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1. Introduction

In this paper, we study the sensitivity analysis of the solution mapping for the following parametric weak vector equi-
librium problem (for short, PWVEP): find x ∈ K (p) such that

f (x, y, p) /∈ − int C, ∀y ∈ K (p),

where f : X × X × Λ → Z is a vector-valued mapping, K :Λ ⇒ X is a set-valued mapping, C ⊆ Z is a closed, convex and
pointed cone with a nonempty interior int C , X and Z are Banach spaces and Λ is a normed space. Throughout the paper,
let the symbols 0X , 0Λ and 0Z denote the origins of X , Λ and Z , respectively. For each p ∈ Λ, by S(p) we denote the
solution mapping of the PWVEP, i.e.,

S(p) := {
x ∈ K (p)

∣∣ f (x, y, p) /∈ − int C, ∀y ∈ K (p)
}
.

The PWVEP is a unified model of several problems, for example, the vector optimization problem (for short, VOP), the vector
variational inequality problem (for short, VVI), the vector complementarity problem and the vector saddle point problem,
etc.

In recent years, existence results for various types of vector equilibrium problems and the stability analysis of the solution
mapping for the PWVEP have been investigated extensively (see [5,6,8,11,12,22,23,3,13,14,16,30]). In virtue of a nonlinear
scalarization function Chen et al. [5] and Li et al. [22,23] discussed the existence of solutions for kinds of generalized
vector quasi-equilibrium problems, respectively. By using a generalized KKM theorem Ding and Park [8] and Fakhar and
Zafarani [11] established some existence results for generalized vector equilibrium problems, respectively. Making use of
a scalarization technique Chen et al. [3] and Gong [13,14] studied the lower semicontinuity of the solution mapping S for the
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PWVEP. By a fixed point theorem Kimura and Yao [16] investigated the upper semicontinuity and the lower semicontinuity
of the solution mapping S for the PWVEP.

Sensitivity analysis is not only theoretically interesting, but also practically important in optimization theory. Under
suitable assumptions, it consists in the study of derivatives of perturbation maps. Until now, a number of useful results have
been obtained (see [1,2,17–21,24,25,28,31–33]). Kuk et al. [18] and Tanino [33] first discussed the sensitivity analysis of the
optimal value mapping for a VOP. Subsequently, Shi [31,32] made use of different conditions to study the sensitivity analysis
of the optimal value mapping for the VOP. Later, by a class of set-valued gap functions, Li et al. [21] and Meng and Li [25]
investigated the sensitivity analysis of a VVI and a Minty VVI, respectively. Recently, Li and Li [20] studied the second-order
sensitivity analysis of a weak VVI. Based on these work, Li and Li [24] investigated the sensitivity analysis of the solution
mapping for the VOP.

To the best of our knowledge, the sensitivity analysis of the solution mapping S for the PWVEP has not been studied
until now. This paper aims to investigate the sensitivity analysis (mainly the contingent derivative property) of the solution
mapping S for the PWVEP by using a so-called set-valued gap function which is similar to the set-valued gap functions
in [21,25]. Since it is difficult to directly investigate the contingent derivative of S , our method is based on the following
resolution: for x ∈ X and p ∈ Λ,

S(p) = {
x ∈ K (p)

∣∣ 0Z ∈ V (p, x)
}
, (1)

where V (p, x) := minint C G(p, x) and G(p, x) := ⋃
y∈K (p) f (x, y, p) ∪ {0Z }. At first, we investigate the relationships between

the contingent derivative of S and the contingent derivative of V . Then, we study the contingent derivative of G under
the Fréchet differentiability of f , and discuss the relationships between the contingent derivative of V and the contingent
derivative of G .

In Section 2, when V is a general set-valued mapping in (1) we mainly discuss the relationships between the contingent
derivative of S and the contingent derivative of V in infinite dimensional vector spaces. The contingent derivative of S has
been studied in [2,19]. Levy [19] has obtained the following result:

DS(p̂, x̂)(p) ⊂ {
x
∣∣ 0Z ∈ DV(p̂, x̂,0Z )(p, x)

}
, ∀p ∈ dom DS(p̂, x̂).

Aubin and Frankowska [2] obtained an explicit expression for the contingent derivative of S in the case when X = Z and
both X and Λ are finite dimensional vector spaces, however they assumed a regularity condition. To avoid this condition, in
Theorem 2.1 we assume that S is Robinson metrically regular around (p̂, x̂) and then obtain an explicit expression for the
contingent derivative of S . The Robinson metric regularity of S has been investigated in [7,9,10,26,27]. Specially, Dontchev
et al. [9] gave a sufficient condition of metric regularity of S , which is stronger than the Robinson metric regularity of S . By
using a similar method we give a slight extension of a criteria of metric regularity of S (i.e., we get a sufficient condition of
the Robinson metric regularity of S) without the hypothesis of upper semicontinuity of p 	→ d(0, V (p, x̂)) which is supposed
in [9].

In Section 3, motivated by the work reported in [18,20,21,24,25,31–33], we firstly study the contingent derivative of G
under the Fréchet differentiability of f and discuss the relationships between the contingent derivative of V and the con-
tingent derivative of G . Then, by Theorem 2.1 in Section 2, we get the contingent derivative of (1). Finally, composing these
results we obtain an explicit expression of the contingent derivative of the solution mapping S for the PWVEP.

2. Two implicit multifunction theorems

In this section, we study the following implicit multifunction which is introduced by Robinson (see [26,27]):

S(p) := {
x ∈ X

∣∣ 0Z ∈ V (p, x)
}
,

which is defined by the generalized equation 0Z ∈ V (p, x), where V :Λ × X ⇒ Z is a general set-valued mapping. In this
section, we assume that X and Z are Banach spaces whose norms are both denoted by ‖ · ‖ and Λ is a metric space whose
metric is denoted by ρ . Given a subset A ⊂ X , define the distance from x ∈ X to A by d(x, A) := infa∈A ‖x − a‖ with the
convention that d(x,∅) = ∞.

At first, we recall the following concept which is important for this paper.

Definition 2.1. (See [26].) S is called Robinson metrically regular around (p̂, x̂) ∈ gph S if there exist μ > 0, γ > 0 and
neighborhoods U p̂ of p̂, Ux̂ of x̂ such that

d
(
x, S(p)

)
� μd

(
0Z , V (p, x)

)
, whenever p ∈ U p̂, x ∈ Ux̂, d

(
0Z , V (p, x)

)
< γ . (2)

Remark 2.1. (2) implies S(p) 
= ∅ for all p ∈ U p̂ , x ∈ Ux̂ with d(0Z , V (p, x)) < γ . If V is lower semicontinuous at (p̂, x̂,0Z )

in the sense that for every ε > 0 there exist neighborhoods U p̂ of p̂ and Ux̂ of x̂ such that V (p, x) ∩ εB 
= ∅ for all p ∈ U p̂
and x ∈ Ux̂ , then the constant γ > 0 and the related inequality in (2) can be omitted. For more details we refer the reader
to [7].
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Definition 2.2. (See [2].) Let x̂ ∈ cl K , where cl K denotes the closure of K and K is a nonempty set of X . The contingent
cone of K at x̂ is the set T (K , x̂) := lim suph→0

K−x̂
h . The adjacent cone of K at x̂ is the set T �(K , x̂) := lim infh→0

K−x̂
h . K is

said to be derivable at x̂ if T (K , x̂) = T �(K , x̂).

Equivalently, x ∈ T (K , x̂) if and only if there exist sequences tn ↓ 0 and {xn} ⊂ X with xn → x and x̂ + tnxn ∈ K , ∀n.
x ∈ T �(K , x̂) if and only if for any sequence tn ↓ 0, there exists a sequence {xn} ⊂ X with xn → x and x̂ + tnxn ∈ K , ∀n.

Let F : X ⇒ Z be a set-valued mapping. The effective domain, graph and inverse of F are defined by dom F := {x ∈ X |
F (x) 
= ∅}, gph F := {(x, z) ∈ X × Z | z ∈ F (x)} and F −1(z) := {x ∈ X | z ∈ F (x)}, respectively. The contingent derivative of F at
(x̂, ẑ) ∈ gph F is the set-valued map D F (x̂, ẑ) : X ⇒ Z whose graph is T (gph F , (x̂, ẑ)). The adjacent derivative of F at (x̂, ẑ)
is the set-valued map D� F (x̂, ẑ) : X ⇒ Z whose graph is T �(gph F , (x̂, ẑ)). F is said to be proto-differentiable at (x̂, ẑ) if and
only if gph F is derivable at (x̂, ẑ), i.e., T (gph F , (x̂, ẑ)) = T �(gph F , (x̂, ẑ)) (see [28]). F is said to be semi-differentiable at
(x̂, ẑ) if and only if for any z ∈ D F (x̂, ẑ)(x), any tn ↓ 0 and any xn → x, there exists a sequence zn → z such that ẑ + tnzn ∈
F (x̂ + tnxn). Semi-differentiability is a more exacting property than proto-differentiability. The relationship between them
has been obtained by Rockafellar (see [28]). For more details we refer the reader to [28,29].

Now, we give an implicit multifunction theorem. Since the solution mapping of the PWVEP can be written as an implicit
multifunction which is similar to S , the following Theorem 2.1 and Corollary 2.1 are very useful to investigate the contingent
derivative of (1) for the PWVEP.

Theorem 2.1. Suppose that S is Robinson metrically regular around (p̂, x̂) ∈ gph S. Then one has that

DS(p̂, x̂)(p) = {
x
∣∣ 0Z ∈ DV(p̂, x̂,0Z )(p, x)

}
, ∀p ∈ dom DS(p̂, x̂). (3)

Moreover, if V is proto-differentiable at (p̂, x̂,0Z ), then S is proto-differentiable at (p̂, x̂).

Proof. It follows from Theorem 3.1 in [19] that the right-hand side of (3) includes the left-hand side. Let x be an element
of the right-hand side of (3). Then there exist sequences tn ↓ 0 and (pn, xn, zn) → (p, x,0Z ) such that

tnzn ∈ V (p̂ + tn pn, x̂ + tnxn).

Since S is Robinson metrically regular around (p̂, x̂), there exist μ > 0, γ > 0 and neighborhoods U p̂ of p̂, Ux̂ of x̂ such that
(2) holds. Because for sufficiently large n we get

p̂ + tn pn ∈ U p̂, x̂ + tnxn ∈ Ux̂ and d
(
0Z , V (p̂ + tn pn, x̂ + tnxn)

)
� tn‖zn‖ < γ ,

one has

d
(
x̂ + tnxn, S(p̂ + tn pn)

)
� μd

(
0Z , V (p̂ + tn pn, x̂ + tnxn)

)
� μtn‖zn‖.

Thus,

x̂ + tnxn ∈ S(p̂ + tn pn) + (
μtn‖zn‖ + t2

n

)
B,

i.e., there exists bn ∈ B such that

x̂ + tn
[
xn − (

μ‖zn‖ + tn
)
bn

] ∈ S(p̂ + tn pn).

Since (μ‖zn‖+tn)‖bn‖ → 0, we get x ∈ DS(p̂, x̂)(p). Similar to the above proof we can easily get that S is proto-differentiable
at (p̂, x̂) when V is proto-differentiable at (p̂, x̂,0Z ). This completes the proof. �

Let S1(p) := {x ∈ K (p) | 0Z ∈ V (p, x)}, where K :Λ ⇒ X is a set-valued mapping. It follows from Theorem 2.1 that we
can easily get the following result.

Corollary 2.1. Suppose that S1 is Robinson metrically regular along with K around (p̂, x̂) ∈ gph S1 , i.e., there exist μ > 0, γ > 0 and
neighborhoods U p̂ of p̂, U x̂ of x̂ such that

d
(
x, S1(p)

)
� μd

(
0Z , V (p, x)

)
, whenever p ∈ U p̂, x ∈ Ux̂ ∩ K (p), d

(
0Z , V (p, x)

)
< γ .

If K is semi-differentiable at (p̂, x̂) ∈ gph K , then one has

DS1(p̂, x̂)(p) = {
x ∈ DK(p̂, x̂)(p)

∣∣ 0Z ∈ DV(p̂, x̂,0Z )(p, x)
}
, ∀p ∈ dom DS1(p̂, x̂).

Moreover, if V is proto-differentiable at (p̂, x̂,0Z ), then S1 is proto-differentiable at (p̂, x̂).

Next, we give another implicit multifunction theorem which is a refinement of Theorem 2.1 in [9]. The closed ball
centered at x with radius r and the open ball are denoted by Br(x) and B◦

r (x), respectively; B and B◦ indicate the closed unit
ball and the open unit ball, respectively. Recall that a set-valued mapping F : X ⇒ Z is said to have a locally closed graph
at (x̂, ẑ) ∈ gph F when gph F ∩ [Br(x̂) × Br(ẑ)] is a closed set for some r > 0. The partial contingent derivative Dx V (p, x, z)
of V is defined as the contingent derivative of the mapping x 	→ V (p, x) with p fixed. The inner norm (see [29]) of F is
defined by ‖F‖− := supx∈B infz∈F (x) ‖z‖.
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Theorem 2.2. Assume that V has a locally closed graph at (p̂, x̂,0Z ) ∈ gph V . Then for every constant μ > 0 satisfying

lim sup
(p,x,z)

gph V−−→(p̂,x̂,0Z )

∥∥Dx V (p, x, z)−1
∥∥−

< μ, (4)

S is Robinson metrically regular around (p̂, x̂).

Proof. On the product space Y := X × Z we define the norm∣∣∣∣∣∣(x, z)
∣∣∣∣∣∣ := max

{‖x‖,μ‖z‖}, ∀(x, z) ∈ Y ,

which makes Y a Banach space, and on the space Λ × Y we introduce the metric

σ
(
(p1, y1), (p2, y2)

) := max
{
ρ(p1, p2), |||y1 − y2|||

}
, ∀p1, p2 ∈ Λ, y1, y2 ∈ Y ,

which yields Λ × Y a metric space.
A constant μ satisfies (4) if and only if there exists η > 0 such that

∀(p, x, z) ∈ gph V with σ
(
(p, x, z), (p̂, x̂,0Z )

)
� 3η and ∀v ∈ Z ,

∃u ∈ Dx V (p, x, z)−1(v) with ‖u‖ � μ‖v‖.
By the assumption, we can always choose η smaller so that the set gph V ∩B3η(p̂, x̂,0Z ) is closed. We also choose ε > 0 such
that 0 < εμ < 1 and γ with 0 < γ < εη. Set U p̂ := B◦

γ
ε

(p̂) and Ux̂ := B◦
γ
ε

(x̂). Pick p ∈ U p̂ , x ∈ Ux̂ with d(0Z , V (p, x)) < γ .

Then, for a sufficiently small c > 0 we can find zc ∈ V (p, x) such that

‖zc‖ � d
(
0Z , V (p, x)

) + c < γ .

Thus,

μ‖zc‖ < μγ < μεη < η

and, consequently, (p, x, zc) ∈ gph V ∩ Bη(p̂, x̂,0Z ). Applying Lemma 2.2 of [9] for (p, x, z) = (p, x, zc), s = γ and y′ = 0Z ,
we find x̄c ∈ S(p) such that

‖x − x̄c‖ � 1

ε
‖zc‖.

Then

d
(
x, S(p)

)
� ‖x − x̄c‖ � 1

ε
‖zc‖ � 1

ε

(
d
(
0Z , V (p, x)

) + c
)
.

By the select of c, we make c ↓ 0 and then we obtain

d
(
x, S(p)

)
� 1

ε
d
(
0Z , V (p, x)

)
.

Since 1
ε can be arbitrarily close to μ, we get that (2) holds. �

Remark 2.2. When the conditions of Theorem 2.2 are valid and the function p 	→ d(0Z , V (p, x̂)) is upper semicontinuous
at p̂, Dontchev et al. [9] have proved that the following result holds: there exist μ > 0 and neighborhoods U p̂ of p̂, Ux̂ of x̂
such that

d
(
x, S(p)

)
� μd

(
0Z , V (p, x)

)
, whenever p ∈ U p̂, x ∈ Ux̂.

It is clear that in Theorem 2.2 getting rid of the upper semicontinuity of the function p 	→ d(0Z , V (p, x̂)) we obtain (2).
Though (2) is weaker than Dontchev’s result, it follows from Theorem 2.1 that (2) is enough to discuss the contingent
derivative of S .

3. Sensitivity analysis of the solution mapping for the PWVEP

In this section, we firstly study the contingent derivative of G under the Fréchet differentiability of f . Then, we dis-
cuss the relationships between the contingent derivative of V and the contingent derivative of G . Finally, making use of
Theorem 2.1 and Corollary 2.1 we obtain a formula of the contingent derivative for S .

Let us start with some important definitions.

Definition 3.1. (See [15].) Let D be a nonempty subset of Z . minC D is said to be the minimal point set of D , if minC D :=
{ẑ ∈ D: �z ∈ D, s.t., z − ẑ ∈ −C \ {0Z }}. minint C D is said to be the weakly minimal point set of D , if minint C D := {ẑ ∈ D:
�z ∈ D, s.t., z − ẑ ∈ − int C}.
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Definition 3.2. (See [4].) A set-valued mapping W :Λ × X ⇒ Z is said to be a gap function of the PWVEP for some para-
metric p, iff

0Z ∈ W (p, x) iff x is a solution of the PWVEP and W (p, x) ∩ int C = ∅, ∀x ∈ K (p).

Proposition 3.1. V is a gap function of the PWVEP.

Proof. If 0Z ∈ V (p, x), then by the definition of V we have G(p, x) ∩ (− int C) = ∅, namely,

f (x, y, p) /∈ − int C, ∀y ∈ K (p).

Thus, x ∈ S(p). If x ∈ S(p), then G(p, x) ∩ (− int C) = ∅. Hence, 0Z ∈ V (p, x).
For each x ∈ K (p) and each z ∈ V (p, x), by the definition of V and since 0Z ∈ G(p, x), we get z /∈ int C . Thus, V (p, x) ∩

int C = ∅, ∀x ∈ K (p). �
In what follows, let p̂ ∈ Λ, x̂ ∈ S(p̂) and Ω(0Z ) := {y ∈ K (p̂) | f (x̂, y, p̂) = 0Z }. Assume that X and Z are finite dimen-

sional spaces.

Proposition 3.2. Assume that K is compact (i.e., gph K is a compact set), for each ȳ ∈ Ω(0Z ) f is continuously Fréchet differentiable
at (x̂, ȳ, p̂) and for each ȳ ∈ Ω(0Z ) the following equation holds:

ker∇y f (x̂, ȳ, p̂) ∩ DK(p̂, ȳ)(0Λ) = {0Z }. (5)

Then for (p, x) ∈ dom DG(p̂, x̂,0Z ) one has that

DG(p̂, x̂,0Z )(p, x) =
⋃

ȳ∈Ω(0Z )

⋃
y∈DK(p̂, ȳ)(p)

∇ f (x̂, ȳ, p̂)(x, y, p) ∪ {0Z }.

Proof. Let z ∈ DG(p̂, x̂,0Z )(p, x) and (p, x) ∈ dom DG(p̂, x̂,0Z ). If z = 0Z , it obviously holds. If z 
= 0Z , then there exist se-
quences tn ↓ 0 and (pn, xn, zn) → (p, x, z) such that

tnzn ∈ G(p̂ + tn pn, x̂ + tnxn).

By the definition of G there exists ȳn ∈ K (p̂ + tn pn) such that

f (x̂ + tnxn, ȳn, p̂ + tn pn) = tnzn. (6)

Since K is compact and p̂ + tn pn → p̂, we can assume, without loss of generality, that ȳn → ȳ ∈ K (p̂). By (6) we get
f (x̂, ȳ, p̂) = 0Z , i.e., ȳ ∈ Ω(0Z ). Because f is Fréchet differentiable at (x̂, ȳ, p̂), one has

f (x̂ + tnxn, ȳn, p̂ + tn pn) = ∇ f (x̂, ȳ, p̂)(tnxn, ȳn − ȳ, tn pn) + o
(‖tnxn‖ + ‖ ȳn − ȳ‖ + ‖tn pn‖

)
. (7)

Then, by (6) we obtain

tnzn = ∇ f (x̂, ȳ, p̂)(tnxn, ȳn − ȳ, tn pn) + o
(‖tnxn‖ + ‖ ȳn − ȳ‖ + ‖tn pn‖

)
.

Thus,

zn − ∇x f (x̂, ȳ, p̂)(xn) − ∇p f (x̂, ȳ, p̂)(pn)

= ‖ ȳn − ȳ‖
tn

[
∇y f (x̂, ȳ, p̂)

(
ȳn − ȳ

‖ ȳn − ȳ‖
)

+ o(‖tnxn‖ + ‖ ȳn − ȳ‖ + ‖tn pn‖)
‖tnxn‖ + ‖ ȳn − ȳ‖ + ‖tn pn‖

(
1 + tn(‖xn‖ + ‖pn‖)

‖ ȳn − ȳ‖
)]

. (8)

Now, we prove that { ȳn− ȳ
tn

} is bounded. In fact, if not, then there exists a subsequence { ȳn′− ȳ
tn′ } such that ‖ ȳn′− ȳ‖

tn′ → ∞.

Since X is a finite dimensional space, we can assume, without loss of generality, that ȳn′− ȳ
‖ ȳn′− ȳ‖ → y∗ with ‖y∗‖ = 1. Thus,

∇y f (x̂, ȳ, p̂)

(
ȳn′ − ȳ

‖ ȳn′ − ȳ‖
)

→ ∇y f (x̂, ȳ, p̂)
(

y∗).
Because ȳn′ ∈ K (p̂ + tn′ pn′ ), one has that

ȳ + ‖ ȳn′ − ȳ‖ ȳn′ − ȳ

‖ ȳn′ − ȳ‖ ∈ K

(
p̂ + ‖ ȳn′ − ȳ‖ tn′

‖ ȳn′ − ȳ‖ pn′
)

.

Since ‖ ȳn′ − ȳ‖ → 0 and tn′
‖ ȳn′− ȳ‖ pn′ → 0Λ , y∗ ∈ DK(p̂, ȳ)(0Λ) \ {0Z }. By using (5), we get

∇y f (x̂, ȳ, p̂)
(

y∗) 
= 0Z .
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Then, the right-hand side of (8) is unbounded, which contradicts the fact that the left-hand side of (8) is convergent. Thus,
{ ȳn− ȳ

tn
} is bounded.

Set yn := ȳn− ȳ
tn

. Since X is finite dimensional, we may assume, without loss of generality, that yn → y. It follows from
ȳn = ȳ + tn yn and ȳn ∈ K (p̂ + tn pn) that y ∈ DK(p̂, ȳ)(p). By using (6) and (7), we get

zn = ∇ f (x̂, ȳ, p̂)(xn, yn, pn) + o(‖tnxn‖ + ‖tn yn‖ + ‖tn pn‖)
tn

.

Thus, z = ∇ f (x̂, ȳ, p̂)(x, y, p). Consequently,

DG(p̂, x̂,0Z )(p, x) ⊂
⋃

ȳ∈Ω(0Z )

⋃
y∈DK(p̂, ȳ)(p)

∇ f (x̂, ȳ, p̂)(x, y, p) ∪ {0Z }.

Let z ∈ ⋃
ȳ∈Ω(0Z )

⋃
y∈DK(p̂, ȳ)(p) ∇ f (x̂, ȳ, p̂)(x, y, p) ∪ {0Z }. If z = 0Z , then for any tn ↓ 0, any (pn, xn) → (p, x) it follows

from the definition of G that

0Z ∈ G(p̂ + tn pn, x̂ + tnxn).

Thus, 0Z ∈ DG(p̂, x̂,0Z )(p, x). If z 
= 0Z , then there exist ȳ ∈ Ω(0Z ) and y ∈ DK(p̂, ȳ)(p) such that z = ∇ f (x̂, ȳ, p̂)(x, y, p).

Then, there exist sequences tn ↓ 0 and (pn, yn) → (p, y) such that

ȳ + tn yn ∈ K (p̂ + tn pn).

Thus, for any xn → x it follows from the definition of G that

f (x̂ + tnxn, ȳ + tn yn, p̂ + tn pn) ∈ G(p̂ + tn pn, x̂ + tnxn).

By using the Taylor expansion which is similar to (7), one has that

∇ f (x̂, ȳ, p̂)(x, y, p) ∈ DG(p̂, x̂,0Z )(p, x).

This completes the proof. �
Remark 3.1. It follows from the above proof and the proto-differentiability of K at (p̂, x̂) that G is proto-differentiable at
(p̂, x̂,0Z ).

Before investigating the relationship between the contingent derivative of V and the contingent derivative of G , we
introduce some important definitions. The set-valued mapping F : X ⇒ Z is said to be Lipschitz around x̂ ∈ dom F if and
only if there exist a neighborhood U of x̂ and a constant c > 0 such that

F (x1) ⊆ F (x2) + c‖x1 − x2‖B, ∀x1, x2 ∈ U .

F is said to be C-minicomplete around x̂ ∈ dom F if there exists a neighborhood U of x̂ such that

F (x) ⊂ min
int C

F (x) + C, ∀x ∈ U .

Proposition 3.3. Assume that the conditions of Proposition 3.2 hold. Suppose that K is proto-differentiable at (p̂, x̂) and K is Lipschitz
around p̂. Then ∀(p, x) ∈ dom DV(p̂, x̂,0Z ) one has that

DV(p̂, x̂,0Z )(p, x) ⊂ min
int C

DG(p̂, x̂,0Z )(p, x).

Proof. Let z ∈ DV(p̂, x̂,0Z )(p, x). If z /∈ minint C DG(p̂, x̂,0Z )(p, x), then there exists z̄ ∈ DG(p̂, x̂,0Z )(p, x) such that

z̄ − z ∈ − int C . (9)

Since z ∈ DV(p̂, x̂,0Z )(p, x), there exist sequences tn ↓ 0 and (pn, xn, zn) → (p, x, z) such that

0Z + tnzn ∈ V (p̂ + tn pn, x̂ + tnxn). (10)

Let us consider two possible cases for z̄.
Case 1. z̄ = 0Z . Then from (9) one has z ∈ int C . It follows from (10) and 0Z ∈ G(p̂ + tn pn, x̂ + tnxn) that tnzn /∈ int C . Thus

z /∈ int C which leads to a contradiction.
Case 2. z̄ 
= 0Z . Because K is proto-differentiable at (p̂, x̂), by Remark 3.1 we obtain that G is proto-differentiable at

(p̂, x̂,0Z ). Thus, for above tn ↓ 0 and z̄ ∈ DG(p̂, x̂,0Z )(p, x) there exist sequences (p̄n, x̄n, z̄n) → (p, x, z̄) such that

0Z + tn z̄n ∈ G(p̂ + tn p̄n, x̂ + tnx̄n).

Then, there exists ȳn ∈ K (p̂ + tn p̄n) satisfying

0Z + tn z̄n = f (x̂ + tnx̄n, ȳn, p̂ + tn p̄n). (11)
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Since K is compact and p̂ + tn p̄n → p̂, we might as well assume ȳn → ȳ ∈ K (p̂). Then from (11) one has 0Z = f (x̂, ȳ, p̂).
Similar to the proof of Proposition 3.2, we get that ‖ ȳn− ȳ

tn
‖ is bounded. Set yn := ȳn− ȳ

tn
and there is no harm in assuming

that yn → y. Since K is Lipschitz around p̂ and ȳ + tn yn ∈ K (p̂ + tn p̄n), there exist a constant c > 0 and bn ∈ B such
that

ȳ + tn
[

yn − c‖p̄n − pn‖bn
] ∈ K (p̂ + tn pn).

Set ỹn := yn − c‖p̄n − pn‖bn . Then ỹn → y. It follows from Fréchet differentiability of f at (x̂, ȳ, p̂) and (11) that

tn z̄n = f (x̂, ȳ, p̂) + ∇ f (x̂, ȳ, p̂)(tnx̄n, tn yn, tn p̄n) + o1(tn)

= f (x̂, ȳ, p̂) + ∇ f (x̂, ȳ, p̂)(tnxn, tn ỹn, tn pn) + o2(tn)

+ tn∇ f (x̂, ȳ, p̂)
(
x̄n − xn, c‖p̄n − pn‖bn, p̄n − pn

) + o1(tn) − o2(tn),

where o1(tn) = o(‖tnx̄n‖ + ‖tn yn‖ + ‖tn p̄n‖) and o2(tn) = o(‖tnxn‖ + ‖tn ỹn‖ + ‖tn pn‖). Thus,

tn

[
z̄n − ∇ f (x̂, ȳ, p̂)

(
x̄n − xn, c‖p̄n − pn‖bn, p̄n − pn

) − o1(tn)

tn
+ o2(tn)

tn

]

= f (x̂ + tnxn, ȳ + tn ỹn, p̂ + tn pn) ∈ G(p̂ + tn pn, x̂ + tnxn).

Then from (10) we obtain

f (x̂ + tnxn, ȳ + tn ỹn, p̂ + tn pn) − tnzn /∈ − int C,

namely,

z̄n − ∇ f (x̂, ȳ, p̂)
(
x̄n − xn, c‖p̄n − pn‖bn, p̄n − pn

) − o1(tn)

tn
+ o2(tn)

tn
− zn /∈ − int C .

Hence, z̄ − z /∈ − int C, which contradicts (9). This completes the proof. �
Proposition 3.4. Let 0Z ∈ minC G(p̂, x̂). Assume that the conditions of Proposition 3.2 hold and⋃

ȳ∈Ω(0Z )

∇y f (x̂, ȳ, p̂)
(
DK(p̂, ȳ)(0Λ)

) ∩ (−C) = {0Z }. (12)

Then for (p, x) ∈ dom DG(p̂, x̂,0Z ) one has that

D(G + C)(p̂, x̂,0Z )(p, x) = DG(p̂, x̂,0Z )(p, x) + C

and

min
int C

DG(p̂, x̂,0Z )(p, x) ⊂ min
int C

D(G + C)(p̂, x̂,0Z )(p, x).

Proof. It follows from Proposition 3.2 and (12) that DG(p̂, x̂,0Z )(0Λ,0X ) ∩ (−C) = {0Z }. Then, similar to the proof of
Lemma 4.1 in [21] we easily get the first result. The second result can be obtained from the first result and its proof is
similar to the proof of Theorem 2.1 in [18]. �
Proposition 3.5. Let the conditions of Proposition 3.4 hold. Assume that there exists a nonempty closed convex cone C̃ such that
C̃ ⊂ int C ∪ {0Z } and G is C̃ -minicomplete around (p̂, x̂). Then ∀(p, x) ∈ dom DV(p̂, x̂,0Z ) one has that

min
int C

DG(p̂, x̂,0Z )(x, u) ⊂ DV(p̂, x̂,0Z )(p, x).

Proof. It follows from Proposition 3.4 and the existence of C̃ that

D(G + C̃)(p̂, x̂,0Z )(p, x) = DG(p̂, x̂,0Z )(p, x) + C̃

and

min
int C

DG(p̂, x̂,0Z )(p, x) ⊂ min
int C

D(G + C̃)(p̂, x̂,0Z )(p, x).

Then, by using the similar proof of Theorem 2.1 in [18] we get

min
int C

DG(p̂, x̂,0Z )(p, x) = min
int C

D(G + C̃)(p̂, x̂,0Z )(p, x). (13)

It follows from C̃-minicompleteness of G around (p̂, x̂) and Theorem 3.1 of [18] that the conclusion holds. �
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It follows from the definitions of Robinson metric regularity and V that the following conclusion is obvious.

Proposition 3.6. The following statements are equivalent:

(i) There exist neighborhoods Ux̂ of x̂, U p̂ of p̂ and constants M > 0, γ > 0 such that

∀p ∈ U p̂, x ∈ Ux̂ with d
(
0Z , V (p, x)

)
< γ and ∀y ∈ K (p) with f (x, y, p) ∈ V (p, x),

there exists x′ ∈ S(p) satisfying
∥∥ f (x, y, p)

∥∥ � M
∥∥x − x′∥∥.

(ii) S is Robinson metrically regular along with K around (p̂, x̂).

Following from Corollary 2.1 and Propositions 3.2–3.6 we get the main result in this paper.

Theorem 3.1. Assume that all the conditions of Propositions 3.2–3.5 hold and (i) or (ii) of Proposition 3.6 is satisfied. Then, when K is
semi-differentiable at (p̂, x̂), one has that S is proto-differentiable at (p̂, x̂) and for p ∈ dom DS(p̂, x̂)

DS(p̂, x̂)(p) = {
x ∈ DK(p̂, x̂)(p)

∣∣ ∇ f (x̂, ȳ, p̂)(x, y, p) /∈ − int C, ∀ ȳ ∈ Ω(0Z ), y ∈ DK(p̂, ȳ)(p)
}
.

Proof. It follows from Propositions 3.2–3.5 that

DV(p̂, x̂,0Z )(p, x) = min
int C

DG(p̂, x̂,0Z )(x, u)

= min
int C

⋃
ȳ∈Ω(0Z )

⋃
y∈DK(p̂, ȳ)(p)

∇ f (x̂, ȳ, p̂)(x, y, p) ∪ {0Z }.

Moreover, by using the condition (i) or (ii) of Proposition 3.6 and in virtue of Corollary 2.1, we get that

DS(p̂, x̂)(p) = {
x ∈ DK(p̂, x̂)(p)

∣∣ 0Z ∈ DV(p̂, x̂,0Z )(p, x)
}
, ∀p ∈ dom DS(p̂, x̂).

Thus, the conclusion is obtained. �
The Robinson metric regularity of S is very important for the above theorem and the following examples illustrate that

it is essential.

Example 3.1. Let X = Λ = Z = R and C = R+ . Let f (x, y, p) := x(y + p) and

K (p) :=
{ [−p, p] if p � 0,

[p,−p] if p < 0.

Then, we can easily get

G(p, x) =
⋃

y∈K (p)

x(y + p) ∪ {0}, V (p, x) =
{ {0} if px � 0,

{2px} if px < 0
and S(p) =

{ [0, p] if p � 0,

[p,0] if p < 0.

Let C̃ = R+ , p̂ = 0.05 and x̂ = 0.05. Then, Ω(0) = {−0.05} and ȳ = −0.05. For μ = 50, γ = 1, p ∈ U p̂ := (0.01,0.1) and

x ∈ Ux̂ ∩ K (p) := (−0.05,0.10) ∩ [−p, p] =
{ [−p, p] if 0.01 < p < 0.05,

(−0.05, p] if 0.05 � p < 0.1

we can verify that S is Robinson metrically regular along with K around (p̂, x̂). It is easy to check that other condi-
tions of Theorem 3.1 hold. Thus, the conclusions of Theorem 3.1 are valid. By directly computing, we obtain DK(p̂, x̂)(p) =
(−∞, p],∇ f (x̂, ȳ, p̂)(x, y, p) = 0.05(y + p),DK(p̂, ȳ)(p) = [−p,∞), DS(p̂, x̂)(p) = (−∞, p] and{

x ∈ DK(p̂, x̂)(p)
∣∣ ∇ f (x̂, ȳ, p̂)(x, y, p) /∈ − int C, ∀ ȳ ∈ Ω(0Z ), y ∈ DK(p̂, ȳ)(p)

} = (−∞, p].

Example 3.2. Let X = Λ = Z = R and C = R+ . Let f (x, y, p) := x(p + y) and K (p) := [−|p|, p]. Then, for x ∈ K (p) we can
easily get

G(p, x) =
⋃

y∈K (p)

x(p + y) ∪ {0}, V (p, x) =
{ {2px} if p > 0, x < 0,

{0} otherwise
and S(p) =

{ [0, p] if p � 0,

{p} if p < 0.

Let C̃ = R+ , p̂ = 0 and x̂ = 0. Then, Ω(0) = {0} and ȳ = 0. If Robinson metric regularity of S is valid, then there exist μ > 0,
γ > 0 and neighborhoods U p̂ of p̂, Ux̂ of x̂ such that

d
(
x, S(p)

)
� μd

(
0, V (p, x)

)
, whenever p ∈ U p̂, x ∈ Ux̂ ∩ K (p), d

(
0, V (p, x)

)
< γ ,
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which is clearly impossible when p > 0 and x < 0. While other conditions of Theorem 3.1 hold. By directly computing, we
get DK(p̂, x̂)(p) = [−|p|, p],∇ f (x̂, ȳ, p̂)(x, y, p) = 0, DK(p̂, ȳ)(p) = [−|p|, p], and thus one has{

x ∈ DK(p̂, x̂)(p)
∣∣ ∇ f (x̂, ȳ, p̂)(x, y, p) /∈ − int C, ∀ ȳ ∈ Ω(0Z ), y ∈ DK(p̂, ȳ)(p)

} = [−|p|, p
]
.

However,

DS(p̂, x̂)(p) =
{ [0, p] if p � 0,

{p} if p < 0.

Thus, for p > 0 the conclusions of Theorem 3.1 do not hold.
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