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We show that an uncertainty relation for Wigner–Yanase–Dyson skew information proved
by Yanagi (2010) [10] can hold for an arbitrary quantum Fisher information under some
conditions. This is a refinement of the result of Gibilisco and Isola (2011) [4].
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1. Introduction

Wigner–Yanase skew information

Iρ(H) = 1

2
Tr

[(
i
[
ρ1/2, H

])2]
= Tr

[
ρH2] − Tr

[
ρ1/2 Hρ1/2 H

]
was defined in [9]. This quantity can be considered as a kind of the degree for non-commutativity between a quantum state
ρ and an observable H . Here we denote the commutator by [X, Y ] = XY − Y X . This quantity was generalized by Dyson

Iρ,α(H) = 1

2
Tr

[(
i
[
ρα, H

])(
i
[
ρ1−α, H

])]
= Tr

[
ρH2] − Tr

[
ρα Hρ1−α H

]
, α ∈ [0,1]

which is known as the Wigner–Yanase–Dyson skew information. Recently it is shown that these skew informations are
connected to special choices of quantum Fisher information in [3]. The family of all quantum Fisher informations is
parametrized by a certain class of operator monotone functions Fop which were justified in [7]. The Wigner–Yanase skew
information and Wigner–Yanase–Dyson skew information are given by the following operator monotone functions

fWY(x) =
(√

x + 1

2

)2

,

fWYD(x) = α(1 − α)
(x − 1)2

(xα − 1)(x1−α − 1)
, α ∈ (0,1),
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respectively. In particular the operator monotonicity of the function fWYD was proved in [8]. On the other hand the un-
certainty relation related to Wigner–Yanase skew information was given by Luo [6] and the uncertainty relation related to
Wigner–Yanase–Dyson skew information was given by Yanagi [10], respectively. In this paper we generalize these uncer-
tainty relations to the uncertainty relations related to quantum Fisher informations.

2. Operator monotone functions

Let Mn = Mn(C) (resp. Mn,sa = Mn,sa(C)) be the set of all n × n complex matrices (resp. all n × n self-adjoint matrices),
endowed with the Hilbert–Schmidt scalar product 〈A, B〉 = Tr(A∗B). Let Dn be the set of strictly positive elements of Mn

and D1
n ⊂ Dn be the set of strictly positive density matrices, that is D1

n = {ρ ∈ Mn | Tr ρ = 1, ρ > 0}. If it is not otherwise
specified, from now on we shall treat the case of faithful states, that is ρ > 0.

A function f : (0,+∞) → R is said operator monotone if, for any n ∈ N, and A, B ∈ Mn such that 0 � A � B , the in-
equalities 0 � f (A) � f (B) hold. An operator monotone function is said symmetric if f (x) = xf (x−1) and normalized if
f (1) = 1.

Definition 2.1. Fop is the class of functions f : (0,+∞) → (0,+∞) such that

(1) f (1) = 1,
(2) t f (t−1) = f (t),
(3) f is operator monotone.

Example 2.1. Examples of elements of Fop are given by the following list

fRLD(x) = 2x

x + 1
, fWY(x) =

(√
x + 1

2

)2

, fBKM(x) = x − 1

log x
,

fSLD(x) = x + 1

2
, fWYD(x) = α(1 − α)

(x − 1)2

(xα − 1)(x1−α − 1)
, α ∈ (0,1).

Remark 2.1. Any f ∈ Fop satisfies

2x

x + 1
� f (x) � x + 1

2
, x > 0.

For f ∈ Fop define f (0) = limx→0 f (x). We introduce the sets of regular and non-regular functions

F r
op = {

f ∈ Fop
∣∣ f (0) 
= 0

}
, F n

op = {
f ∈ Fop

∣∣ f (0) = 0
}

and notice that trivially Fop = F r
op ∪ F n

op .

Definition 2.2. For f ∈ F r
op we set

f̃ (x) = 1

2

[
(x + 1) − (x − 1)2 f (0)

f (x)

]
, x > 0.

Theorem 2.1. (See [1,3,5].) The correspondence f → f̃ is a bijection between F r
op and F n

op.

3. Means, Fisher information and metric adjusted skew information

In Kubo–Ando theory of matrix means one associates a mean to each operator monotone function f ∈ Fop by the formula

m f (A, B) = A1/2 f
(

A−1/2 B A−1/2)A1/2,

where A, B ∈ Dn . Using the notion of matrix means one may define the class of monotone metrics (also said quantum
Fisher informations) by the following formula

〈A, B〉ρ, f = Tr
(

A · m f (Lρ, Rρ)−1(B)
)
,

where Lρ(A) = ρ A, Rρ(A) = Aρ . In this case one has to think of A, B as tangent vectors to the manifold D1
n at the point ρ

(see [7,3]).
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Definition 3.1. For A ∈ Mn,sa , we define as follows

I f
ρ(A) = f (0)

2

〈
i[ρ, A], i[ρ, A]〉

ρ, f ,

C f
ρ (A) = Tr

(
m f (Lρ, Rρ)(A) · A

)
,

U f
ρ(A) =

√
Vρ(A)2 − (

Vρ(A) − I f
ρ(A)

)2
.

The quantity I f
ρ(A) is known as metric adjusted skew information.

Proposition 3.1. Let A0 = A − Tr(ρ A)I . The following hold:

(1) I f
ρ(A) = I f

ρ(A0) = Tr(ρ A2
0) − Tr(m f̃ (Lρ, Rρ)(A0) · A0) = Vρ(A) − C f̃

ρ (A0),

(2) J f
ρ(A) = Tr(ρ A2

0) + Tr(m f̃ (Lρ, Rρ)(A0) · A0) = Vρ(A) + C f̃
ρ (A0),

(3) 0 � I f
ρ(A) � U f

ρ (A) � Vρ(A),

(4) U f
ρ (A) =

√
I f
ρ(A) · J f

ρ(A).

Remark 3.1. I f
ρ(A) is identified in [2] with Covρ(A, A) − q CovF

ρ(A, A).

4. The main result

Theorem 4.1. For f ∈ F r
op, if

x + 1

2
+ f̃ (x) � 2 f (x), (4.1)

then it holds

U f
ρ(A) · U f

ρ(B) � f (0)
∣∣Tr

(
ρ[A, B])∣∣2

, (4.2)

where A, B ∈ Mn,sa.

In order to prove Theorem 4.1, we use several lemmas.

Lemma 4.1. If (4.1) holds, then the following inequality is satisfied(
x + y

2

)2

− m f̃ (x, y)2 � f (0)(x − y)2.

Proof. By (4.1) we have

x + y

2
+ m f̃ (x, y) � 2m f (x, y). (4.3)

Since

m f̃ (x, y) = y f̃

(
x

y

)

= y

2

{
x

y
+ 1 −

(
x

y
− 1

)2 f (0)

f (x/y)

}

= x + y

2
− f (0)(x − y)2

2m f (x, y)
,

we have(
x + y

2

)2

− m f̃ (x, y)2 =
{

x + y

2
− m f̃ (x, y)

}{
x + y

2
+ m f̃ (x, y)

}

= f (0)(x − y)2

2m f (x, y)

{
x + y

2
+ m f̃ (x, y)

}

� f (0)(x − y)2 (
by (4.3)

)
. �
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Lemma 4.2. Let {|φ1〉, |φ2〉, . . . , |φn〉} be a basis of eigenvectors of ρ , corresponding to the eigenvalues {λ1, λ2, . . . , λn}. We put a jk =
〈φ j |A0|φk〉, b jk = 〈φ j |B0|φk〉. By Corollary 6.1 in [1],

I f
ρ(A) = 1

2

∑
j,k

(λ j + λk)a jkakj −
∑

j,k

m f̃ (λ j, λk)a jkakj,

J f
ρ(A) = 1

2

∑
j,k

(λ j + λk)a jkakj +
∑

j,k

m f̃ (λ j, λk)a jkakj,

(
U f

ρ(A)
)2 = 1

4

(∑
j,k

(λ j + λk)|a jk|2
)2

−
(∑

j,k

m f̃ (λ j, λk)|a jk|2
)2

.

Proof of Theorem 4.1. Since

Tr
(
ρ[A, B]) = Tr

(
ρ[A0, B0]

) =
∑

j,k

(λ j − λk)a jkbkj,

we have

f (0)
∣∣Tr

(
ρ[A, B])∣∣2 �

(∑
j,k

f (0)1/2|λ j − λk||a jk||bkj|
)2

�
(∑

j,k

{(
λ j + λk

2

)2

− m f̃ (λ j, λk)
2
}1/2

|a jk||bkj|
)2

�
(∑

j,k

{
λ j + λk

2
− m f̃ (λ j, λk)

}
|a jk|2

)
×

(∑
j,k

{
λ j + λk

2
+ m f̃ (λ j, λk)

}
|bkj|2

)

= I f
ρ(A) J f

ρ(B).

We also have

I f
ρ(B) J f

ρ(A) � f (0)
∣∣Tr

(
ρ[A, B])∣∣2

.

Hence we have the final result (4.2). �
By putting

fWYD(x) = α(1 − α)
(x − 1)2

(xα − 1)(x1−α − 1)
, α ∈ (0,1),

we obtain the following uncertainty relation:

Corollary 4.1. (See [10].) For A, B ∈ Mn,sa,

U fWYD
ρ (A)U fWYD

ρ (B) � α(1 − α)
∣∣Tr

(
ρ[A, B])∣∣2

.

Proof. Since

fWYD(x) = α(1 − α)
(x − 1)2

(xα − 1)(x1−α − 1)
,

it is clear that

f̃WYD(x) = 1

2

{
x + 1 − (

xα − 1
)(

x1−α − 1
)}

.

By Lemma 3.3 in [10] we have for 0 � α � 1 and x > 0,

(1 − 2α)2(x − 1)2 − (
xα − x1−α

)2 � 0.

Then we can rewrite as follows(
x2α − 1

)(
x2(1−α) − 1

)
� 4α(1 − α)(x − 1)2.
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Thus

x + 1

2
+ f̃WYD(x) = x + 1 − 1

2

(
xα − 1

)(
x1−α − 1

)

= 1

2

(
xα + 1

)(
x1−α + 1

)

� 2α(1 − α)
(x − 1)2

(xα − 1)(x1−α − 1)

= 2 fWYD(x).

It follows from Theorem 4.1 that we can give the aimed result. �
Remark 4.1. In [4], the following result was given. Even if (4.1) does not necessarily hold, then

U f
ρ(A)U f

ρ(B) � f (0)2
∣∣Tr

(
ρ[A, B])∣∣2

, (4.4)

where A, B ∈ Mn,sa . Since f (0) < 1, it is easy to show (4.4) is weaker than (4.2).
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