
J. Math. Anal. Appl. 385 (2012) 517–533
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and
Applications

www.elsevier.com/locate/jmaa

On the existence of solutions for a class of second-order differential
inclusions and applications ✩

Nguyen Van Loi a, Valeri Obukhovskii b,∗
a Faculty of Information and Communication Technology, Bac Ha International University, Ha Noi, Viet Nam
b Faculty of Mathematics, Voronezh State University, (394006) Voronezh, Russia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 October 2010
Available online 2 July 2011
Submitted by D. O’Regan

Keywords:
Second-order differential inclusion
Partial differential inclusion
Boundary value problem
Guiding function
Feedback control system
Schröndinger equations

In this paper, by extending the method of guiding functions, we give sufficient conditions
for the existence of solutions to the problem

u′′ ∈ Q (u), u(0) = u(1) = 0, (1.1)

where Q is a multivalued map whose values are not necessarily convex. It is shown how
abstract results can be applied to study feedback control systems and to describe a motion
of a particle in a 1-D potential.
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1. Introduction

Various aspects of the theory of second-order differential inclusions attract the attention of many researchers (see., e.g.,
[1–5,9,11,12,15,23]). In this paper we consider the boundary value problem of the form (1.1) for second-order differential
inclusions which arises naturally from some physical and control problems. An appropriate approach to study the existence
of solutions to problem (1.1) is the using of the fixed point theory by the exploiting the fact that the set of solutions of (1.1)
coincides with the fixed point set of the corresponding integral multioperator. However, this approach involves the necessity
to evaluate the topological degree of this multioperator which, in general, should be not an easy problem.

For the purposes of investigation of periodic solutions of the first-order differential equations and inclusions, one of the
effective tools is the method of guiding functions developed by M.A. Krasnosel’skii, A.I. Perov and others (see, e.g., [20–22]).
The main idea of this method may be expressed by the fact that the topological degree of the integral multioperator
can be evaluated through the topological index of the special, “guiding” function of the equation or the inclusion under
consideration.

In this paper we extend this method to study problem (1.1). The paper is organized in the following way. In the next
section we recall some notions and notation from multivalued analysis. In Section 3, using a guiding function of the form
V (x) = δx, x ∈ R and δ > 0, we obtain the sufficient conditions for the existence of solutions to (1.1) in R. The result is
extended to the case of a general integral guiding function. In Section 4, we apply the abstract result to the investigation
of a boundary value problem for a system whose feedback law is expressed in the form of a differential inclusion. Another
application deals with a model of motion of a particle in a 1-D potential.
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In the last section, we present the generalization of our method to the case of problem (1.1) considered in an infinite-
dimensional Hilbert space. As an example, we consider a feedback control system governed by partial differential equation
and inclusion.

2. Preliminaries

Let X, Y be metric spaces. Denote by P (Y )[C(Y ), K (Y )] the collection of all nonempty [resp., nonempty closed, nonempty
compact] subsets of Y . For a Banach space E by symbols C v(E) [K v(E)] we denote the collection of all nonempty convex
closed [resp., nonempty convex compact] subsets of E .

Definition 1. (See, e.g., [6,14,19].) A multivalued map (multimap) F : X → P (Y ) is said to be upper semicontinuous (u.s.c.) if
for every open subset V ⊂ Y the set

F −1+ (V ) = {
x ∈ X: F (x) ⊂ V

}
is open in X . A u.s.c. multimap F is said to be completely continuous, if it maps every bounded subset X1 ⊂ X into a
relatively compact subset F (X1) of Y .

For a multimap F : X → P (Y ), by Γ X
F we denote its graph, i.e.,

Γ X
F = {

(x, y) ∈ X × Y : y ∈ F (x)
}
.

The multimap F is said to be closed if its graph is a closed subset of X × Y , while the metric in X × Y is defined in a natural
way as

ρ
(
(x, y),

(
x′, y′)) = max

{
ρX

(
x, x′),ρY

(
y, y′)}.

Notice that a closed multimap F which is locally compact, i.e., each point x ∈ X has a neighborhood U (x) such that the set
F (U (x)) is relatively compact, is u.s.c.

A set M ∈ K (Y ) is said to be aspheric (or U V ∞ , or ∞-proximally connected) (see, e.g., [14,24]), if for every ε > 0
there exists δ > 0 such that each continuous map σ : Sn → O δ(M), n = 0,1,2, . . . , can be extended to a continuous
map σ̃ : Bn+1 → O ε(M), where Sn = {x ∈ R

n+1: ‖x‖ = 1}, Bn+1 = {x ∈ R
n+1: ‖x‖ � 1}, and O δ(M) [O ε(M)] denotes the

δ-neighborhood [resp. ε-neighborhood] of the set M .

Definition 2. (See [17].) A nonempty compact space A is said to be an Rδ-set if it can be represented as the intersection of
a decreasing sequence of compact, contractible spaces.

Definition 3. (See [14].) A u.s.c. multimap Σ : X → K (Y ) is said to be a J -multimap (Σ ∈ J (X, Y )) if every value Σ(x),
x ∈ X , is an aspheric set.

Now let us recall (see, e.g., [7,14]) that a metric space X is called the absolute retract (the AR-space) [resp., the absolute
neighborhood retract (the ANR-space)] provided for each homeomorphism h taking it onto a closed subset of a metric space X ′ ,
the set h(X) is the retract of X ′ [resp., of its open neighborhood in X ′]. Notice that the class of ANR-spaces is broad enough:
in particular, a finite-dimensional compact set is the ANR-space if and only if it is locally contractible. In turn, it means that
compact polyhedrons and compact finite-dimensional manifolds are the ANR-spaces. The union of a finite number of convex
closed subsets in a normed space is also the ANR-space.

Proposition 1. (See [14].) Let Z be an ANR-space. In each of the following cases a u.s.c. multimap Σ : X → K (Z) is a J -multimap: for
each x ∈ X the value Σ(x) is

(a) a convex set;
(b) a contractible set;
(c) an Rδ-set;
(d) an AR-space.

In particular, every continuous map σ : X → Z is a J -multimap.

Definition 4. Let O ⊆ X . By C J (O, X) we will denote the collection of all multimaps F : O → K (X) that may be represented
in the form of composition F = f ◦ G , where G ∈ J (O, Y ) and f : Y → X is a continuous map. The composition f ◦ G will
be called the decomposition of F . We will denote F = ( f ◦ G).
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It has to be noted that a multimap can admit different decompositions (see [14]).
Now, let X be a Banach space and U ⊂ X be an open bounded subset and F = ( f ◦ G) ∈ C J (U , X) be a completely con-

tinuous multimap such that x /∈ F (x) for x ∈ ∂U . Then the topological degree deg(i − F , U ) of the corresponding multivalued
vector field (i − F )(x) = x − F (x) is well defined and has all usual properties of the Leray–Shauder topological degree (see,
e.g., [14]).

3. The existence problem

Denote by C the space of all continuous functions C[0,1] and by L2 the space of all square-integrable functions L2[0,1].
For every u ∈ C and f ∈ L2 their corresponding norms are:

‖u‖C = max
t∈[0,1]

∣∣u(t)
∣∣ and ‖ f ‖2 =

( 1∫
0

∣∣ f (s)
∣∣2

ds

) 1
2

.

The symbol 〈·,·〉 denotes the inner product in L2 and B C (0, R) denotes the ball in C of radius R centered at the origin. For
an integer k > 0 the Sobolev space W k

2[0,1] is defined as

W k
2[0,1] = {

u ∈ L2: u(m) ∈ L2 for all 1 � m � k
}
,

where u(m) denotes the distributional derivative of u of order m. The norm of an element u ∈ W k
2[0,1] is defined as

‖u‖W =
k∑

m=0

∥∥u(m)
∥∥

2.

By
◦

W k
2[0,1] we will denote the subset of W k

2[0,1] consisting of all functions vanishing at the end-points of [0,1], i.e.,
◦

W k
2[0,1] = {

u ∈ W k
2[0,1]: u(0) = u(1) = 0

}
.

Let us recall (see, e.g., [8]) that according to the Sobolev embedding theorem the space W k
2[0,1] is compactly embedded

into C .
Define a continuous integral operator j : L2 → C by

( j f )(t) =
1∫

0

G(t, s) f (s)ds,

where

G(t, s) =
{

t(s − 1) if 0 � t � s,
s(t − 1) if s � t � 1.

Notice that the operator j in fact acts into
◦

W 2
2[0,1] and, for any f ∈ L2, the boundary value problem

u′′(t) = f (t) for a.e. t ∈ [0,1],
u(0) = u(1) = 0

may be written in the form: u = j f (see, e.g., [16, Chapter XII, Sec. 4]). By applying the Arzela–Ascoli theorem, it is easy to
see also that the operator j transforms bounded sets into relatively compact ones.

In this section we will consider the existence of solutions to the following boundary value problem for the operator-
differential inclusion

u′′ ∈ Q (u),

u(0) = u(1) = 0, (3.1)

where Q : C → C(L2) is a multimap satisfying the following conditions:

(Q 1) the composition j ◦ Q belongs to the class C J (C, C);
(Q 2) there are constants p,q > 0 such that∥∥Q (u)

∥∥
2 � q

(
1 + ‖u‖p

2

)
for all u ∈ C , where∥∥Q (u)

∥∥
2 = sup

{‖ f ‖2: f ∈ Q (u)
}
.
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By a solution to problem (3.1) we mean a function u ∈ ◦
W 2

2[0,1] such that there is a function f ∈ Q (u) satisfying

u′′(t) = f (t) for a.e. t ∈ [0,1].

Remark 1. Let us mention that the class of multimaps Q satisfying condition (Q 1) is large enough. For example, for every
C J -multimap Q the multimap j ◦ Q is a C J -multimap. Moreover, there are multimaps Q which are not C J -multimaps
while j ◦ Q are C J -multimaps. For example, let F : [0,1] × R → K v(R) be a multimap satisfying the following conditions:

(F 1) for every y ∈ R the multifunction F (·, y) : [0,1] → K v(R) has a measurable selection;
(F 2) for a.e. t ∈ [0,1] the multimap F (t, ·) : R → K v(R) is upper semicontinuous;
(F 3) for every bounded subset Ω ⊂ R there is a function γΩ ∈ L2 such that∣∣F (t, y)

∣∣ � γΩ(t)

for all y ∈ Ω and a.e. t ∈ [0,1], where |F (t, y)| = max{|z|: z ∈ F (t, y)}.

It is well known that under conditions (F 1)–(F 3) the superposition multioperator

P F : C � L2,

P F (x) = {
f ∈ L2: f (s) ∈ F

(
s, x(s)

)
for a.e. s ∈ [0,1]},

is well defined, it is closed and has convex closed values (see, e.g., [6,19]).
Set Q : C → C v(L2), Q (x) = P F (x). From Theorem 1.5.30 [6] it follows that the multimap j ◦ Q is closed. By virtue

of (F 3), for every bounded subset U ⊂ C the set Q (U ) is bounded in L2, therefore the set j(Q (U )) is a relatively compact
set in C . Hence, j ◦ Q is a u.s.c. multimap with compact convex values and so, it belongs to the class J (C, C) ⊂ C J (C, C).

The main result of this section is the following assertion.

Theorem 1. Let conditions (Q 1)–(Q 2) hold. Assume that there exists N > 0 such that for every u ∈ C , ‖u‖2 > N, the following
relation holds

〈u, f 〉 > 0 for all f ∈ Q (u).

Then problem (3.1) has a solution.

Proof. Problem (3.1) can be substituted by the following inclusion

u ∈ j ◦ Q (u).

From (Q 1) it follows that the multioperator j ◦ Q : C → K (C) is upper semicontinuous. Now let Ω ⊂ C be a bounded subset.
Condition (Q 2) implies that the set Q (Ω) is bounded in L2. Therefore, the set j ◦ Q (Ω) is a relatively compact in C . Thus,
j ◦ Q is a completely continuous multioperator.

Assume that there exists u∗ ∈ C , such that u∗ ∈ j ◦ Q (u∗). Notice that then u∗(0) = u∗(1) = 0. Then there is f∗ ∈ Q (u∗)
such that u′′∗(t) = f∗(t) for a.e. t ∈ [0,1], and hence

〈 f∗, u∗〉 = 〈
u′′∗, u∗

〉 = −〈
u′∗, u′∗

〉
� 0.

Therefore, ‖u∗‖2 � N .
For every t ∈ [0,1], we have

∣∣u∗(t)
∣∣ �

1∫
0

∣∣G(t, s)
∣∣∣∣ f∗(s)

∣∣ds �
1∫

0

∣∣ f∗(s)
∣∣ds � ‖ f∗‖2.

From (Q 2) it follows that for every t ∈ [0,1]∣∣u∗(t)
∣∣ � ‖ f∗‖2 �

∥∥Q (u∗)
∥∥

2 � q
(
1 + N p)

,

hence, ‖u∗‖C � q(1 + N p).
Now set R = qN p + q + 1. Consider the multimap Ψ : B C (0, R) × [0,1] → K (C),

Ψ (u, λ) = j ◦ (
(1 − λ)δu + λQ (u)

)
,

where 0 < δ < 1
N is an arbitrary number.

Let us show that Ψ is a completely continuous C J -multimap. In fact, from condition (Q 1) it follows that we may
represent the multimap j ◦ Q as ϕ ◦ F ∈ C J (C, C), where F : C → K (Y ) is a J -multimap from C to some metric space Y and
ϕ : Y → C is a continuous map. Define the multimap
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F̃ : B C (0, R) × [0,1] → K (C × Y × R),

F̃ (u, λ) = {u} × F (u) × {λ},
and a map

ϕ̃ : C × Y × R → K (C),

ϕ̃(u, v, λ) = δ(1 − λ) ju + λϕ(v).

It is clear that F̃ is a J -multimap, ϕ̃ is a continuous map and for every (u, λ) ∈ B C (0, R) × [0,1] we have Ψ (u, λ) =
ϕ̃ ◦ F̃ (u, λ). So, Ψ is a C J -multimap. Further, for every bounded subset Ω ⊂ C the sets j ◦ Q (Ω) and j(Ω) are relatively
compact in C , therefore Ψ (Ω × [0,1]) is a relatively compact set in C , too. So, the multimap Ψ is completely continuous.

Now, we will show that Ψ has no fixed points on ∂ B C (0, R) × [0,1]. To the contrary, assume that there exists (u∗, λ∗) ∈
∂ B C (0, R) × [0,1] such that u∗ ∈ Ψ (u∗, λ∗). Then there is a function f∗ ∈ Q (u∗) such that

u∗(t) =
1∫

0

G(t, s)
(
(1 − λ∗)δu∗(s) + λ∗ f∗(s)

)
ds, ∀t ∈ [0,1], (3.2)

or equivalently,{
u′′∗(t) = (1 − λ∗)δu∗(t) + λ∗ f∗(t) for a.e. t ∈ [0,1],
u∗(0) = u∗(1) = 0.

(3.3)

Assume that ‖u∗‖2 � N . Then from (3.2) we have∣∣u∗(t)
∣∣ � δ(1 − λ∗)‖u∗‖2 + λ∗‖ f∗‖2 � δ(1 − λ∗)N + λ∗q

(
1 + N p)

< R,

for all t ∈ [0,1]. Hence u∗ /∈ ∂ B C (0, R), that is a contradiction. Therefore, ‖u∗‖2 > N . From (3.3) it follows that〈
u′′∗, u∗

〉 = δ(1 − λ∗)〈u∗, u∗〉 + λ∗〈u∗, f∗〉 > 0,

giving a contradiction.
Thus, Ψ is a homotopy joining Ψ (·,0) = δ j ◦ i and Ψ (·,1) = j ◦ Q , where i denotes the inclusion map. By virtue of the

homotopic invariance property of the topological degree we have

deg
(
i − j ◦ Q , B C (0, R)

) = deg
(
i − δ j ◦ i, B C (0, R)

)
.

For a sufficiently small δ > 0 we have∥∥u − (u − δ ju)
∥∥

C = δ‖ ju‖C < ‖u‖C

for all u ∈ ∂ B C (0, R).
Then the vector fields i and i − δ j ◦ i are homotopic on ∂ B C (0, R), so

deg
(
i − j ◦ Q , B C (0, R)

) = deg
(
i − δ j ◦ i, B C (0, R)

) = deg
(
i, B C (0, R)

) = 1.

Hence problem (3.1) has a solution u ∈ B C (0, R). �
Now we can formulate the above result in terms of the guiding functions. Notice that for every continuous function

V : R → R the following map

V � : C → L2, V �(u)(t) = V
(
u(t)

)
,

is continuous.

Definition 5. (See [13,18].) A continuous function V : R → R is said to be an integral guiding function for problem (3.1), if:

(V 1) there are α � 0 and β > 0 such that∣∣V (t)
∣∣ � α + β|t|, ∀t ∈ R;

(V 2) there exists N > 0 such that for every u ∈ C , ‖u‖2 > N , the following relation holds:〈
V �(u), f

〉
> 0 for all f ∈ Q (u);

(V 3) for every u ∈ ◦
W 2

2[0,1], from ‖u‖2 > N it follows that〈
u′′, V �(u)

〉
� 0,

where N is the same constant as in (V 2).
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Theorem 2. Let conditions (Q 1)–(Q 2) hold. Assume that there exists an integral guiding function V for problem (3.1). Then problem
(3.1) has a solution.

Proof. Set R = qN p + q + 1 and consider the multimap

Ψ : B C (0, R) × [0,1] → K (C),

Ψ (u, λ) = j ◦ (
(1 − λ)δV �(u) + λQ (u)

)
,

where δ, 0 < δ < 1
α+βN is an arbitrary number, with N being the number in (V 2).

Similarly as in the proof of Theorem 1, one can verify that Ψ is a C J -multimap. Let Ω ⊂ C be a bounded subset. From
(Q 2) and (V 1) it follows that the sets Q (Ω) and V �(Ω) are bounded in L2. Since the operator j is completely continuous,
the sets j ◦ Q (Ω) and j ◦ V �(Ω) are relatively compact in C . Hence the set Ψ (Ω × [0,1]) is relatively compact in C . Thus,
Ψ is a completely continuous C J -multimap.

Let us show that Ψ has no fixed points on ∂ B C (0, R)×[0,1]. To the contrary, assume that there is (u∗, λ∗) ∈ ∂ B C (0, R)×
[0,1] such that u∗ ∈ Ψ (u∗, λ∗). Then there is a function f∗ ∈ Q (u∗) such that

u∗(t) =
1∫

0

G(t, s)
(
(1 − λ∗)δV

(
u∗(s)

) + λ∗ f∗(s)
)

ds, ∀t ∈ [0,1], (3.4)

or equivalently,{
u′′∗(t) = (1 − λ∗)δV

(
u∗(t)

) + λ∗ f∗(t) for a.e. t ∈ [0,1],
u∗(0) = u∗(1) = 0.

(3.5)

Assume that ‖u∗‖2 � N . Then from (Q 2), (V 1) and (3.4) we have

∣∣u∗(t)
∣∣ � δ(1 − λ∗)

1∫
0

∣∣V
(
u∗(t)

)∣∣dt + λ∗
1∫

0

∣∣ f∗(t)
∣∣dt

� δ(1 − λ∗)
1∫

0

(
α + β

∣∣u∗(t)
∣∣)dt + λ∗‖ f∗‖2

� δ(1 − λ∗)
(
α + β‖u∗‖2

) + λ∗q
(
1 + N p)

� δ(α + βN) + q
(
1 + N p)

< R,

for all t ∈ [0,1]. Hence u∗ /∈ ∂ B C (0, R), that is a contradiction. Therefore, ‖u∗‖2 > N . Notice that u∗ ∈ ◦
W 2

2[0,1] ⊂ C , then
from (V 2)–(V 3) and (3.5) it follows that〈

u′′∗, V �(u∗)
〉 = δ(1 − λ∗)

〈
V �(u∗), V �(u∗)

〉 + λ∗
〈
V �(u∗), f∗

〉
> 0,

giving a contradiction.
So, we again obtain that Ψ is a homotopy and for sufficiently small δ > 0 we have

deg
(
i − j ◦ Q , B C (0, R)

) = deg
(
i − δ j ◦ V �, B C (0, R)

) = deg
(
i, B C (0, R)

) = 1.

Thus problem (3.1) has a solution. �
4. Applications

4.1. Feedback control system

We consider a feedback control system of the form⎧⎪⎨⎪⎩
u′′(t) − λu(t) = f

(
t, u(t), v(t)

)
for a.e. t ∈ [0,1],

v ′(t) ∈ G
(
t, v(t), u(t)

)
for a.e. t ∈ [0,1],

u(0) = u(1) = 0, v(0) = v0,

(4.1)

where v0 ∈ R, λ > 0, the map f : [0,1]×R
2 → R and the multimap G : [0,1]×R

2 → K v(R) satisfy the following conditions:

( f 1) for every (x, y) ∈ R
2 the function f (·, x, y) : [0,1] → R is measurable;

( f 2) for a.e. t ∈ [0,1] the map f (t, ·,·) : R
2 → R is continuous;
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( f 3) there is α > 0 such that∣∣ f (t, x, y)
∣∣ � α

(
1 + |x| + |y|)

for all (x, y) ∈ R
2 and a.e. t ∈ [0,1];

(G1) for every (x, y) ∈ R
2 the multifunction G(·, x, y) : [0,1] → K v(R) has a measurable selection;

(G2) for a.e. t ∈ [0,1] the multimap G(t, ·,·) : R
2 → K v(R) is u.s.c.;

(G3) the multimap G is uniformly continuous with respect to the third argument in the sense: for every ε > 0 there is
δ > 0 such that

G(t, x, ȳ) ⊂ O ε

(
G(t, x, y)

) ∀(t, x) ∈ [0,1] × R

whenever | ȳ − y| < δ;
(G4) there is β > 0 such that∥∥G(t, x, y)

∥∥ � β
(
1 + |x| + |y|)

for all (x, y) ∈ R
2 and a.e. t ∈ [0,1], where∥∥G(t, x, y)
∥∥ = max

{|z|: z ∈ G(t, x, y)
}
.

For a given function u ∈ C define the multimap

Gu : [0,1] × R → K v(R), Gu(t, x) = G
(
t, x, u(t)

)
.

By virtue of Theorem 1.3.5 [19] for each x ∈ R the multifunction Gu(·, x) has a measurable selection. Further, from conditions
(G2) and (G3) it follows that for a.e. t ∈ [0,1] the multimap Gu(t, x) upper semicontinuously depends on (u, x). We have
the following assertion (see, e.g., [14,19]): for each u ∈ C the set Πu of all solutions of the following problem{

v ′(t) ∈ G
(
t, v(t), u(t)

)
for a.e. t ∈ [0,1],

v(0) = v0

is an Rδ-set in C and the multimap

Π : C → K (C), Π(u) = Πu,

is upper semicontinuous.
By a solution to problem (4.1) we mean a function u ∈ ◦

W 2
2[0,1] such that there is an absolutely function v ∈ Π(u)

satisfying

u′′(t) − λu(t) = f
(
t, u(t), v(t)

)
for a.e. t ∈ [0,1].

In what follows, we need the following assertion.

Lemma 1 (Gronwall’s Lemma). (See, e.g., [16].) Let u, v : [a,b] → R be continuous nonnegative functions and C � 0 be a constant and

v(t) � C +
t∫

a

u(s)v(s)ds, a � t � b.

Then

v(t) � Ce
∫ t

a u(s)ds, a � t � b.

Theorem 3. Let conditions ( f 1)–( f 3) and (G1)–(G4) hold. Then for each

λ > α
(
1 + βeβ

)
the feedback control system (4.1) has a solution.

Proof. Let Π̃ : C → K (C × C)

Π̃(u) = {u} × Π(u),

and f̃ : C × C → L2,

f̃ (u, v)(t) = λu(t) + f
(
t, u(t), v(t)

)
, t ∈ [0,1].

Then we can substitute the feedback control system (4.1) by the following problem

Lu ∈ Q (u), (4.2)
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where L :
◦

W 2
2[0,1] → L2, Lu = u′′ and Q : C → K (L2),

Q (u) = f̃ ◦ Π̃(u).

From the continuity of the operator f̃ and Π̃ ∈ J (C, C × C) it follows that j ◦ Q ∈ C J (C, C).
Now letting g ∈ Q (u) there exists v ∈ Π(u) such that

g(s) = f̃ (u, v)(s) = λu(s) + f
(
s, u(s), v(s)

)
, ∀s ∈ [0,1].

From v ∈ Π(u) it follows that there is a function h ∈ L1[0,1] such that

h(t) ∈ G
(
t, v(t), u(t)

)
for a.e. t ∈ [0,1],

and

v(t) = v0 +
t∫

0

h(s)ds, 0 � t � 1.

From (G4) it follows that for every t ∈ [0,1] the following relations hold

∣∣v(t)
∣∣ � |v0| +

t∫
0

∣∣h(s)
∣∣ds � |v0| +

t∫
0

β
(
1 + ∣∣v(s)

∣∣ + ∣∣u(s)
∣∣)ds

� |v0| + β + β‖u‖2 +
t∫

0

β
∣∣v(s)

∣∣ds.

By virtue of Lemma 1 we obtain∣∣v(t)
∣∣ �

(|v0| + β + β‖u‖2
)
eβ, ∀t ∈ [0,1].

Applying ( f 3) we have

‖g‖2
2 =

1∫
0

g2(s)ds =
1∫

0

(
λu(s) + f

(
s, u(s), v(s)

))2
ds

�
1∫

0

(
λ2 + 1

)(
u2(s) + f 2(s, u(s), v(s)

))
ds

�
(
λ2 + 1

)(‖u‖2
2 +

1∫
0

α2(1 + ∣∣u(s)
∣∣ + ∣∣v(s)

∣∣)2
ds

)

�
(
λ2 + 1

)(‖u‖2
2 +

1∫
0

3α2(1 + u2(s) + v2(s)
)

ds

)

�
(
λ2 + 1

)((
1 + 3α2)‖u‖2

2 + 3α2 + 3α2(|v0| + β + β‖u‖2
)2

e2β
)
.

Therefore, the multimap Q satisfies condition (Q 2).
Now for every u ∈ C , choosing an arbitrary g ∈ Q (u), we have that

〈g, u〉 =
1∫

0

u(s)
(
λu(s) + f

(
s, u(s), v(s)

))
ds

� λ‖u‖2
2 −

1∫
0

∣∣ f
(
s, u(s), v(s)

)∣∣∣∣u(s)
∣∣ds

� λ‖u‖2
2 − α

1∫ ∣∣u(s)
∣∣(1 + ∣∣u(s)

∣∣ + ∣∣v(s)
∣∣)ds
0
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Fig. 1. The potential energy function V (x).

� (λ − α)‖u‖2
2 − α

1∫
0

∣∣u(s)
∣∣ds − αeβ

(|v0| + β + β‖u‖2
) 1∫

0

∣∣u(s)
∣∣ds

�
(
λ − α − αβeβ

)‖u‖2
2 − α

(
1 + eβ

(|v0| + β
))‖u‖2 > 0

provided

‖u‖2 >
α(1 + eβ(|v0| + β))

λ − α(1 + βeβ)
.

By virtue of Theorem 1 problem (4.2) has a solution, and hence the feedback control system (4.1) has a solution. �
4.2. A model of a motion of a particle in a 1-dimensional potential

It is well known that for a single particle in a 1-dimensional potential energy V , the time-independent Schrödinger
equation takes the form:

−h̄2

2m
Ψ ′′(x) + V (x)Ψ (x) = EΨ (x), (4.3)

where m is the particle’s mass, h̄ – the reduced Planck constant, E – the total energy of the particle, V (x) is the potential
energy at the position x and Ψ (x) is the wave function.

Here we consider the case when the potential energy V (x) has a form:

V (x) =
{

V , 0 � x � 1,

0, otherwise,
(4.4)

where V is a constant (see Fig. 1).
In this case, Eq. (4.3) must be solved in three regions:

I (x < 0), II (0 � x � 1) and III (x > 1).

The corresponding solutions of Eq. (4.3) in the first and third regions are

ΨI (x) = A sin kx + B cos kx and ΨIII(x) = C sin kx + D cos kx,

where k =
√

2mE
h̄ and A, B, C, D are constants.

So now we focus our attention on solving Eq. (4.3) in the second region. In this region the Schrödinger equation has the
form:

Ψ ′′
II (x) = 2m

h̄2
V ΨII(x) − 2m

h̄2
EΨII(x). (4.5)

We assume that the potential V is connected with the wave function ΨII by the following relation:

V ∈ F (ΨII), (4.6)

where F : L2 → K (R+) is a J -multimap, R+ = [0,+∞).
From the continuity of Ψ it follows that in region II the boundary conditions for Eq. (4.5) are:

ΨII(0) = ΨI (0) = B and ΨII(1) = ΨIII(1) = C sin k + D cos k. (4.7)

By a solution of problem (4.5)–(4.7) we mean a function ΨII ∈ W 2
2 [0,1] for which there exists V ∈ F (ΨII) such that

Eq. (4.5) and condition (4.7) hold true.
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Theorem 4. Assume that there exist a,b > 0 such that

F (u) ⊆ [
a‖u‖2,b

(
1 + ‖u‖2

)]
for all u ∈ L2.

Then problem (4.5)–(4.7) has a solution.

Proof. Set α = B , β = C sin k + D cos k and g(x) = βx + α(1 − x). For every x ∈ [0,1] let ϕ(x) = ΨII(x) − g(x). Then problem
(4.5)–(4.7) can be replaced with the following system⎧⎪⎪⎨⎪⎪⎩

ϕ′′(x) = 2m

h̄2
V

(
ϕ(x) + g(x)

) − 2m

h̄2
E
(
ϕ(x) + g(x)

)
,

V ∈ F (ϕ + g),

ϕ(0) = ϕ(1) = 0,

or equivalently,

ϕ ∈ j ◦ Q (ϕ), (4.8)

where

Q (ϕ) = 2m

h̄2
(ϕ + g)F (ϕ + g) − 2m

h̄2
E(ϕ + g),

and the operator j is defined as in Section 3.
It is easy to see that the multimap Q satisfies conditions (Q 1)–(Q 2). For every w ∈ Q (ϕ) there is V ∈ F (ϕ + g) such

that

w = 2m

h̄2
(V − E)ϕ + 2m

h̄2
(V − E)g.

We have

〈ϕ, w〉 = 2m

h̄2
(V − E)‖ϕ‖2

2 + 2m

h̄2
(V − E)〈g,ϕ〉

� 2m

h̄2

(
a‖ϕ + g‖2 − E

)‖ϕ‖2
2 − 2m

h̄2
V ‖g‖2‖ϕ‖2 − 2m

h̄2
E‖g‖2‖ϕ‖2

� 2m

h̄2

(
a‖ϕ‖2 − a‖g‖2 − E

)‖ϕ‖2
2 − 2m

h̄2

(
b + b‖ϕ‖2 + b‖g‖2

)‖g‖2‖ϕ‖2 − 2m

h̄2
E‖g‖2‖ϕ‖2.

Therefore

〈ϕ, w〉 � 2m

h̄2
a‖ϕ‖3

2 − 2m

h̄2

(
a‖g‖2 + E + b‖g‖2

)‖ϕ‖2
2 − 2m

h̄2
‖g‖2

(
b + b‖g‖2 + E

)‖ϕ‖2 > 0

for sufficiently large ‖ϕ‖2.
From Theorem 1 it follows that inclusion (4.8) is solvable, and hence problem (4.5)–(4.7) has a solution. �

5. Generalization to the case of an infinite-dimensional Hilbert space

Let H be a real infinite-dimensional Hilbert space with an orthonormal basis {en}∞n=1. For every n ∈ N, let Hn be an
n-dimensional subspace H with basis {ek}n

k=1 and Pn be the projection onto Hn . By 〈x, y〉H we denote the inner product of
elements x, y ∈ H . Set I = [0,1] and denote by C(I, H) [L2(I, H)] the collection of all continuous [resp., square summable]
functions u : I → H . The symbol 〈 f , g〉L denotes the inner product of elements f , g ∈ L2(I, H). A ball of radius r centered
at 0 in C(I, H) is denoted by BC (0, r). As in Section 3, we will consider the Sobolev space W k

2(I, H) and its subspace
◦

W k
2(I, H). Notice that for every k � 1 the embedding W k

2(I, H) ↪→ C(I, H) is continuous (but not compact). The weak

convergence in W k
2(I, H) [L2(I, H)] is denoted by un

W k
2−⇀ u0 [resp., fn

L−⇀ f0].
For every n ∈ N let Jn : L2(I, H) → C(I, Hn) be the operator defined by

Jn( f )(t) =
n∑

k=1

( 1∫
0

G(t, s) f(k)(s)ds

)
ek,

where the function G(t, s) is defined as in Section 3 and

f (t) =
∞∑

f(k)(t)ek, for all t ∈ I.

k=1
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It is clear that the operator Jn is completely continuous and for each t ∈ I we have

∥∥Jn( f )(t)
∥∥

Hn
=

(
n∑

k=1

( 1∫
0

G(t, s) f(k)(s)ds

)2) 1
2

�
(

n∑
k=1

1∫
0

G2(t, s)ds

1∫
0

f 2
(k)(s)ds

) 1
2

�
( 1∫

0

n∑
k=1

f 2
(k)(s)ds

) 1
2

�
( 1∫

0

∥∥ f (s)
∥∥2

H ds

) 1
2

= ‖ f ‖2. (5.1)

For n ∈ N, define the projection Pn : L2(I, H) → L2(I, Hn) generated by Pn as

(Pn f )(t) = Pn f (t) for a.e. t ∈ I.

Consider now the following operator-differential inclusion

u′′ ∈ Q (u),

u(0) = u(1) = 0, (5.2)

where the multimap Q : C(I, H) → C(L2(I, H)) satisfies the following conditions:

(Q 1)′ for each m ∈ N the restriction (Jm ◦ Q )|C(I,Hm)
belongs to C J (C(I, Hm); C(I, Hm));

(Q 2)′ there are constants p1,q1 > 0 such that∥∥Q (u)
∥∥

2 � q1
(
1 + ‖u‖p1

2

)
for all u ∈ C(I, H);

(Q 3) for every bounded closed subset M ⊂ ◦
W 2

2(I, H), if there exist the sequences {nk} and {uk}, uk ∈ M ∩ ◦
W 2

2(I, Hnk ) such
that

u′′
k ∈ Pnk Q (uk),

then there is u∗ ∈ M such that u′′∗ ∈ Q (u∗).

By a solution to problem (5.2) we mean a function u ∈ ◦
W 2

2(I, H) such that there is a function f ∈ Q (u) and

u′′(t) = f (t) for a.e. t ∈ [0,1].

Theorem 5. Let conditions (Q 1)′–(Q 2)′ and (Q 3) hold. Assume that there exists N > 0 such that for every u ∈ C(I, H), ‖u‖2 > N,
the following relation holds:

〈u, f 〉L > 0, for all f ∈ Q (u). (5.3)

Then problem (5.2) has a solution.

Proof. For each n ∈ N, consider the auxiliary problem

u′′ ∈ Pn Q (u),

u(0) = u(1) = 0.

It is clear that this problem is equivalent to the following fixed point problem

u ∈ Σn(u), (5.4)

where Σn : C(I, Hn) → K (C(I, Hn)), Σn(u) = Jn ◦ Q (u).
From (Q 1)′–(Q 2)′ if follows that Σn is a completely continuous C J -multimap.
Assume that u ∈ C(I, Hn) is a solution of inclusion (5.4). Then there is f ∈ Q (u) such that

u′′(t) = Pn f (t) for a.e. t ∈ I.

We have

〈u, f 〉L = 〈u,Pn f 〉L = 〈
u, u′′〉 � 0.
L
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Therefore, ‖u‖2 � N . From (Q 2)′ and (5.1) it follows that

‖u‖C = max
t∈I

∥∥u(t)
∥∥

H � q
(
1 + N p)

.

Now set R = qN p + q + 1 and define a multimap

Ψn : B(n)
C (0, R) × [0,1] → K

(
C(I, Hn)

)
,

Ψn(u, λ) = Jn ◦ (
δ(1 − λ)u + λQ (u)

)
,

where 0 < δ < 1
N and B(n)

C (0, R) = BC (0, R) ∩ C(I, Hn).
By following the method given in the proof of Theorem 1, one can obtain that Ψn is a completely continuous C J -

multimap which has no fixed points on ∂ B(n)
C (0, R) × [0,1]. Then for sufficiently small δ we have

deg
(
i − Jn ◦ Q , B(n)

C (0, R)
) = deg

(
i − δJn ◦ i, B(n)

C (0, R)
) = deg

(
i, B(n)

C (0, R)
) = 1.

Therefore, there is un ∈ BC (0, R) ∩ ◦
W 2

2(I, Hn) such that u′′
n = Pn Q (un). By virtue of (Q 3) there exists u∗ ∈ BC (0, R) ∩

◦
W 2

2(I, H) such that u′′∗ ∈ Q (u∗). The function u∗ is a solution of problem (5.2). �
As an example, setting Y = C[0,h] and H = W 1

2 [0,h] (h > 0), we can consider the following feedback control system⎧⎪⎨⎪⎩
w ′′(t) = f

(
t, w(t),ϕ(t)

)
for a.e. t ∈ [0,1],

ϕ′(t) ∈ G
(
t,ϕ(t), w(t)

)
for a.e. t ∈ [0,1],

w(0) = w(1) = 0, ϕ(0) = 0,

(5.5)

where f : I × Y × Y → Y is a continuous map and G : I × Y × Y → C v(H) is a multimap.
Assume that the map f and the multimap G satisfy the following conditions:

( f 1)′ the restriction f |I×H×Y takes values in H ;
( f 2)′ for every (y, z) ∈ Y × Y the function f (·, y, z) : I → Y is measurable;
( f 3)′ for a.e. t ∈ I the map f (t, ·,·) : Y × Y → Y is continuous;
( f 4)′ there is c > 0 such that∥∥ f (t, y, z)

∥∥
H � c

(
1 + ‖y‖H + ‖z‖Y

)
,

for all (y, z) ∈ H × Y and a.e. t ∈ I;
(G1)′ for each (y, z) ∈ Y × Y the multifunction G(·, y, z) : I → C v(H) has a measurable selection;
(G2)′ for every t ∈ I the multimap G(t, ·,·) : Y × Y → C v(H) is u.s.c.;
(G3)′ the multimap G is uniformly continuous with respect to the third argument in the following sense: for every ε > 0

there is δ > 0 such that

G(t, y, z̄) ⊂ O ε

(
G(t, y, z)

)
, ∀(t, y) ∈ I × Y

provided ‖z̄ − z‖ < δ;
(G4)′ there is d > 0 such that∥∥G(t, y, z)

∥∥
H � d

(
1 + ‖y‖Y + ‖z‖Y

)
for all (t, y, z) ∈ I × Y × Y .

By a solution to problem (5.5) we mean a function w ∈ ◦
W 2

2(I, H) such that there exists ϕ ∈ W 1
2 (I, H) with

ϕ′(t) ∈ G
(
t,ϕ(t), w(t)

)
for a.e. t ∈ I,

ϕ(0) = 0,

and

w ′′(t) = f
(
t, w(t),ϕ(t)

)
for a.e. t ∈ I.

We will need the following assertion.

Lemma 2. (See Theorem 70.12 [14].) Let E be a separable Banach space and Φ : I × E → K v(E) be a multimap satisfying the following
conditions:

(Φ1) for each y ∈ E the multifunction Φ(·, y) has a measurable selection;
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(Φ2) for every t ∈ I the multimap Φ(t, ·) is completely continuous;
(Φ3) the set Φ(A) is compact for every compact subset A ⊂ I × E;
(Φ4) there is ω ∈ L+

2 [0,1] such that∥∥Φ(t, y)
∥∥

E � ω(t)
(
1 + ‖y‖E

)
,

for all (t, y) ∈ I × E.

Then the set of all solutions to the following problem{
g′(t) ∈ Φ

(
t, g(t)

)
, t ∈ I,

g(0) = g0 ∈ E,

is an Rδ-set in C(I, E).

Theorem 6. Let conditions ( f 1)′–( f 4)′ and (G1)′–(G4)′ hold. Then problem (5.5) can be represented as problem (5.2) with conditions
(Q 1)′–(Q 2)′ and (Q 3).

Proof. Let us mention that Y is a separable space and the embedding H ↪→ Y is compact. From (G4)′ it follows that for
every (t, y, z) ∈ I × Y × Y the set G(t, y, z) is bounded in H , and hence it is a compact set in Y .

For a given function w ∈ C(I, H) consider the following multimap

G w : I × Y → K v(Y ), G w(t, y) = G
(
t, y, w(t)

)
.

It is easy to verify that G w satisfies conditions (Φ1)− (Φ4). Notice that (Φ4) follows from (G4)′ and the fact that for every
y ∈ H the following relation holds:

‖y‖Y � max

{√
h,

1√
h

}
‖y‖H .

So we obtain that for every w ∈ C(I, H) the set Πw of all solutions to the following problem{
ϕ′(t) ∈ G

(
t,ϕ(t), w(t)

)
, t ∈ I,

ϕ(0) = 0

is an Rδ-set in C(I, Y ). Define the multimap

Π : C(I, H) → K
(
C(I, Y )

)
, Π(w) = Πw .

From Theorem 5.2.5 [19] it follows that the multimap Π is upper semicontinuous.
Now set Π̃ : C(I, H) → K (C(I, H) × C(I, Y ))

Π̃(w) = {w} × Π(w),

and f̃ : C(I, H) × C(I, Y ) → L2(I, H),

f̃ (w,ϕ)(t) = f
(
t, w(t),ϕ(t)

)
.

Then problem (5.5) can be written in the form

w ′′ ∈ Q (w),

w(0) = w(1) = 0,

where Q : C(I, H) → K (L2(I, H)), Q (w) = f̃ ◦ Π̃(w).
Now we will show that the multimap Q satisfies conditions (Q 1)′–(Q 2)′ and (Q 3).
In fact, from the continuity of f̃ and the fact that Π̃ belongs to J (C(I, H); C(I, H) × C(I, Y )) it follows that Q ∈

C J (C(I, H); L2(I, H)). So for every n ∈ N the restriction (Jn ◦ Q )|C(I,Hn)
is in C J (C(I, Hn); C(I, Hn)). Hence, condition (Q 1)′

holds. Notice that condition (Q 2)′ immediately follows from ( f 4)′ , (G4)′ and Lemma 1.
Let us verify now the condition (Q 3). Let M ⊂ ◦

W 2
2(I, H) be a bounded closed subset and assume that there are {nk} and

{wk}, wk ∈ M ∩ ◦
W 2

2(I, Hnk ), such that

w ′′
k ∈ Pnk Q (wk).

The set {wk}∞k=1 is bounded, so it is weakly compact. W.l.o.g. assume that

wk

W 2
2−⇀ w0 ∈ M.
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Therefore, w ′′
k

L−⇀ w ′′
0 and wk(t)

H−⇀ w0(t) for every t ∈ I . From the compactness of the embedding H ↪→ Y it follows that

wk(t)
Y−→ w0(t), (5.6)

for every t ∈ I .
Set hk ∈ Q (wk), such that

w ′′
k = Pnk hk.

From (Q 2)′ it follows that the set {Q (wk)}∞k=1 is bounded, hence the set {hk}∞k=1 is bounded in L2(I, H), and therefore it is
weakly compact. W.l.o.g. assume that

hk
L−⇀ h0 ∈ L2(I, H).

Now we will show that Pnk hk
L−⇀ h0. At first we claim that

lim
n→∞Pnh0 = h0.

Indeed, since

L2(I, H) =
∞⋃

n=1

L2(I, Hn),

there are sequences {ñm}∞m=1 ⊂ N and {h̃m}∞m=1, h̃m ∈ L2(I, Hñm
) such that h̃m → h0. We have

‖Pñm
h0 − h0‖2 � ‖Pñm

h0 − Pñm
h̃m‖2 + ‖Pñm

h̃m − h0‖2

� 2‖h̃m − h0‖2 → 0 provided m → ∞.

Further, for n > ñm

‖Pnh0 − Pñm
h0‖2 = ‖Pnh0 − PnPñm

h0‖2 � ‖h0 − Pñm
h0‖2,

and hence

‖Pnh0 − h0‖2 � ‖Pnh0 − Pñm
h0‖2 + ‖Pñm

h0 − h0‖2

� 2‖h0 − Pñm
h0‖2.

Therefore

lim
n→∞Pnh0 = h0.

For all g ∈ L2(I, H) we have

〈Pnk hk − h0, g〉L = 〈Pnk hk − Pnk h0, g〉L + 〈Pnk h0 − h0, g〉L

= 〈hk − h0,Pnk g〉L + 〈Pnk h0 − h0, g〉L

= 〈hk − h0, g〉L + 〈hk − h0,Pnk g − g〉L + 〈Pnk h0 − h0, g〉L .

Thus

lim
k→∞

〈Pnk hk − h0, g〉L = 0.

On the other hand

Pnk hk = w ′′
k

L−⇀ w ′′
0.

So we obtain that w ′′
0 = h0, i.e., hk

L−⇀ w ′′
0.

From hk ∈ Q (wk) it follows that there is a sequence {ϕk}∞k=1, ϕk ∈ Π(wk), such that

hk(t) = f
(
t, wk(t),ϕk(t)

)
for a.e. t ∈ I. (5.7)

Set Ŵ 1
2 (I, H) = {u ∈ W 1

2 (I, H): u(0) = 0}. It is clear that Ŵ 1
2 (I, H) is a subspace of W 1

2 (I, H). The set {ϕk}∞k=1 is bounded in
Ŵ 1

2 (I, H) and so it is weakly compact. W.l.o.g. assume that

ϕk

W 1
2−⇀ ϕ0 ∈ Ŵ 1(I, H).
2
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Therefore

ϕ′
k

L−⇀ ϕ′
0, and ϕk(t)

Y−→ ϕ0(t), for every t ∈ I. (5.8)

From ϕk ∈ Π(wk) it follows that there is {gk}∞k=1 ⊂ L2(I, H) such that

gk(t) ∈ G
(
t,ϕk(t), wk(t)

)
for a.e. t ∈ I,

and

ϕ′
k(t) = gk(t) for a.e. t ∈ I.

So gk
L−⇀ ϕ′

0. By virtue of Mazur’s Lemma (see, e.g., [10]) there are sequences of convex combinations {ĝm} and {ĥm}

ĝm =
∞∑

k=m

λmk gk, λmk � 0 and
∞∑

k=m

λmk = 1,

ĥm =
∞∑

k=m

λ̃mkhk, λ̃mk � 0 and
∞∑

k=m

λ̃mk = 1,

which converge in L2(I, H) to ϕ′
0 and w ′′

0, respectively. Applying Theorem 38 [25] we again can assume w.l.o.g. that

ĝm(t)
H−→ ϕ′

0(t) and ĥm(t)
H−→ w ′′

0(t) (5.9)

for a.e. t ∈ I .
From (5.6), (5.8) and (G2)′ it follows that for every t ∈ I and ε > 0 there is i0 = i0(ε, t) such that

G
(
t,ϕi(t), wi(t)

) ⊂ O H
ε

(
G
(
t,ϕ0(t), w0(t)

))
, for all i � i0.

Then gi(t) ∈ O H
ε (G(t,ϕ0(t), w0(y))) for all i � i0, and hence, from the convexity of the set O H

ε (G(t,ϕ0(t), w0(t))) we have

ĝm(t) ∈ O H
ε

(
G
(
t,ϕ0(t), w0(t)

))
, for all m � i0.

Thus, ϕ′
0(t) ∈ G(t,ϕ0(t), w0(t)) for a.e. t ∈ I , i.e., ϕ0 ∈ Π(w0).

Now from (5.6), (5.8) and ( f 3)′ we have

lim
k→∞

f
(
t, wk(t),ϕk(t)

) = f
(
t, w0(t),ϕ0(t)

)
for a.e. t ∈ I .

So for a.e. t ∈ I and ε > 0 there is τ0 = τ0(ε, t) such that

f
(
t, wτ (t),ϕτ (t)

) ∈ O Y
ε

(
f
(
t, w0(t),ϕ0(t)

))
, for all τ � τ0.

From (5.7) and (5.9) we obtain

w ′′
0(t) = f

(
t, w0(t),ϕ0(t)

)
for a.e. t ∈ I.

So condition (Q 3) holds. �
Now let the map f in (5.5) have the following form:

f
(
t, w(t),ϕ(t)

) = b + aw(t) + f̂
(
t, w(t),ϕ(t)

)
,

where a > 0, b ∈ R.

Theorem 7. Let conditions (G1)′–(G4)′ hold. Assume that the map

f̂ : I × Y × Y → H

satisfies conditions ( f 2)′–( f 4)′ and

( f̂ ) a > c(1 + dr2erd), where r = max{√h, 1√
h
} and c,d are constants from ( f 4)′ and (G4)′ , respectively.

Then problem (5.5) has a solution.



532 N. Van Loi, V. Obukhovskii / J. Math. Anal. Appl. 385 (2012) 517–533
Proof. It is easy to see that the map f satisfies conditions ( f 1)′–( f 4)′ . And hence, from Theorem 6 it follows that the
multimap Q satisfies conditions (Q 1)′ and (Q 2)–(Q 3).

Now for every w ∈ ◦
W 2

2(I, H), choose an arbitrary γ ∈ Q (w). Then there is a function ϕ ∈ Π(w) such that

γ = b + aw + f ∗(w,ϕ),

where f ∗(w,ϕ)(t) = f̂ (t, w(t),ϕ(t)) for t ∈ I .
From ϕ ∈ Π(w) it follows that there exists g ∈ L2(I, H) such that

g(t) ∈ G
(
t,ϕ(t), w(t)

)
for a.e. t ∈ I,

and

ϕ(t) =
t∫

0

g(s)ds t ∈ I.

Therefore

∥∥ϕ(t)
∥∥

H �
t∫

0

∥∥g(s)
∥∥

H ds � d

t∫
0

(
1 + ∥∥ϕ(s)

∥∥
Y + ∥∥w(s)

∥∥
Y

)
ds

� d + dr

1∫
0

∥∥w(s)
∥∥

H ds +
t∫

0

rd
∥∥ϕ(s)

∥∥
H ds.

By virtue of Lemma 1 we obtain

∥∥ϕ(t)
∥∥

H �
(

d + dr

1∫
0

∥∥w(s)
∥∥

H ds

)
erd for all t ∈ I.

Notice that for every s ∈ I: u = w(s) and v = f̂ (s, w(s),ϕ(s)) are elements of H . We have〈
w(s),b + aw(s) + f̂

(
s, w(s),ϕ(s)

)〉
H = 〈u,b + au + v〉H

=
h∫

0

a
(
u2(τ ) + u′2(τ )

)
dτ + b

h∫
0

u(τ )dτ +
h∫

0

(
u(τ )v(τ ) + u′(τ )v ′(τ )

)
dτ

� a‖u‖2
H − b

√
h‖u‖H − ‖u‖H‖v‖H .

So we obtain the following estimation

〈w, γ 〉L =
1∫

0

〈
w(s),b + aw(s) + f̂

(
s, w(s),ϕ(s)

)〉
H ds

�
1∫

0

(
a
∥∥w(s)

∥∥2
H − |b|√h

∥∥w(s)
∥∥

H − ∥∥ f̂
(
s, w(s),ϕ(s)

)∥∥
H

∥∥w(s)
∥∥

H

)
ds

� a‖w‖2
2 − |b|√h‖w‖2 −

1∫
0

∥∥w(s)
∥∥

H c
(
1 + ∥∥w(s)

∥∥
H + ∥∥ϕ(s)

∥∥
Y

)
ds

� (a − c)‖w‖2
2 − (b

√
h + c)‖w‖2 − cr

1∫
0

∥∥w(s)
∥∥

H

∥∥ϕ(s)
∥∥

H ds

� (a − c)‖w‖2
2 − (b

√
h + c)‖w‖2 − cr

(
d + dr

1∫
0

∥∥w(s)
∥∥

H ds

)
erd

1∫
0

∥∥w(s)
∥∥

H ds

�
(
a − c − cdr2erd)‖w‖2 − (

b
√

h + c + cdrerd)‖w‖2 > 0
2
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provided

‖w‖2 >
b
√

h + c + cdrerd

a − c − cdr2erd
.

From Theorem 5 it follows that problem (5.5) has a solution. �
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[3] J. Andres, L. Malaguti, M. Pavlačkova, Strictly localized bounding functions for vector second-order boundary value problems, Nonlinear Anal. 71 (12)

(2009) 6019–6028.
[4] E.P. Avgerinos, N.S. Papageorgiou, N. Yannakakis, Periodic solutions for second order differential inclusions with nonconvex and unbounded multifunc-

tion, Acta Math. Hungar. 83 (4) (1999) 303–314.
[5] M. Benchohra, S.K. Ntouyas, Controllability of second-order differential inclusions in Banach spaces with nonlocal conditions, J. Optim. Theory

Appl. 107 (3) (2000) 559–571.
[6] Y.G. Borisovich, B.D. Gelman, A.D. Myshkis, V.V. Obukhovskii, Introduction to the Theory of Multivalued Maps and Differential Inclusions, second

edition, Librokom, Moscow, 2011 (in Russian).
[7] K. Borsuk, Theory of Retracts, Monografie Mat., vol. 44, PWN, Warszawa, 1967.
[8] Z. Denkowski, S. Migórski, N.S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory, Kluwer Academic Publishers, Boston, MA, 2003.
[9] S. Domachowski, J. Gulgowski, A global bifurcation theorem for convex-valued differential inclusions, Z. Anal. Anwend. 23 (2) (2004) 275–292.

[10] I. Ekeland, R. Temam, Convex Analysis and Variation Problems, North-Holland, Amsterdam, 1979.
[11] L. Erbe, W. Krawcewicz, Existence of solutions to boundary value problems for impulsive second order differential inclusions, Rocky Mountain J.

Math. 22 (2) (1992) 519–539.
[12] L. Erbe, W. Krawcewicz, Boundary value problems for second order nonlinear differential inclusions, in: Qualitative Theory of Differential Equations,

Szeged, 1988, in: Colloq. Math. Soc. Janos Bolyai, vol. 53, North-Holland, Amsterdam, 1990, pp. 163–171.
[13] A. Fonda, Guiding functions and periodic solutions to functional differential equations, Proc. Amer. Math. Soc. 99 (1) (1987) 79–85.
[14] L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, second edition, Springer, Dordrecht, 2006.
[15] S.R. Grace, R.P. Agarwal, D. O’Regan, A selection of oscillation criteria for second-order differential inclusions, Appl. Math. Lett. 22 (2) (2009) 153–158.
[16] Ph. Hartman, Ordinary Differential Equations, Classics Appl. Math., vol. 38, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,

2002. Corrected reprint of the second (1982) edition, Birkhäuser, Boston, MA.
[17] D.M. Hyman, On decreasing sequences of compact absolute retracts, Fund. Math. 64 (1969) 91–97.
[18] S.V. Kornev, V.V. Obukhovskii, On some developments of the method of integral guiding functions, Funct. Differ. Equ. 12 (3–4) (2005) 303–310.
[19] M. Kamenskii, V. Obukhovskii, P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, de Gruyter Ser. Nonlin-

ear Anal. Appl., vol. 7, Walter de Gruyter, Berlin, New York, 2001.
[20] M.A. Krasnosel’skii, The Operator of Translation Along the Trajectories of Differential Equations, Nauka, Moscow, 1966 (in Russian); English translation:

Transl. Math. Monogr., vol. 19, Amer. Math. Soc., Providence, RI, 1968.
[21] M.A. Krasnosel’skii, A.I. Perov, On a principle of the existence of bounded, periodic and almost periodic solutions for the systems of ordinary differential

equations, Dokl. Akad. Nauk 123 (2) (1958) 235–238 (in Russian).
[22] M.A. Krasnosel’skii, P.P. Zabreiko, Geometrical Methods of Nonlinear Analysis, Nauka, Moscow, 1975 (in Russian); English translation: Series of Com-

prehensive Studies in Math., vol. 263, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1984.
[23] S. Kyritsi, N. Matzakos, N.S. Papageorgiou, Periodic problems for strongly nonlinear second-order differential inclusions, J. Differential Equations 183 (2)

(2002) 279–302.
[24] A.D. Myshkis, Generalizations of the theorem on a fixed point of a dynamical system inside of a closed trajectory, Mat. Sb. 34 (3) (1954) 525–540

(in Russian).
[25] L. Schwartz, Cours d’Analyse. 1, second edition, Hermann, Paris, 1981.


	On the existence of solutions for a class of second-order differential inclusions and applications
	1 Introduction
	2 Preliminaries
	3 The existence problem
	4 Applications
	4.1 Feedback control system
	4.2 A model of a motion of a particle in a 1-dimensional potential

	5 Generalization to the case of an inﬁnite-dimensional Hilbert space
	Acknowledgments
	References


