δξα ), T ∗(δηα ) ∈ M0(K0) are atomic to find for all α ∈ ω1 two finite sets
Fα, Hα ⊆ K0 such that

{ξα,ηα} ∩ (Fα ∪ Hα) = ∅,∣∣T ∗(δξα )
∣∣(K0 \ (

Fα ∪ {ξα,ηα})) <
q − p

3
,

∣∣T ∗(δηα )
∣∣(K0 \ (

Hα ∪ {ξα,ηα})) <
q − p

6
.

By Lemmas 4.5 and 4.6 we may assume that Fαs are pairwise disjoint and Hαs are pairwise disjoint. By thinning-out and
Lemma 4.2 we may assume that X = {(ξα,ηα, Fα, Hα); α ∈ ω1} is consecutive.

Applying ♣′ we obtain γ ∈ Lim(ω1) for which S ′
γ ⊆ X . As in the construction of K0 we have an enumeration S ′

γ =
{(ξn(γ ),ηn(γ ), Fn(γ ), Hn(γ )); n ∈ N} in the increasing order.

By 4.7(4) Vm(γ ) ∩ (Fn(γ ) ∪ Hn(γ )) = ∅ for each m,n ∈ N. So, for all n ∈ N we obtain
∣∣T (χV 0(γ ))

(
ξn(γ )

)∣∣ = ∣∣T ∗(δξn(γ ))(χV 0(γ ))
∣∣

= ∣∣T ∗(δξn(γ ))
({

ξn(γ )
}) + 0 + T ∗(δξn(γ ))

(
V 0(γ ) ∩ K0 \ (

Fn(γ ) ∪ {
ξn(γ ),ηn(γ )

}))∣∣
� cξn(γ ) + ∣∣T ∗(δξn(γ ))

∣∣(K0 \ (
Fn(γ ) ∪ {

ξn(γ ),ηn(γ )
}))

< p + q − p

3
= 2p + q

3
,

where the first equality makes sense since the set V 0(γ ) is clopen and so its characteristic function is continuous and 0
stands for T ∗(δξn(γ ))({ηn(γ )}) since T ∗(δξα )({ηα}) = 0 for each α < ω1 and S ′

γ ⊆ X . On the other hand we have
∣∣T (χV 0(γ ))

(
ηn(γ )

)∣∣ = ∣∣T ∗(δηn(γ ))(χV 0(γ ))
∣∣

�
∣∣T ∗(δηn(γ ))

({
ηn(γ )

})∣∣ − ∣∣T ∗(δηn(γ ))
({

ξn(γ )
})∣∣

− ∣∣T ∗(δηn(γ ))
∣∣(K0 \ (

Hn(γ ) ∪ {
ξn(γ ),ηn(γ )

}))
� cηn − q − p

6
− q − p

6
> q − q − p

3
= 2q + p

3
.

However, the sequences (ξ2n+1(γ ))n∈N and (η2n+1(γ ))n∈N converge in the topology τω1 to γ by 4.7(1) and (2), so the
continuity of T (χV 0(γ )) ∈ C0(K0) and the above inequalities imply

∣∣T (χV 0(γ ))(γ )
∣∣ = lim

n→∞
∣∣T (χV 0(γ ))

(
ξ2n+1(γ )

)∣∣
� 2p + q

3
<

2q + p

3
� lim

n→∞
∣∣T (χV 0(γ ))

(
η2n+1(γ )

)∣∣ = ∣∣T (χV 0(γ ))(γ )
∣∣,

which brings the hypothesis that the sequence (cα)α∈ω1 is not eventually constant to a contradiction. �
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Theorem 4.10. Every operator T : C(K0) → C(K0) is of the form T = cI + S where S : C(K0) → C(K0) has separable range.

Proof. As K0 contains convergent sequences, it has a complemented copy of c0 and so the hyperplanes of C(K0), in partic-
ular C0(K0) are isomorphic with the entire C(K0). Thus, it is enough to prove the theorem for operators on C0(K0) instead
of C(K0).

Suppose that T : C0(K0) → C0(K0). Let c ∈ R be given by 4.9. Note that considering T − cI we may w.l.o.g. assume that
c = 0, that is, that there is α0 < ω1 such that T ∗(δα)({α}) = 0 for all α0 < α < ω1. It will be enough to show that T has
separable range. Suppose not, and let us arrive at a contradiction. Define

Cα = {
f ∈ C0(K0): f |(α,ω1] = 0

}
,

and note that it is a separable closed subspace of C0(K0).
It follows from our hypothesis that the image of T is not included in any Cα , and so there is a strictly increasing

sequence (ξα: α < ω1) such that α < ξα < ω1 and there are fα ∈ C0(K0) such that |T ( fα)(ξα)| > 0.
As T ( fα)(ξα) = T ∗(δξα )( fα), possibly by thinning-out the sequence, we can find ηα < ω1 and ε > 0 such that

|T ∗(δξα )({ηα})| > ε. Note that ξα �= ηα by the hypothesis that cα = 0.
Note that the set of all ηα ’s is uncountable because otherwise the same ηα would be repeated for uncountably many

α ∈ ω1 contradicting 4.6. So, we may assume that all the ηαs are distinct. Let Fα ⊆ ω1 be such a finite set that ξα,ηα /∈ Fα

and |T ∗(δξα )(K0 \ (Fα ∪ {ξα,ηα}))| < ε/3.
Consider the sequence X = {(ξα,ηα, Fα, Fα): α ∈ ω1}. Applying 4.5 and 4.6 we may assume that Fαs are pairwise

disjoint. Applying 4.2 we may assume that it is consecutive.
Now use ♣′ , to find γ ∈ L(ω1) such that S ′

γ ⊆ X . As in the construction of K0 we have an enumeration of S ′
γ in the

increasing order as {(ξn(γ ),ηn(γ ), Fn(γ ), Fn(γ )): n ∈ N}. We have∣∣T (χV 0(γ ))
(
ξn(γ )

)∣∣ = ∣∣T ∗(δξn(γ ))
(

V 0(γ )
)∣∣

= ∣∣T ∗(δξn(γ ))
(

V 0(γ ) ∩ {
ηn(γ )

}) + T ∗(δξn(γ ))
(

V 0(γ ) \ (
Fn ∪ {

ξn(γ ),ηn(γ )
}))∣∣

and so if n ∈ N is even 4.7(3) gives that∣∣T (χV 0(γ ))
(
ξn(γ )

)∣∣ = ∣∣T ∗(δξn(γ ))
(

V 0(γ ) \ (
Fn(γ ) ∪ {

ξn(γ ),ηn(γ )
}))∣∣ < ε/3.

On the other hand, if n ∈ N is odd 4.7(2) gives that∣∣T (
χV 0(γ )(γ )

)(
ξn(γ )

)∣∣ >
∣∣T ∗(δξn(γ ))

(
ηn(γ )

)∣∣
− ∣∣T ∗(δξn(γ ))

(
V 0(γ ) \ (

Fn(γ ) ∪ {
ξn(γ ),ηn(γ )

}))∣∣ > ε − ε/3 = 2ε/3.

However, the sequences (ξ2n(γ ))n∈N and (ξ2n+1(γ ))n∈N converge in the topology τω1 to γ by 4.7(1), so the continuity of
T (χV 0(γ )) ∈ C0(K0) and the above inequalities yield a contradiction. �
Theorem 4.11. Assume ♣. There is a compact nonmetrizable, scattered space K0 of height ω+1 such that C(K0) is Lindelöf in the weak
topology and every operator T on K0 is of the form T = cI + S where S has its range included in a separable complemented subspace
isomorphic to c0 or to C0(ω

ω). In particular all copies of c0(ω1) included in C(K0) are not complemented and all decompositions
C(K0) = A ⊕ B where A and B are infinite dimensional are such that A ∼ c0 or A ∼ C0(ω

ω) and B ∼ C(K0) or B ∼ C0(ω
ω) or

B ∼ c0 and A ∼ C(K0).

Proof. The weak Lindelöf property follows from 4.8 and 2.5. We will often use in this proof the fact that the hyperplanes
of C(K )s for K scattered are isomorphic to the entire C(K ), this is a consequence of a well-known result that c0 is comple-
mented in such spaces for K infinite.

Claim 1. There is no complemented copy of c0(ω1) in C(K0).

Proof. We will show that every projection in C(K0) has separable or coseparable range. Since c0(ω1) can be decomposed
into two complemented nonseparable subspaces, this will prove the claim. Let P : C(K0) → C(K0) be a projection, i.e.,
P 2 = P . We know that P = cI + S where c ∈ R and S has a separable range. Thus we get (c2 − c)I = −2cS − S2 + S which
has separable range, and so c = 0 or c = 1. In other words P has separable range or I − P has separable range which
completes the proof of the claim. �

It follows from 2.8 and 4.8 that ht(K0) is actually equal to ω + 1.
Now, for 0 � α < β < ω1, α being isolated in K0 (for example a successor or 0) consider a linear closed subspace of

C(K0) given by

Cα,β = {
f ∈ C(K0): f |[0,α) ∪ (β,ω1] = constant

}
.

We assume that [0,0) = ∅.
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Claim 2. For each 0 � α < β < ω1 such that α is isolated, the space Cα,β is complemented in C(K0) and isomorphic to C([α,β] ∪
{ω1}) which is isomorphic to c0 or to C0(ω

ω). Moreover { f ∈ Cα,β : f (ω1) = 0} is complemented in C0(K0).

Proof. Let r : K0 → K0 given by r(ξ) = ξ for ξ ∈ [α,β] and r(ξ) = ω1 otherwise. Since [0,α) ∪ (β,ω1) is open and, by the
hypothesis that α is isolated, also [α,β] is open, r is a continuous retraction which witnesses that Cα,β is complemented
in C(K0). Also the induced projection sends elements of C0(K0) into { f ∈ Cα,β : f (ω1) = 0} as required in the last part of
the claim.

Cα,β is isomorphic to C(K ) where K is obtained from K0 by identifying all points of K0 belonging to [0, β) ∪ (α,ω1]
with ω1. Again, since both [0,α)∪ (β,ω1) and [α,β] are open, this K is homeomorphic to [α,β]∪ {ω1}. It is also a compact
scattered space of height � ω+ 1, and so homeomorphic to a countable successor ordinal less than ω(ωω). By the Bessaga–
Pełczyński classification of the C(K )s for K being a countable ordinal [6] such spaces are isomorphic to c0 or C0(ω

ω) which
completes the proof of the claim. �

Now let us prove that any separable subspace X of C(K0) is included in a complemented copy of c0 or C0(ω
ω). As basic

neighborhoods of any α < ω1 in K0 are included in α + 1, any function in C(K0) is eventually constant. Considering a dense
countable subset of X we note that there is α < ω1 such that X ⊆ C0,α and so Claim 2 implies that X is included in a
complemented copy of c0 or C0(ω

ω).
So, we are left with the statement about the decompositions.

Claim 3. For every 0 < α < ω1 the space

Bα = {
f ∈ C(K0): f |[0,α] ∪ {ω1} ≡ 0

}
contains a copy of C0(ω

ω) which is complemented in C(K0).

Proof. As [α + 1,ω1] is closed in K0 and [α + 1,ω1) is open in K0, we have that Bα is isometric to C0([α + 1,ω1]) and
so isomorphic to C([α + 1,ω1]) where [α + 1,ω1] is considered with the topology inherited from K0. But [α + 1,ω1] is a
scattered compact space of height � ω+1 as a subspace of K0. Moreover, by Claim 1, Bα cannot have a complemented copy
of c0(ω1) and hence by Theorem 2.8, the height of [α + 1,ω1] is actually ω + 1. Since K0 is a Frechet space by Lemma 2.3,
we can find α < β < ω1 such that [α + 1, β] ∪ {ω1} is of height ω + 1. However, this space is countable, and so, by the
Mazurkiewicz–Sierpiński theorem it is homeomorphic to a countable ordinal which must be in the interval [ωω,ω(ωω)].
The Bessaga–Pełczyński classification gives that C0([α + 1, β] ∪ {ω1}) ∼ C([α + 1, β] ∪ {ω1}) ∼ C0(ω

ω). By Claim 2, a copy of
C0([α + 1, β] ∪ {ω1}) which is included in Bα is complemented in C0(K0) which is complemented in C(K0) as required. �

Now consider any decomposition C(K0) = A ⊕ B . By the previous considerations, one of the factors, say A, is included in
a complemented copy of C0(ω

ω) or c0 of the form C0,α for some α < ω1. But complemented subspaces of C0(ω
ω) are c0

or C0(ω
ω) (Corollary 5.10 of [20]) and so, A is isomorphic to one of these spaces.

Claim 4. B contains Bα for some α < ω1 .

Proof. If P is a projection from C(K0) on the first separable factor A included in C0,β , consider the measures P∗(δγ ) for
γ ∈ [0, β] ∪ {ω1} and find α < ω1 such that the carriers of the measures P∗(δγ ) for γ ∈ [0, β] ∪ {ω1} miss (α,ω1). Then,
P restricted to Bα is zero, and so Bα ⊆ B which completes the proof of the claim. �

Now, suppose A ∼ C0(ω
ω). By Claims 3 and 4, B ∼ A′ ⊕ C for some C where A′ is isomorphic to A. So,

C(K0) = A ⊕ B ∼ A ⊕ A′ ⊕ C ∼ A′ ⊕ C ∼ B.

This is since C0(ω
ω) is isomorphic to its square.

A similar argument with a version of Claim 3 with c0 instead of C0(ω
ω) (using the fact that c0 is complemented in

C0(ω
ω)) works in the case when A ∼ c0 to get the same conclusion that B ∼ C(K0). �

An example of a scattered K (of height three, but with C(K ) which is not Lindelöf) where all nontrivial decompositions
of C(K ) have one factor isomorphic to the C(K ) and the other to c0 was obtained under CH in [12]. Also Argyros and
Raikoftsalis have constructed in [4] a separable Banach space X (necessarily not of the form C(K )) where all nontrivial
decompositions are of the form c0 ⊕ X .
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