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1. Introduction

In this paper, we are concerned with the multiplicity of solutions for the following biharmonic problem:

{
�2u + a�u = −λ|u|q−2u + f (x, u), in Ω,

u = �u = 0, on ∂Ω,
(1.1)

where �2 is the biharmonic operator, Ω ⊂ Rs is a bounded smooth domain with smooth boundary ∂Ω and s ∈ N . a < λ1

(λ1 is the first eigenvalue of −� in H1
0(Ω)), λ is a real parameter and 1 < q < 2. We assume that f (x, u) satisfies some of

the following assumptions:

( f1) f ∈ C(Ω × R, R).

( f2) There exists C > 0 such that | f (x, u)| � C(1 + |u|p−1) for x ∈ Ω and u ∈ R , where 2 < p < 2∗∗ , 2∗∗ = 2s
s−4 for s > 4 and

2∗∗ = ∞ for s � 4.

( f3) There exist c1 > 0 and r0 > 0 such that | f (x, u)| � c1|u| for x ∈ Ω and |u| � r0.

( f4) limu→±∞ f (x,u)
u = b± uniformly for x ∈ Ω .

( f5) H(x, u) � L(x) ∈ L1(Ω) and lim|u|→∞ H(x, u) = +∞ a.e. x ∈ Ω , where H(x, u) = 1
2 f (x, u)u − F (x, u) and F (x, u) =∫ u

0 f (x, s)ds.

( f6) There exist 0 < μ < 2∗∗ , c2 > 0 and D > 0 such that H(x, u) � c2|u|μ for x ∈ Ω and |u| � D .
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Biharmonic equations have been studied by many authors. In [5], Lazer and Mckenna considered the biharmonic prob-
lem: {

�2u + a�u = d
[
(u + 1)+ − 1

]
, in Ω,

u = �u = 0, on ∂Ω,
(1.2)

where u+ = max{u,0} and d ∈ R . They pointed out that this type of nonlinearity furnishes a model to study traveling waves
in suspension bridges. In [6], the authors got 2k − 1 solutions when N = 1 and d > λk(λk − c) (λk is the sequence of the
eigenvalues of −� in H1

0(Ω)) via the global bifurcation method. In [14], a negative solution of (1.2) was obtained when
d � λ1(λ1 − c) by a degree argument. If the nonlinearity d[(u + 1)+ − 1] is replaced by a general function f (x, u), one has
the following problem:{

�2u + c�u = f (x, u), in Ω,

u = �u = 0, on ∂Ω.
(1.3)

In [7,8], the authors proved the existence of two or three solutions of problem (1.3) for a more general nonlinearity f by
using a variational method. In [16], positive solutions of problem (1.3) were got when f satisfies the local superlinearity
and sublinearity.

On the other hand, there has been considerable amount of papers on elliptic problems involving concave terms. We refer
the reader to [1–4,9,10,13,15] and the references therein. In particular, de Paiva and Massa [4] considered the following
problem:{−�u = −λ|u|q−2u + au + g(u), in Ω,

u = 0, on ∂Ω,
(1.4)

where Ω ⊂ RN is an open bounded domain with smooth boundary ∂Ω , a ∈ R , λ > 0 is a real parameter, 1 < q < 2 and
g : R → R is a function of class C1. Moreover, g satisfies some of the following assumptions:

(g0) g(0) = 0.
(g1) g′(0) = 0 and a ∈ [λk, λk+1).
(g2) (i) G(u) � 0, where G(u) = ∫ u

0 g(s)ds.
(ii) G(u) � C + C |u|p with 2 < p < 2∗ = 2N

N−2 .

(g3) lims→±∞ as+g(s)
s = b± ∈ (λk+1,+∞].

(g4) (i) There exist t̄ > 0 and μ < 1
2 such that [ a

2 t2 + G(t)] � μt[at + g(t)] for |t| > t̄ .
(ii) μ(p − 1) < N+2

2N .
(g′

4) b± ∈ R but (b+,b−) /∈ ∑
, where we denote by

∑
the Fučík spectrum of the operator.

(g′′
4) (i) There exist t̄ > 0 and μ < 1

2 such that [ a
2 t2 + G(t)] � μt[at + g(t)] for t > t̄ .

(ii) b− ∈ R but b− �= λ1.

(iii) There exists α ∈ [0,1) such that lims→−∞ as+g(s)−λ|s|q−2s−b−s
|s|α = 0 and μ(p − 1) < min{ 1

α+1 , N+2
2N }.

They proved the following two theorems.

Theorem A. Assume that g satisfies (g0), (g2)(ii), (g3) with k � 0 and one of the (g4)
′s, then for all λ > 0, problem (1.4) has at least

two nontrivial solutions.

Theorem B. Assume that g satisfies (g0)–(g3) with k � 1 and one of the (g4)
′s, then there exists λ∗ > 0, such that problem (1.4) has

at least three nontrivial solutions for λ ∈ (0, λ∗).

Our aim in the present paper is to improve and generalize the result obtained in [4] to problem (1.1). We note that
u ∈ H2(Ω) does not imply that u± ∈ H2(Ω), where u+ = max{u,0}, u− = min{u,0}. Thus, the method in [4] cannot be
applied directly. On the other hand, in order to have the (P S) condition for the corresponding functional, the authors in [4]
assumed one of the (g4)

′s. However, the assumptions in our paper are different from (g4). For the case b± = +∞, (g4)(i) is
replaced by ( f6) with μ > N

2 (p −2). For the case b± ∈ R , ( f5) replaces (g4)(ii). Then it is difficult to derive the boundedness
of the (P S) sequence for the corresponding functional. The mountain pass lemma and linking theorem without the (P S)

condition must be applied to overcome the difficulty. Besides, for the case b± ∈ R , by weakening (g2)(i), we get a theorem
different from results in [4].

Before stating our main results we give some notations. Throughout this paper, we denote by C a universal positive con-

stant unless otherwise specified and we set Ls(Ω) the usual Lebesgue space equipped with the norm ‖u‖s := (
∫
Ω

|u|s dx)
1
s ,

1 � s < ∞. Let λk (k = 1,2, . . .) denote the eigenvalues and ϕk (k = 1,2, . . .) the corresponding normalized eigenfunctions
of the eigenvalue problem{−�u = λu, in Ω,
u = 0, on ∂Ω.
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Here, we repeat each eigenvalue according to its (finite) multiplicity. Then, 0 < λ1 < λ2 � λ3 � · · · and λk → ∞ as k → ∞.
Our main results are stated as follows:

Theorem 1.1. Assume that f satisfies ( f1) and ( f3)–( f4) with λ1(λ1 −a) < b+ < +∞ or λ1(λ1 −a) < b− < +∞. Then, given λ > 0,
problem (1.1) has at least one nontrivial solution.

Theorem 1.2. Assume that f satisfies ( f1) and ( f3)–( f5) with λk+1(λk+1 − a) < b± < +∞ for some k ∈ N. Moreover, F (x, u) �
1
2 λm(λm − a)u2 and lim supu→0

F (x,u)

u2 < 1
2 λm+1(λm+1 − a) for some m ∈ N, m � k. Then, there exists λ∗ > 0, such that for

0 < λ < λ∗ , problem (1.1) has at least three nontrivial solutions.

In our next result we establish the multiplicity of solutions for problem (1.1) by weakening F (x, u) � 1
2 λm(λm − a)u2.

For doing that we assume a stronger version of ( f3).

Theorem 1.3. Assume that f satisfies ( f1) and ( f4)–( f5) with λk+1(λk+1 −a) < b± < +∞ for some k ∈ N. Moreover, for some m ∈ N,
m � k, F (x, u) � 1

2 λm(λm − a)u2 − W0(x) and there exist L, δ0 > 0, such that for |u| � L, F (x, u) � [ 1
2 λm+1(λm+1 − a) − δ0]u2 .

Here, λm < λm+1 and W0(x) ∈ L1(Ω). Then, given λ > 0, there exists L∗ > 0, such that for L > L∗ , problem (1.1) has at least three
nontrivial solutions.

In the case b± = +∞, we establish the following version of Theorem 1.2.

Theorem 1.4. Assume that s � 5, f satisfies ( f1)–( f4) and ( f6) with b± = +∞. Moreover, F (x, u) � 1
2 λm(λm − a)u2 and

lim supu→0
F (x,u)

u2 < 1
2 λm+1(λm+1 − a) for some m ∈ N. Then, there exists λ∗∗ > 0, such that for 0 < λ < λ∗∗ and μ > s

4 (p − 2),
problem (1.1) has at least three nontrivial solutions.

2. Preliminary lemmas

Let Ω ⊂ Rs be a bounded smooth domain, H = H2(Ω) ∩ H1
0(Ω) be the Hilbert space equipped with the inner product

(u, v)H =
∫
Ω

�u�v dx,

which induces the norm

‖u‖H =
( ∫

Ω

|�u|2 dx

) 1
2

.

Note that μk = λ2
k , k = 1,2, . . . , are eigenvalues of the eigenvalue problem{

�2u = μu, in Ω,

u = �u = 0, on ∂Ω,

ϕk , k = 1,2, . . . are the corresponding eigenfunctions. Furthermore, the set of {ϕk} is an orthogonal base on the Hilbert
space H .

We observe that { ϕk‖ϕk‖H
}∞k=1 is an orthonormal basis of H . Then, for u ∈ H , we can write that

u =
∞∑

k=1

ck
ϕk

‖ϕk‖H

for ck = (u,
ϕk‖ϕk‖H

)H , the series converging in H . In addition,

‖u‖2
H =

∞∑
k=1

c2
k . (2.1)

Denote um = ∑m
k=1 ck

ϕk‖ϕk‖H
, where m ∈ N . Thus,

lim
m→∞‖um − u‖H = 0.

Recall that H1
0(Ω) is the Hilbert space equipped with the inner product

(u, v)H1
0
=

∫
∇u∇v dx,
Ω
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which induces the norm

‖u‖H1
0
=

( ∫
Ω

|∇u|2 dx

) 1
2

.

We note that for u ∈ H ,∫
Ω

|∇u|2 dx � C

∫
Ω

|�u|2 dx.

Thus,

lim
m→∞‖um − u‖H1

0
= 0.

Now, we rewrite that

u =
∞∑

k=1

ck

‖ϕk‖H1
0

‖ϕk‖H

ϕk

‖ϕk‖H1
0

,

the series converging in H1
0(Ω). Observe that { ϕk‖ϕk‖H1

0

}∞k=1 is an orthonormal basis of H1
0(Ω), we have

‖u‖2
H1

0
=

∞∑
k=1

c2
k

‖ϕk‖2
H1

0

‖ϕk‖2
H

. (2.2)

Combining (2.1)–(2.2), we obtain that for u ∈ H ,

‖u‖2
H � λ1‖u‖2

H1
0
. (2.3)

For a < λ1, define a norm u ∈ H as follows:

‖u‖ =
( ∫

Ω

|�u|2 dx − a

∫
Ω

|∇u|2 dx

) 1
2

.

From (2.3), the norm ‖.‖ is an equivalent norm on H . Throughout this paper, we use the norm ‖.‖ unless stated otherwise.
It is well known that ∧k = λk(λk − a), k = 1,2, . . . , are eigenvalues of the eigenvalue problem{

�2u + a�u = ∧u, in Ω,

u = �u = 0, on ∂Ω,

ϕk , k = 1,2, . . . are the corresponding eigenfunctions. Furthermore, the set of {ϕk} is an orthogonal basis on the Hilbert
space H .

For u ∈ H , denote

I(u) = 1

2
‖u‖2 + λ

q

∫
Ω

|u|q dx −
∫
Ω

F (x, u)dx

and

I±(u) = 1

2
‖u‖2 + λ

q

∫
Ω

∣∣u±∣∣q
dx −

∫
Ω

F
(
x, u±)

dx,

where u+ = max{u,0}, u− = min{u,0}. Under the assumptions ( f1)–( f2), we have I, I± ∈ C1(H).
Recall that a sequence {un} is a (C)c sequence for the functional I if I(un) → c and (1 + ‖un‖)I ′(un) → 0. If any (C)c

sequence {un} has a convergent subsequence, we say that I satisfies the (C)c condition.
In order to prove our main results, we need the following theorems.

Theorem 2.1. (See [11].) Let E be a real Banach space with its dual space E∗ and suppose that I ∈ C1(E, R) satisfies the condition

max
{

I(0), I(u1)
}

� α < β � inf‖u‖=ρ
I(u)

for some ρ > 0 and u1 ∈ E with ‖u1‖ > ρ . Let c be characterized by

c := inf
γ ∈Γ

max
0�t�1

I
(
γ (t)

)
,

where Γ := {γ ∈ C([0,1], E); γ (0) = 0, γ (1) = u1}. Then there exists a (C)c sequence {un} for the functional I satisfying c � β .
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Definition C. (See [12].) Let E be a Banach space and let Φ be the set of all continuous maps Γ = Γ (t) from E × [0,1] to E
such that

1. Γ (0) = I .
2. For each t ∈ [0,1), Γ (t) is a homeomorphism of E onto E and Γ −1(t) ∈ C(E × [0,1), E).
3. Γ (1)E is a single point in E and Γ (t)A converges uniformly to Γ (1)E as t → 1 for each bounded set A ⊂ E .
4. For each t0 ∈ [0,1) and each bounded set A ⊂ E

sup
0�t�t0,u∈A

{∥∥Γ (t)u
∥∥ + ∥∥Γ −1(t)u

∥∥}
< ∞.

Definition D. (See [12].) We say that A links B [hm] if A, B are subsets of E such that A ∩ B = ∅ and, for each Γ (t) ∈ Φ ,
there is t ∈ (0,1] such that Γ (t)A ∩ B �= ∅.

The following proposition provides an example of A links B [hm].

Proposition E. (See [12].) Let E be a real Hilbert space, E1 , E2 be two closed subspace of E such that

E = E1 ⊕ E2, dim E2 < +∞.

Consider e ∈ E1 , ‖e‖ = 1. Let R, ρ be positive numbers and set

S = E1 ∩ Sρ, Q = {
u + v; u ∈ E2, v = te, t � 0, ‖u + v‖ � R

}
.

Then, if R > ρ , ∂ Q links S [hm].

Theorem 2.2. (See [12].) Let E be a real Hilbert space and assume that I ∈ C1(E, R) satisfies the condition

sup
u∈∂ Q

I(u) < inf
u∈S

I(u),

where ∂ Q , S are defined in Proposition E. Set

c := inf
Γ ∈Φ

sup
0�s�1, u∈∂ Q

I
(
Γ (s)u

)
,

where Φ is defined in Definition C. Then, if c is finite, there exists a (C)c sequence {un} for the functional I satisfying c � infu∈S I(u).

Lemma 2.3. Assume that f satisfies ( f1)–( f3). Then given λ > 0, there exist ρ1, β1 > 0, such that

inf
u∈H,‖u‖=ρ1

I+(u) � β1 > 0.

Proof. By ( f1)–( f3), there holds∣∣F (x, u)
∣∣ � C

(|u|2 + |u|p)
. (2.4)

Thus, from (2.4),

I+(u) = 1

2
‖u‖2 + λ

q

∫
Ω

∣∣u+∣∣q
dx −

∫
Ω

F
(
x, u+)

dx

� 1

2
‖u‖2 − C

∫
Ω

∣∣u+∣∣2
dx − C

∫
Ω

|u|p dx + λ

q

∫
Ω

∣∣u+∣∣q
dx

� 1

2
‖u‖2 − C‖u‖p − C

∫
Ω

∣∣u+∣∣2
dx + λ

q

∫
Ω

∣∣u+∣∣q
dx.

Hence, for ‖u‖ small enough,

I+(u) � 1

3
‖u‖2 − C

∫
Ω

∣∣u+∣∣2
dx + λ

q

∫
Ω

∣∣u+∣∣q
dx.

(2.3) implies that

‖u‖2 � (λ1 − a)‖u‖2
1 . (2.5)
H0
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Then we can choose i ∈ N and μ ∈ (
(λ1−a)λi

4 ,
(λ1−a)λi+1

4 ), such that

I+(u) � 1

12
‖u‖2 + λ1 − a

4
‖u‖2

H1
0
− μ

∫
Ω

∣∣u+∣∣2
dx + λ

q

∫
Ω

∣∣u+∣∣q
dx

� 1

12
‖u‖2 + λ1 − a

4

∥∥u+∥∥2
H1

0
− μ

∫
Ω

∣∣u+∣∣2
dx + λ

q

∫
Ω

∣∣u+∣∣q
dx. (2.6)

Let X j := span{ϕ j}, j ∈ N and set Gi := X1 ⊕ X2 ⊕ · · · ⊕ Xi , i ∈ N , where ⊕ means the orthogonal sum of the subspace.
We note that H1

0(Ω) = Gi ⊕ G⊥
i . Thus, u+ can be decomposed as u+ = v + w , where v ∈ Gi and w ∈ G⊥

i . Observe that for
v ∈ Gi , there holds

‖v‖2
H1

0
� λ1

∫
Ω

v2 dx,

and for w ∈ G⊥
i , there holds

‖w‖2
H1

0
� λi+1

∫
Ω

w2 dx.

Therefore,

I+(u) � 1

12
‖u‖2 + 1

4

[
(λ1 − a) − 4μ

λi+1

]
‖w‖2

H1
0
− 1

4

[
4μ

λ1
− (λ1 − a)

]
‖v‖2

H1
0
+ λ

q

∫
Ω

∣∣u+∣∣q
dx

:= 1

12
‖u‖2 + ξ‖w‖2

H1
0
− η‖v‖2

H1
0
+ λ

q

∫
Ω

∣∣u+∣∣q
dx, (2.7)

where ξ,η > 0.
It suffices to show that there exists ρ1 > 0 small enough, such that for ‖u‖ = ρ1,

I+1 (u) := ξ‖w‖2
H1

0
− η‖v‖2

H1
0
+ λ

q

∫
Ω

∣∣u+∣∣q
dx � 0. (2.8)

Seeking a contradiction we suppose that there exist un �= 0 satisfying ‖un‖ → 0 as n → ∞ and I+1 (un) < 0. By (2.5),
‖u+

n ‖H1
0
→ 0 as n → ∞. Decompose u+

n as u+
n = vn + wn , where vn ∈ Gi and wn ∈ G⊥

i , we have

I+1 (un) = ξ‖wn‖2
H1

0
− η‖vn‖2

H1
0
+ λ

q

∫
Ω

∣∣u+
n

∣∣q
dx < 0. (2.9)

Then u+
n �= 0 in H1

0(Ω). Let zn = u+
n

‖u+
n ‖

H1
0

. Up to a subsequence, we get that

zn ⇀ z weakly in H1
0(Ω),

zn → z strongly in Lt(Ω), 1 � t < 2∗,

zn(x) → z(x) a.e. x ∈ Ω.

Dividing ‖u+
n ‖q

H1
0

in both sides of (2.9),

ξ‖wn‖2
H1

0
− η‖vn‖2

H1
0

‖u+
n ‖2

H1
0

∥∥u+
n

∥∥2−q
H1

0
+ λ

q

∫
Ω

|zn|q dx < 0.

Let n → ∞, there holds∫
|z|q dx � 0,
Ω
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in view of ‖u+
n ‖H1

0
→ 0 as n → ∞. Thus, z = 0 a.e. x ∈ Ω . Then we have

‖vn‖2
H1

0

‖u+
n ‖2

H1
0

�
C‖vn‖2

2

‖u+
n ‖2

H1
0

� C‖zn‖2
2 → 0, as n → ∞, (2.10)

using the equivalence of all norms on the finite dimensional space. Choosing n sufficient large, we obtain that

I+1 (un) = ξ‖wn‖2
H1

0
− η‖vn‖2

H1
0
+ λ

q

∫
Ω

∣∣u+
n

∣∣q
dx

� ξ
∥∥u+

n

∥∥2
H1

0
− (ξ + η)‖vn‖2

H1
0

=
[
ξ − (ξ + η)

‖vn‖2
H1

0

‖u+
n ‖2

H1
0

]∥∥u+
n

∥∥2
H1

0
� 0,

in view of (2.10). Thus we get a contradiction.
Therefore, we can choose ρ1 > 0 small enough, such that for ‖u‖ = ρ1,

I+(u) � 1

12
‖u‖2 + I+1 (u) � 1

12
ρ2

1 := β1 > 0. �
Using a similar argument as Lemma 2.3, we have the following Lemma 2.4 and Lemma 2.5.

Lemma 2.4. Assume that f satisfies ( f1)–( f3). Then given λ > 0, there exist ρ2, β2 > 0, such that

inf
u∈H,‖u‖=ρ2

I−(u) � β2 > 0.

Lemma 2.5. Assume that f satisfies ( f1)–( f3). Then given λ > 0, there exist ρ,β > 0, such that

inf
u∈H,‖u‖=ρ

I(u) � β > 0.

Now we are ready to prove our main results.

3. Proof of main results

Proof of Theorem 1.1. It is easy to see that I+(0) = 0. We note that ( f1) and ( f4) with ∧1 < b+ < +∞ imply ( f2). Then
from Lemma 2.3, given λ > 0, there exist ρ1, β1 > 0, such that

inf‖u‖=ρ1
I+(u) � β1 > 0.

On the other hand, ( f1) and ( f4) imply that

lim
u→+∞

F (x, u)

u2
= 1

2
b+ >

1

2
∧1 .

Then, there exists ε0 > 0, such that

F
(
x, u+)

� 1

2
(∧1 + ε0)

∣∣u+∣∣2 − C .

Thus,

I+(u) � 1

2
‖u‖2 + λ

q

∫
Ω

∣∣u+∣∣q
dx − 1

2
(∧1 + ε0)

∫
Ω

∣∣u+∣∣2
dx + C meas(Ω).

Choosing u = tϕ1, where t > 0 and ϕ1 is the eigenfunction associated to ∧1, we have

I+(tϕ1) � −1

2
ε0t2

∫
Ω

|ϕ1|2 dx + λ

q
tq

∫
Ω

|ϕ1|q dx + C meas(Ω) → −∞, as t → +∞.

Let t1 be such that ‖t1ϕ1‖ > ρ1 and I+(t1ϕ1) < 0. Define

c+ := inf
γ ∈Γ + max

0�t�1
I+

(
γ (t)

)
,



298 J. Zhang, Z. Wei / J. Math. Anal. Appl. 383 (2011) 291–306
where Γ + := {γ ∈ C([0,1], H); γ (0) = 0, γ (1) = t1ϕ1}. It follows from Theorem 2.1 that there exists a sequence {un} ⊂ H ,
such that

I+(un) → c+ � β1, as n → +∞, (3.1)

and (
1 + ‖un‖

)
I+′

(un) → 0, as n → +∞. (3.2)

We claim that the sequence {un} is bounded in H .
( f3) implies that f (x,0) = 0. Thus, by (3.2),

o(1) = (
I+′

(un), un
) = ‖un‖2 + λ

∫
Ω

∣∣u+
n

∣∣q
dx −

∫
Ω

f
(
x, u+

n

)
u+

n dx. (3.3)

Seeking a contradiction we suppose that ‖un‖ → ∞. Let zn = un‖un‖ . Up to a subsequence, we get that

zn ⇀ z weakly in H,

zn → z strongly in Lt(Ω), 1 � t < 2∗,
zn(x) → z(x) a.e. x in Ω.

We claim that

z �= 0 in H . (3.4)

Otherwise, z = 0 in H . Dividing ‖un‖2 in both sides of (3.3), we get that

o(1) = 1 −
∫
Ω

f (x, u+
n )u+

n

‖un‖2
dx. (3.5)

( f1) and ( f3)–( f4) with ∧1 < b+ < +∞ imply that there exists C ′ > 0, such that∣∣ f
(
x, u+

n

)∣∣ � C ′u+
n . (3.6)

Combining (3.5)–(3.6), we have

1 =
∫
Ω

f (x, u+
n )u+

n

‖un‖2
dx + o(1)

� C ′
∫
Ω

∣∣z+
n

∣∣2
dx + o(1)

� C ′
∫
Ω

|zn|2 dx + o(1),

where z+
n = u+

n‖un‖ . Let n → ∞, we get a contradiction. Thus, (3.4) is proved.
Set

pn(x) =
{

f (x,u+
n (x))

u+
n (x)

for x ∈ Ω with un(x) > 0,

0 for x ∈ Ω with un(x) � 0.

From I+′
(un) = o(1),∫

Ω

[�un�ϕ − a∇un∇ϕ]dx + λ

∫
Ω

∣∣u+
n

∣∣q−2
u+

n ϕ dx −
∫
Ω

f
(
x, u+

n

)
ϕ dx = o(1),

for all ϕ ∈ H . Dividing ‖un‖ in both sides of the above equality, there holds∫
Ω

[�zn�ϕ − a∇zn∇ϕ]dx −
∫
Ω

pnz+
n ϕ dx = o(1). (3.7)

We note that {zn} is bounded in H1
0(Ω). Thus, zn ⇀ z weakly in H1

0(Ω), which implies that z+
n → z+ strongly in L2(Ω) and

z+
n (x) → z+(x) a.e. x ∈ Ω . By (3.6), |pn(x)| � C ′ for x ∈ Ω . Then we have
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∣∣∣∣
∫

{x∈Ω,z+(x)=0}
pnz+

n ϕ dx

∣∣∣∣ � C ′
∫

{x∈Ω,z+(x)=0}
z+

n |ϕ|dx = o(1) + C ′
∫

{x∈Ω,z+(x)=0}
z+|ϕ|dx = o(1). (3.8)

On the other hand, since z+
n (x) → z+(x) a.e. x ∈ Ω , we have limn→∞ u+

n (x) = +∞ for a.e. x ∈ {x ∈ Ω, z+(x) > 0}, which im-
plies that limn→∞ pn(x) = b+ for a.e. x ∈ {x ∈ Ω, z+(x) > 0}. Besides, |pn(x)| � C ′ for x ∈ Ω . Using the Lebesgue’s Dominated
Convergence Theorem, we obtain that∣∣∣∣

∫
{x∈Ω,z+(x)>0}

(
pn − b+)

z+
n ϕ dx

∣∣∣∣ �
∫

{x∈Ω,z+(x)>0}

∣∣pn − b+∣∣|ϕ|z+
n dx

�
( ∫

{x∈Ω,z+(x)>0}

∣∣pn − b+∣∣2
ϕ2 dx

) 1
2
( ∫

{x∈Ω,z+(x)>0}

(
z+

n

)2
dx

) 1
2

� C

( ∫
{x∈Ω,z+(x)>0}

∣∣pn − b+∣∣2
ϕ2 dx

) 1
2

= o(1),

which implies that∫
{x∈Ω,z+(x)>0}

pnz+
n ϕ dx =

∫
{x∈Ω,z+(x)>0}

(
pn − b+)

z+
n ϕ dx +

∫
{x∈Ω,z+(x)>0}

b+z+
n ϕ dx

= o(1) +
∫

{x∈Ω,z+(x)>0}
b+z+ϕ dx. (3.9)

Therefore, from (3.8)–(3.9),∫
Ω

pnz+
n ϕ dx =

∫
{x∈Ω,z+(x)=0}

pnz+
n ϕ dx +

∫
{x∈Ω,z+(x)>0}

pnz+
n ϕ dx

= o(1) + b+
∫

{x∈Ω,z+(x)>0}
z+ϕ dx

= o(1) + b+
∫
Ω

z+ϕ dx. (3.10)

Combining (3.7), (3.10) and letting n → ∞, there holds∫
Ω

[�z�ϕ − a∇z∇ϕ]dx = b+
∫
Ω

z+ϕ dx. (3.11)

We claim that

meas
{

x ∈ Ω, z+(x) �= 0
}

> 0. (3.12)

Otherwise, z+(x) = 0 for a.e. x ∈ Ω . Taking ϕ = z in (3.11), we have z = 0 in H , a contradiction with (3.4). Thus, (3.12)

is proved. Note that z+ � 0, combining with (3.11)–(3.12) and the maximum principle, we have z > 0 in Ω . Taking ϕ = ϕ1
in (3.11), we obtain that∫

Ω

[�z�ϕ1 − a∇z∇ϕ1]dx = b+
∫
Ω

zϕ1 dx.

On the other hand, since ϕ1 > 0 is the eigenfunction associated to ∧1 and z > 0, we have∫
Ω

[�z�ϕ1 − a∇z∇ϕ1]dx = ∧1

∫
Ω

zϕ1 dx,

this is impossible since b+ > ∧1. Then {un} is bounded in H . Combining with (3.1)–(3.2), we have un → u+ strongly in H ,
I+(u+) = c+ � β1 and I+′(u+) = 0. Then u+ is a nontrivial solution of problem (1.1). Similarly, for ∧1 < b− < +∞, we can
find u− �= 0, such that I−(u−) = c− > 0 and I−′(u−) = 0. �
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Proof of Theorem 1.2. We will prove that there exists λ∗ > 0, such that for 0 < λ < λ∗ , problem (1.1) has a nontrivial
solution.

Let X j := span{ϕ j}, j ∈ N and set Fm := X1 ⊕ X2 ⊕ · · ·⊕ Xm , m ∈ N , where ⊕ means the orthogonal sum of the subspace.
Then H = Fm ⊕ F ⊥

m . Note that ( f1), ( f4) with ∧k+1 < b± < +∞ and lim supu→0
F (x,u)

u2 < 1
2 ∧m+1 imply that there exists

ε′
0, C > 0, such that

F (x, u) � 1

2

(∧m+1 − ε′
0

)
u2 + C |u|p .

Thus, for u ∈ F ⊥
m ,

I(u) = 1

2
‖u‖2 + λ

q

∫
Ω

|u|q dx −
∫
Ω

F (x, u)dx

� 1

2
‖u‖2 − 1

2

(∧m+1 − ε′
0

)∫
Ω

u2 dx − C

∫
Ω

|u|p dx

� 1

2

(
1 − ∧m+1 − ε′

0

∧m+1

)
‖u‖2 − C‖u‖p .

Choosing r > 0 small enough, there holds

inf
u∈F ⊥

m ,‖u‖=r
I(u) � α > 0, (3.13)

independent of λ > 0.
For u ∈ Fm , we have

I(u) � ∧m

2

∫
Ω

u2 dx + λ

q

∫
Ω

|u|q dx −
∫
Ω

F (x, u)dx

= λ

q

∫
Ω

|u|q dx −
∫
Ω

(
F (x, u) − 1

2
∧m u2

)
dx. (3.14)

From

lim
u→±∞

f (x, u)

u
= b± > ∧k+1,

we obtain that

lim
u→±∞

F (x, u)

u2
= 1

2
b± >

1

2
∧k+1 .

Thus, there exists ε0, R0 > 0, such that for |u| � R0, there holds

F (x, u)

u2
� 1

2
(∧m + ε0). (3.15)

Since F (x, u) � 1
2 ∧m u2, together with (3.14)–(3.15), we have

I(u) � λ

q

∫
Ω

|u|q dx − 1

2
ε0

∫
{x∈Ω, |u(x)|�R0}

u2 dx.

Then, for u ∈ Fm with ‖u‖ = 1, there holds

I(tu) � λ

q
tq

∫
Ω

|u|q dx − 1

2
ε0t2

∫
{x∈Ω, |tu(x)|�R0}

u2 dx. (3.16)

From [4], we know that there exists ε > 0, such that

meas
{

x ∈ Ω,
∣∣u(x)

∣∣ � ε
}

� ε (3.17)

for every u ∈ Fm with ‖u‖ = 1. In addition, for t � R0
ε ,{

x ∈ Ω,
∣∣u(x)

∣∣ � ε
} ⊂ {

x ∈ Ω,
∣∣tu(x)

∣∣ � R0
}
. (3.18)
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Thus, for u ∈ Fm with ‖u‖ = 1 and t � R0
ε , (3.16)–(3.18) imply that

I(tu) � λ

q
Ctq − 1

2
ε0ε

3t2.

Direct calculation shows that

sup
t� R0

ε

I(tu) � sup
t�0

[
λ

q
Ctq − 1

2
ε0ε

3t2
]

� Cλ
2

2−q . (3.19)

On the other hand, for u ∈ Fm with ‖u‖ = 1,

sup
0�t� R0

ε

I(tu) � sup
0�t� R0

ε

[
λ

q
tq

∫
Ω

|u|q dx

]
� Cλ. (3.20)

Combining (3.19)–(3.20), we obtain that for u ∈ Fm with ‖u‖ = 1,

sup
t�0

I(tu) � max
{

Cλ
2

2−q , Cλ
}
.

That is,

sup
u∈Fm

I(u) � max
{

Cλ
2

2−q , Cλ
}
.

Therefore, there exists λ∗ > 0, such that for 0 < λ < λ∗ ,

sup
u∈Fm

I(u) < α. (3.21)

For u ∈ Fm+1, we have

I(u) � 1

2
∧m+1

∫
Ω

u2 dx + λ

q

∫
Ω

|u|q dx −
∫
Ω

F (x, u)dx. (3.22)

( f1) and ( f4) with b± > ∧k+1 imply that there exists ε′′
0 > 0, such that

F (x, u) � 1

2

(∧m+1 + ε′′
0

)
u2 − C . (3.23)

Combining (3.22)–(3.23), for u ∈ Fm+1,

I(u) � −1

2
ε′′

0

∫
Ω

u2 dx + λ

q

∫
Ω

|u|q dx + C � −C‖u‖2 + Cλ‖u‖q + C,

using the equivalence of all norms on the finite dimensional space. Therefore, for 0 < λ < λ∗ , choosing R > r large enough,
there holds

sup
u∈Fm+1,‖u‖=R

I(u) < 0. (3.24)

Consequently, (3.13), (3.21) and (3.24) imply that there exists λ∗ > 0, such that for 0 < λ < λ∗ ,

inf
u∈F ⊥

m ,‖u‖=r
I(u) > sup

u∈∂ Q
I(u),

where

Q := {
u + v; u ∈ Fm, v = tϕm+1, t � 0, ‖u + v‖ � R

}
.

Define

c := inf
Γ ∈Φ

sup
0�s�1, u∈∂ Q

I
(
Γ (s)(u)

)
,

where Φ is defined in Definition C. It follows from Theorem 2.2 that there exists a sequence {un} ⊂ H , such that

I(un) → c � α, as n → +∞, (3.25)

and (
1 + ‖un‖

)
I ′(un) → 0, as n → +∞. (3.26)
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We claim that

{un} is bounded in H . (3.27)

Seeking a contradiction we suppose that ‖un‖ → ∞. Let wn = un‖un‖ . Up to a subsequence, we get that

wn ⇀ w weakly in H,

wn → w strongly in Lt(Ω), 1 � t < 2∗,
wn(x) → w(x) a.e. x in Ω.

Now, we consider the two possible cases.

Case 1. w = 0 in H .

From o(1) = (I ′(un), un), we have

o(1) = ‖un‖2 + λ

∫
Ω

|un|q dx −
∫
Ω

f (x, un)un dx.

Dividing ‖un‖2 in both sides of the above equality, we get that

o(1) = 1 −
∫
Ω

f (x, un)un

‖un‖2
dx. (3.28)

( f1) and ( f3)–( f4) with ∧k+1 < b± < +∞ imply that∣∣ f (x, un)un
∣∣ � C |un|2. (3.29)

Combining (3.28)–(3.29), we have

1 =
∫
Ω

f (x, un)un

‖un‖2
dx + o(1) � C

∫
Ω

|wn|2 dx + o(1).

Let n → ∞, we get a contradiction.

Case 2. w �= 0 in H .

(3.25)–(3.26) imply that

c + o(1) = I(un) − 1

2

(
I ′(un), un

)
=

∫
Ω

[
1

2
f (x, un)un − F (x, un)

]
dx + λ

(
1

q
− 1

2

)∫
Ω

|un|q dx

�
∫
Ω

[
1

2
f (x, un)un − F (x, un)

]
dx.

Set Ω1 := {x ∈ Ω, w(x) �= 0}. Thus, for x ∈ Ω1, |un(x)| → +∞ as n → ∞. By ( f5), we obtain that

c + o(1) �
∫

Ω/Ω1

L(x)dx +
∫
Ω1

H(x, un)dx. (3.30)

Since meas(Ω1) > 0 and for a.e. x ∈ Ω1, limn→∞ H(x, un) = +∞, using Fatou’s lemma, we obtain that

lim
n→∞

∫
Ω1

H(x, un)dx = +∞,

which contradicts (3.30). Thus, (3.27) is proved. Combining with (3.25)–(3.26), we have un → u0 strongly in H , I(u0) =
c � α > 0 and I ′(u0) = 0. Thus, there exists λ∗ > 0, such that for 0 < λ < λ∗ , u0 is a nontrivial solution of problem (1.1).

Furthermore, from the proof of Theorem 1.1, we know that given λ > 0, problem (1.1) has nontrivial solutions u± . We
remark that u+ and u− may be the same.
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Note that I(0) = 0. Lemma 2.5 implies that given λ > 0, there exist ρ,β > 0, such that

inf‖u‖=ρ
I(u) � β > 0.

On the other hand, from ( f1) and (3.15),

F (x, u) � 1

2
(∧1 + ε0)u2 − C .

Thus,

I(u) � 1

2
‖u‖2 + λ

q

∫
Ω

|u|q dx − 1

2
(∧1 + ε0)

∫
Ω

u2 dx + C meas(Ω).

Choosing u = tϕ1, where t > 0 and ϕ1 is the eigenfunction associated to ∧1, we have

lim
t→∞ I(tϕ1) = −∞.

Let t′ be such that ‖t′ϕ1‖ > ρ and I(t′ϕ1) < 0. Define

c∗ := inf
γ ∈Γ

max
0�t�1

I
(
γ (t)

)
,

where Γ := {γ ∈ C([0,1], H); γ (0) = 0, γ (1) = t′ϕ1}. It follows from Theorem 2.1 that there exists a sequence {un} ⊂ H ,
such that

I(un) → c∗ � β, as n → +∞, (3.31)

and (
1 + ‖un‖

)
I+′

(un) → 0, as n → +∞. (3.32)

Then (3.27) holds. Combining with (3.31)–(3.32), we have un → u∗ strongly in H , I(u∗) = c∗ � β > 0 and I ′(u∗) = 0. Thus,
given λ > 0, u∗ is a nontrivial solution of problem (1.1).

We claim that u+ , u∗ are distinct or u− , u∗ are distinct.
If not, then u± = u∗ = v . From I ′(v) = I±′

(v) = 0,∫
Ω

(
λ|v|q−2vϕ − f (x, v)ϕ

)
dx =

∫
Ω

(
λ
∣∣v±∣∣q−2

v±ϕ − f
(
x, v±)

ϕ
)

dx, (3.33)

for all ϕ ∈ H . We note that∫
Ω

(
λ|v|q−2vϕ − f (x, v)ϕ

)
dx

=
∫

{x∈Ω, v(x)>0}

(
λ|v|q−2 vϕ − f (x, v)ϕ

)
dx +

∫
{x∈Ω, v(x)<0}

(
λ|v|q−2 vϕ − f (x, v)ϕ

)
dx

=
∫
Ω

(
λ
∣∣v+∣∣q−2

v+ϕ − f
(
x, v+)

ϕ
)

dx +
∫
Ω

(
λ
∣∣v−∣∣q−2

v−ϕ − f
(
x, v−)

ϕ
)

dx.

Together with (3.33), there holds∫
Ω

(
λ|v|q−2vϕ − f (x, v)ϕ

)
dx = 0, for all ϕ ∈ H .

In view of (I ′(v),ϕ) = 0 for all ϕ ∈ H , we can conclude that v = 0 in H , a contradiction. Thus, the claim is proved.
Without loss of generality, we may assume that u+ and u∗ are distinct. For 0 < λ < λ∗ , we will show that u0 and u+ ,

u∗ are distinct.
Note that

I+(u+) = c+ = inf
γ ∈Γ + max

0�t�1
I+

(
γ (t)

)
,

where Γ + = {γ ∈ C([0,1], H); γ (0) = 0, γ (1) = t1ϕ1}. Since γ +(t) := tt1ϕ1, t ∈ [0,1] belongs to Γ + and γ +[0,1] ⊂ Fm ,
we have

c+ = I+(u+) � max
0�t�1

I+
(
γ +(t)

) = max
0�t�1

I
(
γ +(t)

)
� sup

u∈Fm

I(u) < α � I(u0) = c.

Thus, u0 and u+ are distinct. Similarly, u0 and u∗ are distinct. �
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Proof of Theorem 1.3. Given λ > 0, we will show that there exists L∗ > 0, such that for L > L∗ , problem (1.1) has a
nontrivial solution. The assumptions of Theorem 1.3 imply that there exists F0 > 0, such that |F (x, u)| � F0u2. Then, for
|u| > L,∣∣F (x, u)

∣∣ <
F0

Lp−2
|u|p .

We note that for |u| � L,

F (x, u) �
(

1

2
∧m+1 −δ0

)
u2.

Thus, we obtain that

F (x, u) �
(

1

2
∧m+1 −δ0

)
u2 + F0

Lp−2
|u|p . (3.34)

(3.34) implies that

I(u) = 1

2
‖u‖2 + λ

q

∫
Ω

|u|q dx −
∫
Ω

F (x, u)dx

� 1

2
‖u‖2 −

(
1

2
∧m+1 −δ0

)∫
Ω

u2 dx − F0

Lp−2

∫
Ω

|u|p dx. (3.35)

For simplicity, we may assume that 0 < δ0 < 1
2 ∧m+1. Thus, for u ∈ F ⊥

m ,

I(u) � 1

2

(
1 − ∧m+1 − 2δ0

∧m+1

)
‖u‖2 − F0

Lp−2

∫
Ω

|u|p dx

� 1

2

(
1 − ∧m+1 − 2δ0

∧m+1

)
‖u‖2 − S F0

Lp−2
‖u‖p . (3.36)

Choosing ‖u‖ = (
2δ0

pS F0∧m+1
)

1
p−2 L, there holds

inf
u∈F ⊥

m ,‖u‖=(
2δ0

pS F0∧m+1
)

1
p−2 L

I(u) �
(

p − 2

2

)(
1

S F0

) 2
p−2

(
2δ0

p∧m+1

) p
p−2

L2. (3.37)

On the other hand, using a similar argument as Theorem 1.2, we obtain that

sup
u∈Fm

I(u) � max
{

Cλ
2

2−q , Cλ
} +

∫
Ω

W0(x)dx. (3.38)

(3.37)–(3.38) imply that there exists L∗ > 0, such that for L > L∗ ,

inf
u∈F ⊥

m ,‖u‖=(
2δ0

pS F0∧m+1
)

1
p−2 L

I(u) > sup
u∈Fm

I(u). (3.39)

Fix L > L∗ , as in the proof of Theorem 1.2, we may choose M large enough such that M > (
2δ0

pS F0∧m+1
)

1
p−2 L and

sup
u∈Fm+1,‖u‖=M

I(u) < 0. (3.40)

Therefore, combining (3.39)–(3.40), we obtain that there exists L∗ > 0, such that for L > L∗ ,

inf
u∈F ⊥

m ,‖u‖=(
2δ0

pS F0∧m+1
)

1
p−2 L

I(u) > sup
u∈∂ Q 1

I(u),

where

Q 1 := {
u + v; u ∈ Fm, v = tϕm+1, t � 0, ‖u + v‖ � M

}
.

Arguing as in the proof of Theorem 1.2, we obtain that given λ > 0, there exists L∗ > 0, such that for L > L∗ , problem (1.1)

has a nontrivial solution. Moreover, we claim that for L > L∗ , problem (1.1) has at least three nontrivial solutions. The proof
is similar to the proof of Theorem 1.2. We omit the details. �
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Proof of Theorem 1.4. In view of the proof of Theorem 1.1 and 1.2, we only need to prove that the (C)c sequence of I , I±
is bounded under assumptions of Theorem 1.4.

For {un} satisfying

c + o(1) = I+(un) (3.41)

and

o(1) = (
1 + ‖un‖

)
I+′(un), (3.42)

we will prove that ‖un‖ is bounded in H .
(3.41)–(3.42) imply that

c + o(1) = I+(un) − (
I+′(un), un

)
=

∫
Ω

[
1

2
f
(
x, u+

n

)
u+

n − F
(
x, u+

n

)]
dx + λ

(
1

q
− 1

2

)∫
Ω

∣∣u+
n

∣∣q
dx

�
∫
Ω

[
1

2
f
(
x, u+

n

)
u+

n − F
(
x, u+

n

)]
dx. (3.43)

By ( f1) and ( f6), we have

1

2
f
(
x, u+)

u+ − F
(
x, u+)

� C
∣∣u+∣∣μ − C . (3.44)

Combining (3.43)–(3.44), there holds

c + o(1) � C

∫
Ω

∣∣u+
n

∣∣μ dx − C,

from which we have the estimate∥∥u+
n

∥∥
μ

� C . (3.45)

On the other hand, by o(1) = (I+′
(un), un) and ( f1)–( f2), we have

‖un‖2 � o(1) +
∫
Ω

f
(
x, u+

n

)
u+

n dx � C

∫
Ω

(∣∣u+
n

∣∣ + ∣∣u+
n

∣∣p)
dx + C � C

∫
Ω

(|un| +
∣∣u+

n

∣∣p)
dx + C . (3.46)

Observe that s
4 (p − 2) < (p − 1) 2s

s+4 < p, we will consider two cases.

Case 1. μ � (p − 1) 2s
s+4 .

From (3.45)–(3.46),

‖un‖2 � C‖un‖ + C

∫
Ω

∣∣u+
n

∣∣p−1|un|dx + C

� C‖un‖ + C‖un‖2∗∗
∥∥u+

n

∥∥p−1
(p−1) 2s

s+4
+ C

� C‖un‖ + C‖un‖
∥∥u+

n

∥∥p−1
μ

+ C

� C‖un‖ + C,

which implies that ‖un‖ � C .

Case 2. s (p − 2) < μ < p.
4
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If 0 < μ < p < 2∗∗ and t ∈ (0,1) are such that 1
p = 1−t

μ + t
2∗∗ , then ∀ u ∈ Lμ(Ω) ∩ L∗∗(Ω), we have∫

Ω

|u|p dx =
∫
Ω

|u|(1−t)p|u|tp dx � ‖u‖(1−t)p
μ ‖u‖tp

2∗∗ . (3.47)

Combining (3.45)–(3.47), there holds

‖un‖2 � C‖un‖ + C‖un‖p
p + C

� C‖un‖ + C‖un‖(1−t)p
μ ‖un‖tp

2∗∗ + C

� C‖un‖ + C‖un‖tp + C . (3.48)

Note that the condition μ > s
4 (p − 2) is equivalent to tp < 2, we conclude from (3.48) that ‖un‖ � C . Thus, the (C)c

sequence of I+ is bounded under assumptions of Theorem 1.4. Similarly, we can prove that the (C)c sequence of I , I− is
bounded. The details are omitted. �
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