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In this paper, we consider a periodic generalized Hunter–Saxton equation. We obtain the
existence of global weak solutions to the equation. First, we give the well-posedness result
of the viscous approximate equations and establish the basic energy estimates. Then, we
show that the limit of the viscous approximation solutions is a global weak solution to the
equation.
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1. Introduction

In this paper we consider the Cauchy problem of the following periodic generalized Hunter–Saxton equation:⎧⎨
⎩

μ(ut) − utxx = −2μ(u)ux + 2uxuxx + uuxxx, t > 0, x ∈ R,

u(t, x + 1) = u(t, x), t � 0, x ∈R,

u(0, x) = u0(x), x ∈R,

(1.1)

where u = u(t, x) is a time-dependent function on the unit circle S = R/Z and μ(u) = ∫
S

u dx denotes its mean. The equation
lies ‘mid-way’ between the periodic Hunter–Saxton and Camassa–Holm equations, and describes evolution of rotators in
liquid crystals with external magnetic and self-interaction [14].

In [14], they proved that Eq. (1.1) is the Euler equation on the diffeomorphism group of the circle corresponding to a
natural right-invariant Sobolev metric. They showed that Eq. (1.1) is bi-Hamiltonian and admits both cusped and smooth
traveling-wave solutions which are natural candidates for solitons. They also proved that Eq. (1.1) is locally well-posed and
has blowing-up solutions and global solutions with non-negative angular momentum density. Fu et al. investigated the
blow-up phenomena and blow-up rate in [8]. According to [8,14], the periodic generalized Hunter–Saxton equation is the
periodic generalized Camassa–Holm equation.

The Camassa–Holm equation can be regarded as a shallow water wave equation [3]. It has a bi-Hamiltonian structure [7]
and is completely integrable [5]. Obviously, if μ(u) = 0, which implies μ(ut) = 0, then this equation reduces to the Hunter–
Saxton equation describing the director field of a nematic liquid crystal [10], which is a short wave limit of the Camassa–
Holm equation. The Hunter–Saxton equation has also a bi-Hamiltonian structure [10,17] and is completely integrable [1,11].
Yin studied the periodic Hunter–Saxton in [20]. He proved the local existence of strong solutions of the periodic Hunter–
Saxton equation and showed that all strong solutions except space-independent solutions blow up in finite time. Recently,
Wei and Yin also studied the periodic Hunter–Saxton equation with weak dissipation [18].

Recently, global dissipative and conservative weak solutions for the initial boundary value problem of the classical
Hunter–Saxton equation on the half-line were investigated extensively, cf. [2,11,12,15,21–23]. The authors in [12,15,23] con-
structed the viscous approximate solution sequence by zero-viscosity method.
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The aim of this paper is to prove the existence of global weak solutions to generalized Hunter–Saxton equation (1.1).
Thus, we have to use the viscous approximation method [4,12,15,19,23] and the theory L p Young measure [15,19] to prove
the existence of global weak solutions to Eq. (1.1).

By reformulating Eq. (1.1), we write Eq. (1.1) as follows:⎧⎪⎪⎨
⎪⎪⎩

ut + uux + ∂x A−1
(

2μ(u)u + 1

2
u2

x

)
= 0, t > 0, x ∈R,

u(t, x + 1) = u(t, x), t � 0, x ∈ R,

u(0, x) = u0(x), x ∈R,

(1.2)

where A = μ − ∂2
x is an isomorphism between Hs(S) and Hs−2(S) with the inverse v = A−1(w) given explicitly by

v(x) =
(

x2

2
− x

2
+ 13

12

)
μ(w) +

(
x − 1

2

) 1∫
0

y∫
0

w(s)ds dy

−
x∫

0

y∫
0

w(s)ds dy +
1∫

0

y∫
0

s∫
0

w(r)dr ds dy. (1.3)

Since A−1 and ∂x commute, the following identities hold

A−1∂x w(x) =
(

x − 1

2

) 1∫
0

w(x)dx −
x∫

0

w(y)dy +
1∫

0

x∫
0

w(y)dy dx, (1.4)

and

A−1∂2
x w(x) = −w(x) +

1∫
0

w(x)dx. (1.5)

If we write the inverse of the operator A = μ−∂2
x in terms of a Green’s function, we find (A−1m)(x) = ∫ 1

0 g(x−x′)m(x′)dx′ =
(g ∗ m)(x). Eq. (1.2) is equivalent to⎧⎪⎪⎨

⎪⎪⎩
ut + uux + ∂x g ∗

(
2μ(u)u + 1

2
u2

x

)
= 0, t > 0, x ∈R,

u(t, x + 1) = u(t, x), t � 0, x ∈R,

u(0, x) = u0(x), x ∈R,

(1.6)

where the Green’s function g(x) [8] is given by

g(x) = 1

2
x(x − 1) + 13

12
, for x ∈ [0,1) � S1, (1.7)

and is extended periodically to the real line. In other words,

g
(
x − x′) = (x − x′)2

2
− |x − x′|

2
+ 13

12
, for x, x′ ∈ [0,1) � S1. (1.8)

In particular, μ(g) = 1.
In the current paper, the existence of global weak solutions to generalized Hunter–Saxton equation (1.1) was investigated.

Firstly, Eq. (1.1) has been added the terms μ(u) and μ(ut), this leads to the essential difficulty comparing for the classical
Hunter–Saxton equation. Secondly, [15] discussed the case of half-space; nevertheless we consider the case of circle. Thirdly,
the existence of global weak solutions to Eq. (1.1) has not been discussed, the result is new.

Motivated by this, we first introduce the definition of a weak solution to the Cauchy problem (1.2).

Definition 1.1. u is a dissipative weak solution to the Cauchy problem (1.2) if

u(t, x) ∈ L∞
loc

(
(0,∞); H1(S)

)
satisfies Eq. (1.2) and u(t, ·) → u0 as t → 0+ in the sense of distributions on R+ ×R. Moreover,∫

S

u2
x(t, x)dx �

∫
S

u2
0,x(x)dx. (1.9)
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Therefore in this paper, the main result is to give the existence of a globe-in-time weak solution u to the Cauchy problem
(1.2) with the initial u0 ∈ H1(S). The main result is as follows:

Theorem 1.1. Let u0 ∈ H1(S). Then Eq. (1.2) has a dissipative weak solution in the sense of Definition 1.1.

Remark 1.1. There are global strong solutions of the classical Hunter–Saxton equation in [20], but the strong solutions are
not unique. Therefore, one cannot prove the uniqueness of dissipative weak solutions.

The organization of the paper is as follows. In Section 2, we give the well-posedness result of the viscous approximate
to Eq. (1.2) and establish the basic energy estimate on uε . In Section 3, the uniform a priori one-sided super-norm estimate
and local space–time higher integrability estimate for ∂xuε are established. In Section 4, the strong convergence of ∂xuε in
L2

loc(R+ × S) is carried out and we complete the proof of the main result.

2. Viscous approximate solutions

In this section, we construct the approximate solution sequence uε = uε(t, x). Hence, we consider the viscous problem
of Eq. (1.3) as follows:⎧⎪⎪⎨

⎪⎪⎩
(uε)t + uε(uε)x + ∂x g ∗

(
2μ(uε)uε + 1

2
(uε)

2
x

)
= ε(uε)xx, t > 0, x ∈ R,

uε(t, x + 1) = uε(t, x), t � 0, x ∈R,

uε(0, x) = uε,0(x), x ∈R,

(2.1)

or the equivalent form:⎧⎪⎪⎨
⎪⎪⎩

(uε)t + uε(uε)x = −∂x A−1
(

2μ(uε)uε + 1

2
(uε)

2
x

)
= ε(uε)xx, t > 0, x ∈R,

uε(t, x + 1) = uε(t, x), t � 0, x ∈R,

uε(0, x) = uε,0(x), x ∈R,

(2.2)

where uε,0(x) = (φε ∗ u0)(x), and

φε(x) :=
(∫

R

φ(ξ)dξ

)−1 1

ε
φ

(
x

ε

)
, x ∈R, ε > 0,

where φ ∈ C∞
c (R) is defined by

φ(x) =
{

e1/(x2−1), |x| < 1,

0, |x| � 1.

Then, we have

‖uε,0‖L2(S) � ‖u0‖L2(S),
∥∥(uε)0,x

∥∥
L2(S)

� ‖u0,x‖L2(S)

and

uε,0 → u0, in H1(S).

Integrating both sides of Eq. (2.1) over the circle and using periodicity imply that μ(uε)t = μ(uεt) = 0. Moreover, for the
sake of convenience, let

μ(uε) =
∫
S

uε dx = μ(uε,0) =
∫
S

uε,0 dx,

and

aε(t) = 1

2

∫
S

(uε)
2
x dx, aε,0 = 1

2

∫
S

(uε)
2
0,x dx.

Differentiating Eq. (2.2) with respect to x yields

(uε)tx + (uε)
2
x + uε(uε)xx = −A−1∂2

x

(
2μ(uε,0)uε + 1

(uε)
2
εx

)
+ ε(uε)xxx,
2
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in view of (1.5), we have

(uε)tx = −1

2
(uε)

2
x − uε(uε)xx + 2μ(uε,0)uε − 2μ2(uε,0) − aε(t) + ε(uε)xxx. (2.3)

The existence, uniqueness, and basic energy estimate on this approximate solution of (2.1) are given in the following
theorem. We first recall the following three lemmas.

Lemma 2.1. (See [13].) If r > 0, then Hr(S) ∩ L∞(S) is an algebra. Moreover

‖ f g‖Hr(S) � c
(‖ f ‖L∞(S)‖g‖Hr(S) + ‖ f ‖Hr(S)‖g‖L∞(S)

)
,

where c is a constant depending only on r.

Lemma 2.2. (See [13].) If r > 0, then∥∥[
Λr, f

]
g
∥∥

L2(S)
� c

(‖∂x f ‖L∞(S)

∥∥Λr−1 g
∥∥

L2(S)
+ ∥∥Λr f

∥∥
L2(S)

‖g‖L∞(S)

)
,

where c is a constant depending only on r.

Lemma 2.3. (See Appendix C of [16].) Let X be a separable reflexive Banach space and let f n be bounded in L∞(0, T ; X) for some T ∈
(0,∞). We assume that f n ∈ C([0, T ]; Y ) where Y is a Banach space such that X ↪→ Y , Y ′ is separable and dense in X ′ . Furthermore,
(φ, f n(t))Y ′×Y is uniformly continuous in t ∈ [0, T ] and uniformly in n � 1. Then f n is relatively compact in C w([0, T ]; X), the space
of continuous functions from [0, T ] with values in X when the latter space is equipped with its weak topology.

Remark 2.1. If the conditions which f n satisfies in Lemma 2.3 are replaced by the following conditions:

f n ∈ L∞(0, T ; X), ∂t f n ∈ Lp(0, T ; Y ) for some p ∈ (1,∞),

and ∥∥ f n
∥∥

L∞(0,T ;X)
,
∥∥∂t f n

∥∥
L p(0,T ;Y )

� C, ∀n � 1,

then the conclusion of Lemma 2.3 holds true.

Theorem 2.1. Let ε > 0 and uε,0 ∈ Hs(S), s � 2. Then there exists a unique uε ∈ C(R+; Hs(S))∩C1(R+; Hs−1(S)), s � 2, to Eq. (2.1).
Moreover, for each t � 0,

∫
S

(
∂uε

∂x

)2

+ 2ε

t∫
0

∫
S

(
∂2uε

∂x2

)2

(s, x)dx ds = ∥∥(uε)0,x
∥∥2

L2(S)
� ‖u0,x‖2

L2(S)
. (2.4)

For the convenience of presentation, we will omit the subscripts in uε in the following proof.

Proof of Theorem 2.1. First, following the standard argument for a nonlinear parabolic equation, we can obtain that for u0 ∈
Hs(S), s � 2, there exists a positive constant T > 0 such that Eq. (2.2) has a unique solution u = u(t, x) ∈ C([0, T ]; Hs(S)) ∩
C1([0, T ]; Hs−1(S)).

Second, we show that if T is the maximal existence time of the corresponding solution u(t, x) of Eq. (2.2) with the initial
data u0, then the Hs(S)-norm of u(t, ·) blows up if and only if

lim sup
t→T

∥∥ux(t, ·)
∥∥

L∞(S)
= ∞.

Multiplying Eq. (2.3) by ux and integrating over S, we obtain

d

dt

∫
S

u2
x(t, x)dx = −2ε

∫
S

u2
xx dx.

Integrating the above inequality over (0, t), we get

∥∥ux(t, ·)
∥∥2

L2(S)
+ 2ε

t∫ ∫
u2

xx dx dt = ‖u0,x‖2
L2(S)

≡ 2aε,0. (2.5)
0 S
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Applying the operator Λs to Eq. (2.2), multiplying by Λsu, and integrating over S, we observe that

d

dt
‖u‖2

Hs(S) = −2(uux, u)s + 2

(
u,−∂x A−1

(
2μ(u0)u + 1

2
u2

x

))
s
+ 2ε(uxx, u)s.

By a direct calculation and Lemma 2.2 with r = s, we get∣∣(uux, u)s
∣∣ = ∣∣(Λs(u∂xu),Λsu

)
0

∣∣
= ∣∣([Λs, u

]
∂xu,Λsu

)
0 + (

uΛs∂xu,Λsu
)

0

∣∣
�

∥∥[
Λs, u

]
∂xu

∥∥
L2

∥∥Λsu
∥∥

L2 + 1

2

∣∣(uxΛ
su,Λsu

)
0

∣∣
�

(
c‖ux‖L∞ + 1

2
‖ux‖L∞

)
‖u‖2

Hs

� c‖ux‖L∞‖u‖2
Hs .

By (1.5) and Lemma 2.2 with r = s − 1, we have∥∥A−1∂xu
∥∥

Hs(S)
= (∥∥A−1∂xu

∥∥
L2(S)

+ ∥∥∂x A−1∂xu
∥∥

Hs−1(S)

)
� 3‖u‖L2(S) +

∥∥∥∥−u +
∫
S

u dx

∥∥∥∥
Hs−1(S)

� 3‖u‖L2(S) + 2‖u‖Hs−1(S) = 5‖u‖Hs(S),

and ∥∥A−1∂xu2
x

∥∥
Hs(S)

� 5
∥∥u2

x

∥∥
Hs(S)

� 5‖ux‖L∞(S)‖u‖Hs(S).

It follows that∣∣(u, A−1∂xu
)

Hs(S)

∣∣ � c‖u‖Hs(S)

∥∥A−1∂xu
∥∥

Hs(S)
� c‖u‖2

Hs(S),

and ∣∣(u, A−1∂xu2
x

)
Hs(S)

∣∣ � c‖u‖Hs(S)

∥∥A−1∂xu2
x

∥∥
Hs(S)

� c‖ux‖L∞(S)‖u‖2
Hs(S).

In view of the above estimates, we obtain

2

(
u,−∂x A−1

(
2μ(u0)u + 1

2
u2

x

))
s
� c

(
1 + ‖ux‖L∞(S)

)‖u‖2
Hs(S).

By 2ε(uxx, u)s = −2ε‖ux‖Hs(S) � 0, we get

d

dt
‖u‖2

Hs(S) � c
(
1 + ‖ux‖L∞(S)

)‖u‖2
Hs(S).

Gronwall’s inequality and the assumption of the theorem yield

‖u‖2
Hs(S) � exp

(
c

t∫
0

(
1 + ‖ux‖L∞(S)

)
ds

)
‖u0‖2

Hs(S).

Then, we have the second conclusion.
Next, we derive the a priori bound on ‖ux(t, ·)‖L∞(S) . In view of (2.4) and Eq. (2.2), we deduce that

d

dt

∫
S

u2(t, x)dx = −2
∫
S

u∂x A−1
(

2μ(u0)u + 1

2
u2

x

)
dx + ε

∫
S

uuxx dx

�
∫
S

u2 dx +
∫
S

(
∂x A−1

(
2μ(u0)u + 1

2
u2

x

))2

dx

=
∫

u2 dx +
∫ (

gx ∗
(

2μ(u0)u + 1

2
u2

x

))2

dx
S S
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�
∫
S

u2 dx + ‖gx‖2
L2(S)

∥∥∥∥2μ(u0)u + 1

2
u2

x

∥∥∥∥
2

L1(S)

�
(
8μ2(u0) + 1

)∫
S

u2(t, x)dx + a2
ε,0,

where we used ‖gx‖L2(S) � 1. By Gronwall’s inequality we have

∫
S

u2(t, x)dx � e(8μ2(u0)+1)t
(∫

S

u2
0 dx + a2

ε,0

)
. (2.6)

In view of (2.5)–(2.6), we have∥∥u(t, ·)∥∥H1(S)
�

√
C(t), (2.7)

where C(t) = e(8μ2(u0)+1)t(
∫
S

u2
0 dx + a2

ε,0) + 2aε,0. Sobolev’s imbedding theorem yields

∥∥u(t, ·)∥∥L∞(S)
� 13

12

√
C(t) ≡ C1(t). (2.8)

Due to (2.8) and the Sobolev inequality, we only need to derive an a priori estimate on ‖uxx(t, ·)‖L2(S) . In view of Eq. (2.3),
we get

d

dt

∥∥uxx(t, ·)
∥∥2

L2(S)
+ 2ε

∥∥uxxx(t, ·)
∥∥2

L2(S)
= 6

∫
S

uuxxuxxx dx.

Integrating over (0, t), we have

∥∥uxx(t, ·)
∥∥2

L2(S)
+ 2ε

t∫
0

∥∥uxxx(s, ·)∥∥2
L2(S)

ds = 6

t∫
0

∫
S

uuxxuxxx dx ds + ∥∥u0,xx(t, ·)
∥∥2

L2(S)

� ε

t∫
0

∫
S

u2
xxx dx ds + C(ε)C2

1(t)

t∫
0

∫
S

u2
xx dx ds + ∥∥u0,xx(t, ·)

∥∥2
L2(S)

.

Then, from (2.5) we obtain

∥∥uxx(t, ·)
∥∥2

L2(S)
+ ε

t∫
0

∥∥uxxx(s, ·)∥∥2
L2(S)

ds � C(ε)

ε
C2

1(t)aε,0 + ∥∥u0,xx(t, ·)
∥∥2

L2(S)
.

Combing this with (2.7), we show that there exists a positive constant C2(ε, t,‖u0,xx(t, ·)‖L2(S)) such that

‖ux‖L∞(S) � C‖u‖H2(S) � C2(t) < +∞, ∀t > 0.

Finally, the global existence solution follows from these a priori estimates and the standard continuation argument.
Furthermore, (2.4) holds on [0,∞). This completes the proof of Theorem 2.1. �
Remark 2.2. For given ε > 0, we set aε(t) = 1

2

∫
S
(uε)

2
x dx, aε,0 = 1

2

∫
S
(uε)

2
0,x dx and a0 = 1

2 ‖u0,x‖2
L2(S)

. Then from the proof of

Theorem 2.1, we see that

aε(t) + ε

t∫
0

∫
S

(uε)
2
xx dx dt � aε,0 = 1

2

∥∥(uε)0,x
∥∥2

L2(S)
� 1

2
‖u0,x‖2

L2(S)
≡ a0.

3. Uniform a priori estimates

In this section, we derive the uniform one-sided super-norm estimate and the space–time higher integrability estimates
on ∂xuε(t, x), which are essential for our compactness argument. We denote qε(t, x) = ∂xuε(t, x) in the following text.
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Lemma 3.1. For fixed T > 0, ∀(t, x) ∈ (0, T ] × S, we have

∂xuε(t, x) � 2

t
+ √

2K (T ). (3.1)

Proof. From Eqs. (2.3) and (2.7), we get

∂tqε + uε∂xqε + 1

2
q2
ε − ε∂2

x qε = 2μ(uε,0)uε − 2μ2(uε,0) − aε(t)

� C1(T ) + 2μ2(uε,0) + a0 ≡ K (T ). (3.2)

Let fε = fε(t) be the solution of

∂t fε + 1

2
f 2
ε = K (T ), fε(0) = ∥∥(uε)0,x

∥∥2
L∞(S)

. (3.3)

The comparison principle for parabolic equations yields

qε(t, x) � fε(t), ∀(t, x) ∈ (0, T ] × S.

Consider the map F (t) := 2
t + √

2K (T ), t ∈ [0, T ]. One observes that ∂t F + 1
2 F 2 − K (T ) = 2

√
2K (T )
t > 0, so that F (t) is a

super-solution of (3.3). Therefore, the estimate (3.1) holds. �
Lemma 3.2. Let 0 < α < 1, T > 0. Then there exists a positive constant C depending only on ‖u0‖H1(S) and T , but independent of ε ,
such that

T∫
0

∫
S

∣∣∂xuε(t, x)
∣∣2+α � C . (3.4)

Proof. Consider the map θ(ξ) := ξ(|ξ | + 1)α , ξ ∈ R, which was introduced in [4]. Obviously,

θ ′(ξ) = (
(α + 1)|ξ | + 1

)(|ξ | + 1
)α−1

,∣∣θ(ξ)
∣∣ � |ξ |α+1 + |ξ |, 0 < θ ′(ξ) � (α + 1)|ξ | + 1,

∣∣θ ′′(ξ)
∣∣ � 2α, (3.5)

and

ξθ(ξ) − 1

2
ξ2θ ′(ξ) � 1 − α

2
ξ2(|ξ | + 1

)α
. (3.6)

Multiplying (3.2) by θ ′(qε) and integrating over
∏

T := [0, T ] × S, we obtain∫
∏

T

qεθ(qε)dx dt − 1

2

∫
∏

T

q2
εθ

′(qε)dx dt =
∫
S

(
θ
(
qε(T , x)

) − θ
(
qε(0, x)

))
dx +

∫
∏

T

(
aε(t) + 2μ2(uε,0)

)
θ ′(qε)dx dt

− 2
∫

∏
T

μ(uε,0)uεθ
′(qε)dx dt + ε

∫
∏

T

(
∂qε

∂x

)2

θ ′′(qε)dx dt. (3.7)

By (3.6), we observe that∫
∏

T

qεθ(qε)dx dt − 1

2

∫
∏

T

q2
εθ

′(qε)dx dt =
∫

∏
T

(
qεθ(qε) − 1

2
q2
εθ

′(qε)

)
dx dt

� 1 − α

2

∫
∏

T

q2
ε

(|qε | + 1
)α

dx dt. (3.8)

In view of 0 < α < 1, the first part of (3.5) and (2.5), using Hölder’s inequality, we get∫
S

θ(qε)dx �
∫
S

(|qε |α+1 + |qε |
)

dx

�
∥∥qε(t, ·)

∥∥α+1
2 + ∥∥qε(t, ·)

∥∥
2 � ‖u0‖α+1

1 + ‖u0‖H1(S). (3.9)
L (S) L (S) H (S)
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By the second part of (3.5) and Remark 2.1, we obtain∫
∏

T

(
aε(t) + 2μ2(uε,0)

)
θ ′(qε)dx dt �

(
2aε,0 + 2μ2(uε,0)

) ∫
∏

T

(|qε | + 1
)

dx dt

�
(
2aε,0 + 2μ2(uε,0)

)(‖u0‖H1(S) + 1
)
T . (3.10)

From (2.7) and the second part of (3.5), we have

2
∫

∏
T

μ(uε,0)uεθ
′(qε)dx dt � 2μ(uε,0)C1(t)

(‖u0‖H1(S) + 1
)
T . (3.11)

Using (2.4) and the third part of (3.5), we deduce that

ε

∣∣∣∣
∫

∏
T

(
∂qε

∂x

)2

θ ′′(qε)dx dt

∣∣∣∣ � 2αε

∣∣∣∣
∫

∏
T

(
∂qε

∂x

)2

dx dt

∣∣∣∣ � α‖u0‖2
H1(S)

. (3.12)

From (3.7)–(3.12), we see that there exists a constant c > 0 depending only on ‖u0‖H1(S) , α and T > 0, but independent
of ε , such that

1 − α

2

∫
∏

T

q2
ε

(|qε | + 1
)α

dx dt � c.

Then
T∫

0

∫
S

∣∣∣∣∂uε

∂x
(t, x)

∣∣∣∣
2+α

dx dt �
∫

∏
T

q2
ε

(|qε | + 1
)α

dx dt � 2c

1 − α
.

This completes the proof of Lemma 3.2. �
4. Precompactness

In this section, we are now ready to obtain the necessary compactness of the viscous approximate solution uε(t, x). We
start with the weak compactness in L∞

loc(R+, H1(S)). For convenience, we denote qε = ∂xuε and με = 1
2

∫
S

q2
ε dx.

Lemma 4.1. Under the assumption of Theorem 1.1, there exist a subsequence {uεk (t, x),aεk (t)} of the sequence {uε(t, x),aε(t)} and
functions u(t, x), a(t) with u ∈ L∞

loc(R+, H1(S)) and 0 � a(t) � a0 such that

uεk → u as k → ∞,

uniformly on any compact subset of R+ ×R, and

aε → a in Lp(0, T ), as k → ∞,

for any 1 � p < ∞.

Proof. For any fixed T > 0, we claim that {uε(t, x)} is uniformly bounded in L∞((0, T ), H1(S)). From Theorem 2.1, we have

‖uεuεx‖L2((0,T )×S) � C1(t)‖uεx‖L2((0,T )×S) � 2C1(T )aε,0,

and ∥∥∥∥gx ∗
(

2μ(uε,0)uε + 1

2
u2

εx

)∥∥∥∥
2

L2((0,T )×S)

=
T∫

0

∥∥∥∥gx ∗
(

2μ(uε,0)uε + 1

2
u2

εx

)
(t, ·)

∥∥∥∥
2

L2(S)

dt

�
T∫

0

‖gx‖2
L2(S)

∥∥∥∥2μ(uε,0)uε + 1

2
u2

εx

∥∥∥∥
2

L1(S)

dt

�
T∫

0

(
8μ2(uε,0)

∫
S

u2
ε dx + 1

2

(∫
S

u2
εx dx

))2

dt

� T
(
8μ2(uε,0)C1(T ) + a2 )

,
ε,0
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and by Eq. (2.1) we have {∂t uε(t, x)} is uniformly bounded in L2((0, T ) × S). Thus, by Lemma 2.3, there exist u ∈
L∞

loc(R+, H1(S)) and a subsequence {uεk (t, x)} such that {uεk (t, x)} is weakly compact in L∞([0, T ], H1(S)) and {uε(t, x)}
converges to u(t, x) in the space H1((0, T ) × S). Moreover, u(t, x) is a continuous function.

Next, we turn to the compactness of {aε(t)}. Since {aε(t)} are uniformly bounded on R+ , so they are uniformly bounded
in L1(0, T ). In view of Theorem 2.1, we have | d

dt aε | = ε
∫
S

u2
ε,xx dx are uniformly bounded in L1(0, T ). Thus, we deduce that

{aε} ∈ W 1,1(0, T ). Furthermore, by Sobolev’s compact imbedding theorem W 1,1(0, T ) ↪→↪→ L P (0, T ), 1 � p < +∞, there
exist a(t) ∈ L p(0, T ) and a subsequence {aεk (t)} such that aεk → a(t) in L p(0, T ), for any 1 < p < ∞. This completes the
proof of Lemma 4.1. �
Remark 4.1. Let μ(uε) = ∫

S
uεdx. From Lemma 4.1, we see that

μ(uε) = μ(uε,0) → μ0 =
∫
S

u0 dx.

Remark 4.2. From Lemmas 3.2 and 4.1, we can deduce that there exist two functions q ∈ L p
loc(R+ ×R) and q2 ∈ Lr

loc(R+ ×R)

such that

qεk ⇀ q in Lp
loc(R+ ×R), q2

εk
⇀ q2 in Lr

loc(R+ ×R), (4.1)

for every 1 < p < 3, 1 < r < 3
2 . Moreover,

q2(t, x) � q2(t, x), a.e. (t, x) ∈ R+ ×R. (4.2)

In view of (4.1), we conclude that for any η ∈ C1(R) with η′ bounded, Lipschitz continuous on R, η(0) = 0 and any
1 < p < 3, we have

η(qεk ) ⇀ η(q) in Lp
loc(R+ ×R). (4.3)

Lemma 4.2. There exist a subsequence of the solution sequence qε ≡ ∂xuε , and a family Young measure μt,x(λ), such that for any
continuous functions f (t, x, λ) = O (|λ|r), and ∂λ f (t, x, λ) = O (|λ|r−1) as |λ| → ∞ for r < 2, and for any ψ(x) ∈ Ls

c(R) with 1
s +

r
2 = 1, we have

lim
ε→0+

∫
R

f
(
t, x,qε(t, x)

)
ψ(x)dx =

∫
R

f (t, x,q)ψ(x)dx, (4.4)

uniformly on each compact subset of [0,∞), where

f (t, x,q) :=
∫
R

f (t, x, λ)dμt,x(λ) ∈ C
([0,∞), L

r′
r (R)

loc

)
, (4.5)

for any r′ ∈ (r,2). Moreover, for any T > 0, there hold

lim
ε→0+

T∫
0

∫
R

g(t, x,qε)ϕ dx dt =
T∫

0

∫
R

g(t, x,q)ϕ dx dt, (4.6)

where the continuous function g(t, x, λ) = O (|λ|ι), as |λ| → ∞ for some ι < 3 and ϕ(t, x) ∈ Lm(Q T ) with ι
3 + 1

m < 1. In addition,

λ ∈ Lι
loc

(
R

+ ×R×R,dt ⊗ dx ⊗ dμt,x(λ)
)
. (4.7)

Proof. The proof is similar to that of Lemma 3 in [19]. �
Theorem 4.1. Let μt,x(λ) be the Young measure given in Lemma 4.2. Then

μt,x(λ) = δq(t,x)(λ) for a.e. (t, x) ∈R
+ ×R.
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Proof. Step 1: Multiplying Eq. (2.3) by η′(qε), we get

∂

∂t
η(qε) + ∂

∂x

(
uεη(qε)

) = qεη(qε) − 1

2
q2
εη

′(qε) + 2μ(uε,0)uεη
′(qε)

− (
aε + 2μ2(uε,0)

)
η′(qε) + ε∂x

(
η′(qε)∂xqε

) − εη′′(qε)(∂xqε)
2.

Note that {√ε∂xqε} is uniformly bounded in L2(R+ × S) due to Theorem 2.1. Taking ε → 0, by Lemma 4.1, Remark 4.1 and
(4.3) we obtain

∂η(q)

∂t
+ ∂

∂x

(
uη(q)

)
� qη(q) − 1

2
q2η′(q) + 2μ0uη′(q) − (

a + 2μ2
0

) · η′(q), (4.8)

in the sense of distributions on R+ × S, here f is the limit of fεk in the sense of distributions on R+ × S.
Step 2: Using Eq. (2.3), Lemma 4.1 and Remarks 4.1–4.2, letting ε → 0, we have

∂q

∂t
+ u

∂

∂x
q = 1

2
q2 − q2 + 2μ0u − 2μ2

0 − a, (4.9)

in the sense of distributions on R+ ×R.
Denote qε(t, x) := (q(t, ·) ∗ φε)(x). According to Lemma II.1 of [6], it follows from (4.9) that qε solves

∂qε

∂t
+ u

∂qε

∂x
=

(
1

2
q2 − q2 + 2μ0u − 2μ2

0 − a

)
∗ φε + τε, (4.10)

where the error τε tends to zero in L1
loc(R+ ×R). Multiplying (4.10) by η′(qε), we get

∂η(qε)

∂t
+ ∂

∂x

(
uη

(
qε

)) =
((

1

2
q2 − q2 + 2μ0u − 2μ2

0 − a

)
∗ φε

)
η′(qε

) + qη
(
qε

) + τεη
′(qε

)
. (4.11)

Using the boundedness of η, η′ and sending ε → 0 in (4.11), we obtain

∂η(q)

∂t
+ ∂

∂x

(
uη(q)

) = qη(q) +
(

−q2 + 1

2
q2 + 2μ0u − 2μ2

0 − a

)
η′(q). (4.12)

Subtracting (4.12) from (4.8) yields

∂

∂t

(
η(q) − η(q)

) + ∂

∂x

(
u
(
η(q) − η(q)

))
�

∫
R

{
λη(λ) − 1

2
η′(λ)λ2

}
dμt,x(λ)

+ 1

2
η′(q)q2 − qη(q) − 1

2
η′(q)

(
q2 − q2) + (

2μ0u − 2μ2
0 − a

)
η′(q). (4.13)

Next we will apply (4.13) to a family of suitably chosen E’s to deduce that the Young measure μt,x(λ) must be a Dirac
measure.

Step 3: Define

h+ = max(h,0), h− = min(h,0),

ηR(λ) =
{ 1

2 λ2, |λ| � R,

R|λ| − 1
2 R2, |λ| > R,

η+
R (λ) := ηR(λ)χ[0,∞)(λ), η−

R (λ) := ηR(λ)χ(−∞,0](λ),

then

η+
R (λ) = 1

2
(λ+)2 − 1

2
(R − λ)2χ(R,∞)(λ),

(
η+

R

)′
(λ) = λ+ + (R − λ)χ(R,∞)(λ), (4.14)

η−
R (λ) = 1

2
(λ−)2 − 1

2
(R + λ)2χ(−∞,−R)(λ),

(
η−

R

)′
(λ) = λ− − (R + λ)χ(−∞,−R)(λ). (4.15)

By Lemma 2.4 and results in [4] or [19], for each R > 0 we have

lim
t→0+

∫ (
η±

R (q)(t, x) − η±
R

(
q(t, x)

))
dx = 0.
S
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Similar to the arguments in [9], there holds

lim
t→0+

∫
S

q2(t, x)dx = lim
t→0+

∫
S

q2(t, x)dx =
∫
S

u2
0,x(x)dx. (4.16)

Step 4: We now apply (4.13) to the entropy η+
R to obtain

∂

∂t

(
η+

R (q) − η+
R (q)

) + ∂

∂x

(
u
[
η+

R (q) − η+
R (q)

])
� R

2

{∫
R

λ(λ − R)χ(R,+∞) dμt,x(λ) − q(q − R)χ(R,+∞)

}

− 1

2

(
q2 − q2)(η+

R

)′
(q) − (

a + 2μ2
0 − 2μ0u

)((
η+

R

)′
(q) − (

η+
R

)′
(q)

)
. (4.17)

Since η+
R is increasing, by (4.2), we get

−1

2

(
q2+ − q2+

)(
η+

R

)′
(q) � 0. (4.18)

Note that both q(t, x) and qε(t, x) are bounded above by 2
t + √

2K (T ). Thus supμt,x(·) ⊂ (−∞, 2
t + √

2K (T )). Hence for
R > 2

t + √
2K (T ), i.e. R − √

2K (T ) < t < T , (4.17) becomes

∂

∂t

(
η+

R (q) − η+
R (q)

) + ∂

∂x

(
u
[
η+

R (q) − η+
R (q)

])
� −1

2

(
q2 − q2)(η+

R

)′
(q) − (

a + 2μ2
0 − 2μ0u

)((
η+

R

)′
(q) − (

η+
R

)′
(q)

)
. (4.19)

Let ΩR := ( 2
R−√

2K (T )
, T ) ×R. In view of (4.14), we obtain

η+
R (q) − η+

R (q) = 1

2
(q+)2 − 1

2
(q+)2 − 1

2

{∫
R

(λ − R)2χ(R,+∞) dμt,x(λ) − (q − R)2χ(R,+∞)

}

= 1

2
(q+)2 − 1

2
(q+)2,

(
η+

R

)′
(q) − (

η+
R

)′
(q) = q+ − q+ + 1

2

{∫
R

(R − λ)χ(R,+∞) dμt,x(λ) − (R − q)χ(R,+∞)

}
.

From (4.19), and integrating over ( 2
R−√

2K (T )
, T ) × S, then we deduce

1

2

∫
S

(
(q+)2(t, x) − (q+)2(t, x)

)
dx

�
∫
S

(
(q+)2 − (q+)2)( 2

R − √
2K (T )

, x

)
dx

−
t∫

2
R−√

2K (T )

∫
S

(
a + 2μ2

0 − 2μ0u
)
(q+ − q+)dx ds

+
t∫

2
R−√

2K (T )

∫
S

(
a + 2μ2

0 − 2μ0u
){∫

R

(R − λ)χ(R,+∞) dμt,x(λ) − (R − q)χ(R,+∞)

}
dx ds. (4.20)

Using (4.16) and sending R → ∞ in (4.20), we get

1

2

∫ (
(q+)2 − (q+)2)(t, x)dx � −

t∫ ∫ (
a + 2μ2

0

)(
q+(s, x) − q+

)
dx ds + 2μ0

t∫ ∫
u
(
q+(s, x) − q+

)
dx ds. (4.21)
S 0 S 0 S
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Step 5: We now apply (4.13) and use the entropy η−
R to get

∂

∂t

(
η−

R (q) − η−
R (q)

) + ∂

∂x

(
u
[
η−

R (q) − η−
R (q)

])
� − R

2

{∫
R

λ(λ + R)χ(−∞,−R) dμt,x(λ) − q(q + R)χ(−∞,−R)

}

− 1

2

(
q2 − q2)(η−

R

)′
(q) − (

a + 2μ2
0 − 2μ0u

)((
η−

R

)′
(q) − (

η−
R

)′
(q)

)
. (4.22)

Since −R � (η−
R )′ � 0, by (4.2) we have

−1

2

(
q2 − q2)(η−

R

)′
(q) � R

2

(
q2 − q2). (4.23)

Substituting (4.23) into (4.22) and integrating over (0, t) × S yield∫
S

(
η−

R (q)(t, x) − η−
R

(
q(t, x)

))
dx

� − R

2

t∫
0

∫
S

[
λ(λ + R)χ(−∞,−R) dμt,x(λ) − q(q + R)χ(−∞,−R)

]
dx ds

+ R

2

t∫
0

∫
S

(
q2 − q2)dx ds −

t∫
0

∫
S

(
a + 2μ2

0

)((
η−

R

)′
(q) − (

η−
R

)′
(q)

)
dx ds

+ 2μ0

t∫
0

∫
S

u
((

η−
R

)′
(q) − (

η−
R

)′
(q)

)
dx ds. (4.24)

Applying the identity R
2 (R + q)2 − R

2 q(R + q) = R2

2 (R + q) we deduce∫
S

(
η−

R (q)(t, x) − η−
R

(
q(t, x)

))
dx

� R2

2

t∫
0

∫
S

[
(λ + R)χ(−∞,−R) dμt,x(λ) − (q + R)χ(−∞,−R)

]
dx ds

+ R

2

t∫
0

∫
S

(
q2 − q2)dx ds −

t∫
0

∫
S

(
a + 2μ2

0

)((
η−

R

)′
(q) − (

η−
R

)′
(q)

)
dx ds

+ 2μ0

t∫
0

∫
S

u
((

η−
R

)′
(q) − (

η−
R

)′
(q)

)
dx ds. (4.25)

Step 6: Using (4.15), we have the trivial identity

η−
R (q) − η−

R (q) = 1

2

(
(q−)2 − (q−)2) − 1

2

(∫
(λ + R)2χ(−∞,−R)dμt,x(λ) − (q + R)2χ(−∞,−R)

)
.

Note that q2 − q2 = q2+ − q2+ + q2− − q2− . Adding (4.21) and (4.25) yields∫
S

(
1

2

[
(q+)2 − (q+)2] + η−

R (q)(t, x) − η−
R (q)(t, x)

)
dx

� R2

2

t∫ ∫ [
(λ + R)χ(−∞,−R) dμt,x(λ) − (q + R)χ(−∞,−R)

]
dx ds
0 S
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+ R

2

t∫
0

∫
S

[
(q+)2 − (q+)2 + η−

R (q) − η−
R (q)

]
dx ds

− (
a + 2μ2

0

) t∫
0

∫
S

(
q+ − q+ + (

η−
R

)′
(q) − (

η−
R

)′
(q)

)
dx ds

+ 2μ0

t∫
0

∫
S

u(s, x)
(
q+ − q+ + (

η−
R

)′
(q) − (

η−
R

)′
(q)

)
dx ds. (4.26)

Note that

0 �
(
q+ − q+ + (

η−
R

)′
(q) − (

η−
R

)′
(q)

)
= −

[∫
S

(λ + R)χ(−∞,−R) dμt,x(λ) − (q + R)χ(−∞,−R)

]
.

By the proof of Theorem 2.1, we see that

‖u‖L∞(S) � C(T ).

Since λ → (R + λ)χ(−∞,−R)(λ) is concave and choose R large enough, it yields that

R2

2

t∫
0

∫
S

[
(λ + R)χ(−∞,−R) dμt,x(λ) − (q + R)χ(−∞,−R)

]
dx ds

+ 2μ0

t∫
0

∫
S

u(s, x)
(
q+ − q+ + (

η−
R

)′
(q) − (

η−
R

)′
(q)

)
dx ds

�
(

R2

2
− C(T )

) t∫
0

∫
S

[∫
S

(λ + R)χ(−∞,−R) dμt,x(λ) − (q + R)χ(−∞,−R)

]
dx ds

� 0. (4.27)

Then, from (4.26)–(4.27), we obtain

0 �
∫
S

(
1

2

[
(q+)2 − (q+)2] + [

η−
R (q) − η−

R (q)
])

(t, x)dx

� R

t∫
0

∫
R

(
1

2

[
(q+)2 − (q+)2] + [

η−
R (q) − η−

R (q)
])

dx ds.

Using the Gronwall inequality and (4.16), we conclude that∫
S

(
1

2

[
(q+)2 − (q+)2] + [

η−
R (q) − η−

R (q)
])

(t, x)dx = 0.

By the Fatou lemma and (4.2), sending R → ∞ yields

0 �
∫
S

(
q2 − q2)(t, x)dx � 0, t > 0.

Consequently,

μt,x(λ) = δq(t,x)(λ) for a.e. (t, x) ∈R
+ ×R.

This completes the proof of Theorem 4.1. �
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Theorem 4.2. Under the assumption of Theorem 1.1, there holds

qε(t, x) → q(t, x) = ux(t, x) a.e. on R+ ×R. (4.28)

Proof. In view of Lemma 3.2 and Theorem 4.1, we deduce qε(t, x) → q(t, x) = ux(t, x) a.e. on R+ × S, we get the conclusion
(4.28). �

And qε(t, ·) and q(t, ·) being in L2(S), we obtain that

(uε)x → ux, in L2
loc(R+ × S). (4.29)

With all the preparations given in the previous, it is easy to see that the proof of Theorem 1.1 is completed. Let u be the limit
of the viscous approximate solutions uε as ε → 0+ . From Theorem 2.1 and Lemma 4.1, it follows that u ∈ C([0,+∞) ×R) ∩
L∞

loc(R+, H1(S)) and (1.9)–(1.10) hold. From Lemma 4.1, Theorem 4.2 and (4.29), we deduce that uε → u, μ(uε) → μ(u),

((uε)x)
2 → (ux)

2, uε(uε)xx → uux and aε(t) = 1
2

∫
S
(uε)

2
x(t, x)dx → a(t) = 1

2

∫
S

u2
x(t, x)dx, in the sense of distributions on

R+ ×R. Then we obtain that

∂x g ∗
(

2μ(uε)uε + 1

2
(uε)

2
x

)
→ ∂x g ∗

(
2μ(u)u + 1

2
u2

x

)
.

Thus we see that u is a dissipative weak solution to (1.1). This completes the proof of Theorem 1.1.
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