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1. Introduction

In this paper we consider the Cauchy problem of the following periodic generalized Hunter-Saxton equation:

U(Ue) — Upex = =20 (U) Uy + 2Uxlxx + Ullxxx, t>0, X€R,
ut,x+1)=u(,x), t>0, xeR, (1.1)
u(0,x) =ug(x), xeR,

where u = u(t, x) is a time-dependent function on the unit circle S=R/Z and u(u) = fs udx denotes its mean. The equation
lies ‘mid-way’ between the periodic Hunter-Saxton and Camassa-Holm equations, and describes evolution of rotators in
liquid crystals with external magnetic and self-interaction [14].

In [14], they proved that Eq. (1.1) is the Euler equation on the diffeomorphism group of the circle corresponding to a
natural right-invariant Sobolev metric. They showed that Eq. (1.1) is bi-Hamiltonian and admits both cusped and smooth
traveling-wave solutions which are natural candidates for solitons. They also proved that Eq. (1.1) is locally well-posed and
has blowing-up solutions and global solutions with non-negative angular momentum density. Fu et al. investigated the
blow-up phenomena and blow-up rate in [8]. According to [8,14], the periodic generalized Hunter-Saxton equation is the
periodic generalized Camassa-Holm equation.

The Camassa-Holm equation can be regarded as a shallow water wave equation [3]. It has a bi-Hamiltonian structure [7]
and is completely integrable [5]. Obviously, if @ (u) = 0, which implies wu(u;) =0, then this equation reduces to the Hunter-
Saxton equation describing the director field of a nematic liquid crystal [10], which is a short wave limit of the Camassa-
Holm equation. The Hunter-Saxton equation has also a bi-Hamiltonian structure [10,17] and is completely integrable [1,11].
Yin studied the periodic Hunter-Saxton in [20]. He proved the local existence of strong solutions of the periodic Hunter-
Saxton equation and showed that all strong solutions except space-independent solutions blow up in finite time. Recently,
Wei and Yin also studied the periodic Hunter-Saxton equation with weak dissipation [18].

Recently, global dissipative and conservative weak solutions for the initial boundary value problem of the classical
Hunter-Saxton equation on the half-line were investigated extensively, cf. [2,11,12,15,21-23]. The authors in [12,15,23] con-
structed the viscous approximate solution sequence by zero-viscosity method.
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The aim of this paper is to prove the existence of global weak solutions to generalized Hunter-Saxton equation (1.1).
Thus, we have to use the viscous approximation method [4,12,15,19,23] and the theory LP Young measure [15,19] to prove
the existence of global weak solutions to Eq. (1.1).

By reformulating Eq. (1.1), we write Eq. (1.1) as follows:

1
Ur + Uty + BXA*1 <2M(u)u + Eu,%) =0, t>0, xeR,

u(t,x+1)=u(t,x), t>0, xeR,
u(0,x) =up(x), xeR,

where A=pu — 8,% is an isomorphism between H*(S) and H*~2(S) with the inverse v = A~1(w) given explicitly by

— ﬁ_{_ﬁ.g + _1 ol dsd
v(x)—(2 > 12>M(W) (x z)ffwmsy
00
X 1y s

y
—//w(s)dsdy+/f/w(r)drdsdy. (1.3)
0 0 000

Since A~! and 9y commute, the following identities hold

1 X 1 x
A Tw(x) = (x—%)/w(x)dx—/w(y)dy+//w(y)dydx, (1.4)
0 0 00
and
1
A—13X2w(x):—w(x)+/w(x)dx. (1.5)
0

If we write the inverse of the operator A =t — 83 in terms of a Green’s function, we find (A~1m)(x) = fol gx—xXymx)dx =
(g +m)(x). Eq. (1.2) is equivalent to

1
U + Ully + e g * (2/,L(u)u + Eui) =0, t>0, xeR,

(1.6)
u(t,x+1)=u(t, x), t>0 xeR,
u(0,x) =uo(x), xeR,
where the Green’s function g(x) [8] is given by
1 13 1
g(x):ix(x—1)~|—ﬁ, forxe[0,1)~S", (1.7)
and is extended periodically to the real line. In other words,
x—x) |x—x| 13
g(x—x/):( | |+— forx,x' €[0,1) ~S!. (1.8)

2 2 12’

In particular, u(g) =1.

In the current paper, the existence of global weak solutions to generalized Hunter-Saxton equation (1.1) was investigated.
Firstly, Eq. (1.1) has been added the terms w(u) and w(u), this leads to the essential difficulty comparing for the classical
Hunter-Saxton equation. Secondly, [15] discussed the case of half-space; nevertheless we consider the case of circle. Thirdly,
the existence of global weak solutions to Eq. (1.1) has not been discussed, the result is new.

Motivated by this, we first introduce the definition of a weak solution to the Cauchy problem (1.2).

Definition 1.1. u is a dissipative weak solution to the Cauchy problem (1.2) if

u(t, x) € L2 ((0, 00): H'(S))

loc

satisfies Eq. (1.2) and u(t,-) — ug as t — 0T in the sense of distributions on R, x R. Moreover,

/uf‘(t, X) dxg/u(z)yx(x)dx. (1.9)
S S
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Therefore in this paper, the main result is to give the existence of a globe-in-time weak solution u to the Cauchy problem
(1.2) with the initial ug € H!(S). The main result is as follows:

Theorem 1.1. Let ug € H'(S). Then Eq. (1.2) has a dissipative weak solution in the sense of Definition 1.1.

Remark 1.1. There are global strong solutions of the classical Hunter-Saxton equation in [20], but the strong solutions are
not unique. Therefore, one cannot prove the uniqueness of dissipative weak solutions.

The organization of the paper is as follows. In Section 2, we give the well-posedness result of the viscous approximate
to Eq. (1.2) and establish the basic energy estimate on u.. In Section 3, the uniform a priori one-sided super-norm estimate
and local space-time higher integrability estimate for dyu. are established. In Section 4, the strong convergence of dyu in
L%OC(]R+ x S) is carried out and we complete the proof of the main result.

2. Viscous approximate solutions

In this section, we construct the approximate solution sequence u. = u.(t, x). Hence, we consider the viscous problem
of Eq. (1.3) as follows:

1
(Ue)e + ue(Ue)x + 0xg * <2M(u6)u6 + 5(”6))%) =€(e)xx, t>0,xeR,
21
Ue(t, X+ 1) = Ue(t, ), (>0, xeR, 21
ue(0, %) = ue 0(x), xeR,
or the equivalent form:
_ 1
(Ue)e + ue(Ue)x = —0xA ! <2M(ue)ue + 5(”6)5) =€(e)xx, t>0, xeR,
2.2
Ue(t, x+ 1) = ue(t, X), t>0, xR, (22)
Ue(0, %) = ue,0(x), xeR,

where u¢ o(x) = (¢e * ug)(x), and

_]1
Pe(x) 1= (/¢($)d§> gqﬁ(g), xeR, € >0,
R

where ¢ € C2°(R) is defined by

1/(x3-1)

_Je . Xl <1,
X) =

) {0, x| > 1.

Then, we have
llueollizs) < luollizs)., ” (Ue)o,xHLz(S) < lluoxllzes)
and

Ue o — Ug, iIn Hl(S).

Integrating both sides of Eq. (2.1) over the circle and using periodicity imply that w(ue)r = pu(uer) = 0. Moreover, for the
sake of convenience, let

N(ue):/ue dx:ﬂ(ue,o):/ue,OdX,
S S

and
1 2 1 2
@)= / woddx  aco= / ()3 dx.
S S
Differentiating Eq. (2.2) with respect to x yields

1
(U tx + (Ue)2 + U (Ue)ye = —AT 102 (2u<ue.o)ue + 5(%)2) + € (Ue)xxxs
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in view of (1.5), we have

1
(Ue)ex = _E(Ue)g —Ue(Ue)xx + 214 (Ue,0)Ue — 2M2 (Ue,0) — Ae () + €(Ue)xxx- (2.3)

The existence, uniqueness, and basic energy estimate on this approximate solution of (2.1) are given in the following
theorem. We first recall the following three lemmas.

Lemma 2.1. (See [13].) If r > 0, then H"(S) N L*°(S) is an algebra. Moreover

Ifelures) <c(lfliiee gl + 1 fllslglees))

where c is a constant depending only on r.
Lemma 2.2. (See [13].) Ifr > O, then

I[4", f]g”LZ(S) <c(llaxfllies) “Ar_lg”Lz(S) + ||Arf||L2(S)”g”L°°(S))’

where c is a constant depending only on r.

Lemma 2.3. (See Appendix C of [16].) Let X be a separable reflexive Banach space and let f™ be bounded in L*°(0, T; X) for some T €
(0, 00). We assume that f™ € C([0, T]; Y) where Y is a Banach space such that X — Y, Y’ is separable and dense in X'. Furthermore,
(¢, f™(t))y xy is uniformly continuous in t € [0, T] and uniformly inn > 1. Then f" is relatively compact in C* ([0, T]; X), the space
of continuous functions from [0, T] with values in X when the latter space is equipped with its weak topology.

Remark 2.1. If the conditions which f" satisfies in Lemma 2.3 are replaced by the following conditions:

fhel®0,T; X)), 9 f"elP(,T;Y) forsomep e (1,00),

and

”fn”LOO(O,T;X)’ 8tfn||LP(O,T;Y)<C’ vn =1,

then the conclusion of Lemma 2.3 holds true.

Theorem 2.1. Let € > 0 and uc g € H5(S), s > 2. Then there exists a unique u € C(Ry; H(S)) NC'(R4; HS71(S)), s > 2, to Eq. (21).
Moreover, for each t > 0,

() ]

For the convenience of presentation, we will omit the subscripts in u, in the following proof.

82u€ 2 2 2
9x2 (s,x)dxds = ” (ue)O,x”Lz(S) < ”uo”‘”LZ(S)' (24)

Proof of Theorem 2.1. First, following the standard argument for a nonlinear parabolic equation, we can obtain that for ug €
H5(S), s > 2, there exists a positive constant T > 0 such that Eq. (2.2) has a unique solution u = u(t, x) € C([0, T]; H*(S)) N
Cl([0. T]; HS71(S)).

Second, we show that if T is the maximal existence time of the corresponding solution u(t, x) of Eq. (2.2) with the initial
data ug, then the H*(S)-norm of u(t, -) blows up if and only if

limsup |[ux(t, -) HL“’(S) =00
t—T

Multiplying Eq. (2.3) by uy and integrating over S, we obtain

d
E/u,%(t,x)dx:—k/u,z(xdx.
S S

Integrating the above inequality over (0, t), we get

t
2
uxt, .)HLZ(S)+2ef/uixdxdt:||u0,x||§2(s)zzae,o. (2.5)
0 S
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Applying the operator A° to Eq. (2.2), multiplying by A%u, and integrating over S, we observe that

d _ 1
a ||u||%-15(S) = —2(uuy, u)s + 2<ua —0xA 1 <2M(u0)u + 5“5)) + 2€ (Uxx, U)s.
N
By a direct calculation and Lemma 2.2 with r =s, we get

|y, u)s| = |(A° @d), A%u),|
=[([A%, u]oxu, A%u),+ (A S, Au),|

1
< L% o | 2%+ 2 (e, %)

1
< (cnuxnpo + znuxupo)nuu%,s

2
< Clluxllzee flullys-

By (1.5) and Lemma 2.2 with r =s — 1, we have

||A_]8xu [ HSS) = (||A_18xu ”LZ(S) +| aXA_13Xu”H5*1(S))

‘—u—i—/udx
S

< 3llullize) + 2lullgs-1s) = Slullases),

<3llullize) +

Hs—1 S)

and

AT 0% | s s < 51Uz | s ey < Slluxllzso) lullmss).-
6 6
It follows that
|(u, A_]axu)HS(S)| S Cllulluses) ||A_laxu||HS(S) S C”””%P(SV

and
[ (A7 0xug) s )| < Cllttllis) [ AT 03 s ) < Clltxlle) lulifss) -
In view of the above estimates, we obtain
-1 15 2
2| u, —0xA™ | 2 (uo)u + 7 Ux <c(1+ ||ux||L°°(S))||u||HS(g)~
N

By 2€(uxy, u)s = —2€||ux|lnss) <0, we get

d
o sy < (14 lellioe @) s .

Gronwall’s inequality and the assumption of the theorem yield

t

[ullfss) < exp (c / (1+ ||ux||Loo<s>)ds> ol s s)-
0

Then, we have the second conclusion.
Next, we derive the a priori bound on |[ux(t, -)|| >s). In view of (2.4) and Eq. (2.2), we deduce that

d 1
E/u%r,x)dx:—Z/uaxA—1<2u(uo)u+ iuﬁ) dx—i—e/uuxxdx
S S S

2
</u2dx+/(8xA’1<2,u(uo)u+%ui)) dx
S S
1 2
:f zdx—i—f(gx*(Z,u(uo)ujLiui)) dx
S S
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2
1
</u2dx+||gxllfz(s) 24 (uo)u + S ug
2 L](S)
S
2 2 2
< (8u (uO)+l)/u (t, ) dx +aZ g,

S

where we used || gxll;2s) < 1. By Gronwall's inequality we have

/uz(t, x)dxg6(8“2(“0)“”([u(z)dx—f—aﬁq()). (2.6)
s 5

In view of (2.5)-(2.6), we have
Juc, )HHl(S) SVEm, (2.7)

where C(t) = e(gﬂz(uoHl)t(fS u% dx + aﬁ,o) + 2ae,0. Sobolev’s imbedding theorem yields

Juc. )] sy < ¢C(t C1(0). (2.8)

Due to (2.8) and the Sobolev inequality, we only need to derive an a priori estimate on [ux(t, -)|l;2(s). In view of Eq. (2.3),
we get

d
at ”uxx(tv ) ”iZ(S) + 2¢ “ Uxxx (L, +) ”iZ(S) = 6/ Ul gy Uyxx AX.
S

Integrating over (0, t), we have

” Uxx(t, *) ”iZ(S) +2¢ f ||uXXX(S! ) HiZ(S) ds=6 UllgxUxxx dX ds + ”uo,xx(ta )H iz(g)
0

<€

O\H o\-—r

t
/uz dxds—i—C(e)Cz(t)//uz dxds + [ugx(t .)HZ
XXX 1 XX 0,xx\t, 12(S)"
S 0 S
Then, from (2.5) we obtain

C()

”uxx(t» ) ”iZ(S) +e€ / ”uxxx(S, ) ”iz(g) ds < Cz(t)ae o+ “UO xx(t, )”LZ(S)
0

Combing this with (2.7), we show that there exists a positive constant Cx (€, ¢, [[ug xx(t, )|l ;2(s)) such that

luxllizos) < Cllullgzs) < C2(t) < 400, V>0,
Finally, the global existence solution follows from these a priori estimates and the standard continuation argument.

Furthermore, (2.4) holds on [0, co). This completes the proof of Theorem 2.1. O

Remark 2.2. For given € > 0, we set a¢(t) = 5 fs(ug)x dx, ae0= 3 fS(ug)Oxdx and ap = 5 I lugx|I?
Theorem 2.1, we see that

125)" Then from the proof of

t

1 2 1
ac(t) +€ / /(ue)ixdxdt Seo=3 lwerox]|2s < E”uo,x”%z(g) =ap.
0 S

3. Uniform a priori estimates

In this section, we derive the uniform one-sided super-norm estimate and the space-time higher integrability estimates
on dyUe (t, x), which are essential for our compactness argument. We denote g (t, x) = dxu (t, x) in the following text.
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Lemma 3.1. For fixed T > 0, V(t, x) € (0, T] x S, we have
2
Oxlle (t, %) < 7 + v 2K(T). (3.1)

Proof. From Egs. (2.3) and (2.7), we get

3qe + e Oxde + %qﬁ — €079 =21 (Ue 0)e — 2% (Ue 0) — e (D)
< C1(T) + 2% (ue o) + ap = K(T). (3.2)
Let fe = fe(t) be the solution of
dfe 2 f2=KT), o0 = |@ox 2 (33)
2
The comparison principle for parabolic equations yields
qe(t,x) < fe(), V(t,x)e(0,T]xS.

Consider the map F(t) := % + «/2K(T), t € [0, T]. One observes that o;F + %FZ — K(T) = 2—V2[K<T) > 0, so that F(t) is a
super-solution of (3.3). Therefore, the estimate (3.1) holds. O

Lemma 3.2. Let 0 <« < 1, T > 0. Then there exists a positive constant C depending only on ||ug || y1sy and T, but independent of e,
such that

T

/f‘axue(t,x)|2+a <C. (3.4)

0 S
Proof. Consider the map 6(¢) :=&(|&| + 1)¥, & € R, which was introduced in [4]. Obviously,

0'(6) = (e + Dlgl + 1) (Il +1)" ",

0@ <IEPT + 15l 0<0'(@) < (@+DIEN+1, 0"(&)| < 2ax, (3.5)
and

§0(5) — S 0'(&) > S (I&1+1)%. (3.6)

Multiplying (3.2) by 6’(q¢) and mtegrating over [[; :=[0, T] x S, we obtain

1
[ aeo@orande— 5 [ q2e'@ordnde = [ (6(ae(r. ) ~0(ac0.0)) dx+ [ (ae0+ 2% we )6 @) e

[1r [1r S [z
_2/M(u6,o)u69’(qe)dxdt+€/<88q6> 0" (qe) dxdt. (3.7)
T [r

By (3.6), we observe that

1 1
/ 4e0(ge) dxdt — 5 / 20’ (qe) dxdt = / <q69<qe)— Eqée/«ze))dxdt

l_[T T l_[T

1-«o
> — f a2 (el +1)% dxdt. (3.8)
ITr
In view of 0 <« < 1, the first part of (3.5) and (2.5), using Hélder’s inequality, we get

/e(qadxs /(ma‘)‘+l T 1qel) d

S S

< [lae e, )% + 1aet, ) gy < Mol %, + ol s)- (39)
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By the second part of (3.5) and Remark 2.1, we obtain

/ (ae(®) + 2% (ue,0))0' (ge) dxdt < (2ae.0 + 214* (ue o)) / (Igel + 1) dxdt

[1r [r
< (20,0 + 2% (we,0)) (llttoll g1 s) + 1) T- (3.10)

From (2.7) and the second part of (3.5), we have

2 / W(Ue 0)ucb (ge) dxdt < 2u(u€,0)C1(t)(||uo||H1(S) + 1)T. (3.11)

ITr
Using (2.4) and the third part of (3.5), we deduce that
2 2
0qe 9qe 2
. / (W) 9//(q€)dxdt‘ <2ae / (W dxdt| < auolly - (312)
T T

From (3.7)-(3.12), we see that there exists a constant ¢ > 0 depending only on |uo| 1), @ and T > 0, but independent
of €, such that

11—«
T/qﬁ(lquJrl)“dxdtgc.
[y

Then
T

3
//‘%“”‘) dmté/qﬁ(lqelﬂ)"‘dxdtg]

05 Iy

2
+o 2

-

This completes the proof of Lemma 3.2. O

4. Precompactness

In this section, we are now ready to obtain the necessary compactness of the viscous approximate solution u, (¢, x). We

start with the weak compactness in L7 (R, H(S)). For convenience, we denote q¢ = dxlie and pte = % fs qg dx.

Lemma 4.1. Under the assumption of Theorem 1.1, there exist a subsequence {u, (t, X), ae, (t)} of the sequence {u¢(t, x), ac(t)} and
functions u(t, x), a(t) withu e L) (R4, HY(S)) and 0 < a(t) < ag such that
Ug, —u ask— oo,

uniformly on any compact subset of R x R, and

ae —a inlP,T), ask — oo,

forany 1< p < oo.
Proof. For any fixed T > 0, we claim that {u¢(t, x)} is uniformly bounded in L*°((0, T), H'(S)). From Theorem 2.1, we have

luetexlliz(0.1yxs) < C1(OlUexll2¢0.1)xs) < 2C1(T)ae 0,

and
1 2 7 1 2
8x * <2M(Ue,0)us + E”ix) = / 8x * <2M(Ue,0)us + 5u3x> (¢ dt
12((0,T)xS) 5 L2(S)
T 2
2 1,

< ”gX”LZ(S) 2M(u€,0)ué‘ + 5u€x dt

0 LL(S)

T
2
1
g/(suz(usyo)fuﬁdx—i— §</uﬁxdx)> dt
0 s s

< T (81 (e 0)Cr (T) + a2 ),
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and by Eq. (2.1) we have {duc(t,x)} is uniformly bounded in LZ((0,T) x S). Thus, by Lemma 2.3, there exist u €
Ly (R4, H'(S)) and a subsequence {ue, (t,x)} such that {ue, (t,x)} is weakly compact in L*°([0, T], HY(S)) and {uc(t, x)}
converges to u(t,x) in the space H'((0, T) x S). Moreover, u(t, x) is a continuous function.

Next, we turn to the compactness of {ac(t)}. Since {ac(t)} are uniformly bounded on R, so they are uniformly bounded
in L1(0, T). In view of Theorem 2.1, we have |%ag| = efS uﬁ_xx dx are uniformly bounded in L'(0, T). Thus, we deduce that
{ac} € W11(0, T). Furthermore, by Sobolev’s compact imbedding theorem W11(0, T) << LP(0,T), 1 < p < +oo, there
exist a(t) € LP(0, T) and a subsequence {ae, (O} such that ae, — a(t) in LP(0, T), for any 1 < p < oo. This completes the
proof of Lemma 4.1. O

Remark 4.1. Let p(u¢) = f§ uedx. From Lemma 4.1, we see that

n(ue) = p(ue,0) — M0=/U0dx~
S

Remark 4.2. From Lemmas 3.2 and 4.1, we can deduce that there exist two functions q € L,‘;C(]RJr x R) and q_2 €L, Ry xR)
such that

G, —q inl) Ry xR), ¢ —¢? inlj (RyxR), (41)

forevery 1<p<3,1<r< % Moreover,

¢, %) <R, %), ae. (t,x)eRy xR. (4.2)

In view of (4.1), we conclude that for any 1 € C!'(R) with n’ bounded, Lipschitz continuous on R, n(0) =0 and any
1 < p <3, we have

n(e) — (@ inll Ry xR). (4.3)

Lemma 4.2. There exist a subsequence of the solution sequence q. = dxu,, and a family Young measure (¢ x(1), such that for any
continuous functions f(t,x, 1) = O(|A]"), and 3 f(t, x, 1) = O(|A|""1) as || — oo for r < 2, and for any ¥ (x) € L3 (R) with } +
L =1, we have

2 ’

im, / F(t.x,qe(t, %)y (x)dx = / ft. x, v (x)dx, (44)
R R

uniformly on each compact subset of [0, c0), where

FExq) = / F(t % ) dpt () € ([0, 00). L), (4.5)
R
forany 1’ € (r, 2). Moreover, for any T > 0, there hold
T T
Sl_i)rg)r f / g(t, X, qe)pdxdt = / / g(t, x, Q)pdxdt, (4.6)
0 R 0 R

where the continuous function g(t, x, A) = O (|A|"), as |A| — oo for some ¢ < 3 and ¢(t,x) € L™(Q71) with % + % < 1. In addition,
loc

aelt (R+ xR x R,dt ®dx® dut,x(x)). (4.7)

Proof. The proof is similar to that of Lemma 3 in [19]. O

Theorem 4.1. Let 1i; x(A) be the Young measure given in Lemma 4.2. Then

ex(h) =850 forae. (£,X) € RT x R.
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Proof. Step 1: Multiplying Eq. (2.3) by n'(ge¢), we get

*n(qe)+ (uen(qe)) =qen(qe) — fq N (@e) + 21 (Ue,0)ten (ge)

— (ae + 2112 (ue,0))1'(qe) + €3x(1n' (@e)xqe ) — €0 (qe) (3xqe)?.

Note that {,/€dxqc} is uniformly bounded in L?(R, x S) due to Theorem 2.1. Taking € — 0, by Lemma 4.1, Remark 4.1 and
(4.3) we obtain

3 1— o
g(tq) + (un(@) < aqn(q) — qzn (@) +2poun’(@) — (@+2ud) - 7@, (4.8)

in the sense of distributions on Ry x S, here f is the limit of fe, in the sense of distributions on Ry x S.
Step 2: Using Eq. (2.3), Lemma 4.1 and Remarks 4.1-4.2, letting € — 0, we have

aq a 15 5 2 -
— —q==-q%*— 2 — 25 — 49
or TU3x9= 39"~ +2mou —2u5 -, (4.9)
in the sense of distributions on Ry x R.
Denote g€ (t, x) := (q(t, -) * ¢¢)(x). According to Lemma IL1 of [6], it follows from (4.9) that g¢ solves
aq° aq° 15 5 2 -
= TUor = §q2—q + 20U —2uf — @ | * e + Te, (4.10)

where the error 7, tends to zero in L}OC(]RJr x R). Multiplying (4.10) by 1'(g¢), we get
anq*) ad 1= _
—o T o un(a) = (502 — @ +2u0u =265 —a )+ ge | (a°) +an(a) + zen'(a)- (411)

Using the boundedness of 1, " and sending € — 0 in (4.11), we obtain

an(q)
at

Subtracting (4.12) from (4.8) yields

1—= _
—q% + 240U — 214§ — a)n’(q). (4.12)

+o (un(q)) =qn(q) + (—q2 +5

0 ,—— 0
g(n(q) n@) + ( (n@ — n@))
< f {An(k) - in’(mZ} dtex(0)
R
1 1 —
+ 5n’<q>q2 —an@ — 51" @(¢* - a*) + (2pou — 23 — @)’ (@). (4.13)

Next we will apply (4.13) to a family of suitably chosen E’s to deduce that the Young measure p;x(1) must be a Dirac
measure.
Step 3: Define

h4 =max(h, 0), h_ =min(h, 0),

1,2 A| <R
_ 2 ’ =
"R(”_{MM—%RZ, A > R,
nE ) == nrR() X10,00) (M), Ng A) :=NRA) X (00,01 (M),
then
1 1 ’
ng () = zmﬁ -5 R- M2 AR ®)y () W) =Ag + (R = V) X(Rioo) (M), (414)
1 1 /
ng (W) = zw)z -5 (R 0% X (oo P),  (MF) W) =A== (R+ 1) Y (=00 —R) (A). (4.15)

By Lemma 2.4 and results in [4] or [19], for each R > 0 we have

lim / (N @0 — 7 (a(€.0)) dx =
S
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Similar to the arguments in [9], there holds

lim /qz(t,x)dx: lim /tp(t,x)dx:/u(z)x(x)dx. (4.16)
t—0t t—>0t ’
S S S

Step 4: We now apply (4.13) to the entropy 173 to obtain
0 —/— d —_—
o (18 @ = g @) + o (u[ @ = g @])

R
< 5{ / A = R)X(R,400) dpbe x(A) —q(q — R)X(R,Jroo)}

1 —

— (e - ) (ng) @ — @+ 213 —2p20u) ((n) @ — (nF) @). (417)

Since 17?{ is increasing, by (4.2), we get

1 — /
-5 (@ - a%)(nf) @ <o. (4.18)

Note that both q(t,x) and q.(t,x) are bounded above by % + 2K(T). Thus sup pu; x(-) C (—o0, % + +/2K(T)). Hence for
R > % + /2K (T), i.e. R — /2K(T) <t < T, (417) becomes

0 70— 0,
5 (18 @ = g @) + o (ulng @ = g @])

1 Y - ! /
< —5(@2 =) () @ — (@+203 — 2uou) ((17)'@ — (1) @) (419)
Let 2p := (#«/W’ T) x R. In view of (4.14), we obtain

—_ 1— 1 1
Ny @ —ng@= §(q+)2 — 5(q+)2 -3 { /(A — R)? X(Ro400) e x(A) — (@ — R)2X(R,+oo)}
R

1— 1
=3504:)? - 5(q+)2,

7 ’ _ 1
) @— %) @=0+ —q+ + 5 { / (R — M) X(R,+00) bt x(A) — (R — @) X (R, +00) }
R

From (4.19), and integrating over ( T) x S, then we deduce

2
R—V2K(T)’

] -
o / ((@)2(t, %) — (q+)%(t, %)) dx
S

< f (@)% - @)?
S

2
)<R—./21<(T)’x> ax
t

- / /(d—i—Zu% —2pou) (@ — q4) dxds

2 S
R—v2K(T)

t
+ f /(6 +2ud - ZMOU)I f(R = M) X(R,+00) At x () — (R — @) X (R, +00) } dxds. (4.20)
S R

R—+/2K(T

[N)

]

Using (4.16) and sending R — oo in (4.20), we get

t t
1 [ —— _ . _
5/((‘”)2 —(q+)2)(t,X)dX<—ff(aJrZM?))(%(s,X)—q+)dxd5+2uo//U(q+(s,X) —q4)dxds.  (421)
S 0 S 0 S
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Step 5: We now apply (4.13) and use the entropy n; to get
0 —— 0
g(nR @ —ng @) + ( [k @ — 1z @))

R
< —5{/k(k—i-R)X(—oo,—R)th,x()»)—Q(Q+R)X(—oo,—R)}
R

1= _ _ _
— 5 (@ = a*)(nz) @ — (@+215 — 2u0u) (1)@ — (1) @)
Since —R < (nz)" <0, by (4.2) we have
1,= _ R —
—5 (@ =) (np) @ < 5 (¢ - ).
Substituting (4.23) into (4.22) and integrating over (0, t) x S yield

f(n;(q)(t, X) — g (q(t, 0)) dx

S

t
R
<—3 / / A+ R) X (—o00,—R) ditex(X) — 4(@ + R) X (=00, —k) | dxds
0

+§/t/ )dxds—j/(d+2u%)(m—(UR)/(CI))dXdS

t
+2u0 / / u((ng) @ — () (@) dxds.
0 S

Applying the identity %(R +q)% - %q(R +q) = RTZ(R +q) we deduce

f(n;(q)(t, X) — g (q(t, 0)) dx

S

t
R2
<5 / /[(A + R) X (=00, —R) dte.x(A) = (@ + R) X (=00, —r) | dxds
0

+g/t/(q_z—qz)dxds_/t/(mzug)(m—(nR)’(q))dxds

+2u0 / / u((ng) @ — (nz) (@) dxds.
0

Step 6: Using (4.15), we have the trivial identity

— 1, — 1
k(@ —ng@ = 5((@-)° - q-)?) - 5 (/(A + R X (oo —rydptex() — (@ + R)ZX(—oo,—R)).

Note that g2 — g2 = ¢2 — at + ¢ — 2. Adding (4.21) and (4.25) yields

‘l R
/(5[(%)2 — (@)%] + ng @€, %) — ng (@)t X)> dx

S

t
R2
< / / [+ R) X (oot ditex(}) — (@ + R) X(ooopy] dxds
0

541

(4.22)

(4.23)

(4.24)

(4.25)
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t

R -
+ 5/ [(@)? — (a+)* + ng (@) — ng (@] dxds
0

t
—(a+2ud) /f(tﬂ—q++(n,§)’(q)—(n;)'(q))dxds
0 S

t
g0 [ [utso@ - as+ () @ — () @) deds. (426)
0 S
Note that

0< (@ —a++ (ng) @ — (nz) @)

= —[/(K + R) X (—o0,—R) dte,x(A) — (g + R)X(—oo,—R):|~

By the proof of Theorem 2.1, we see that

lullzeos) < C(T).

Since A — (R + ) X(-00,—Rr) () is concave and choose R large enough, it yields that

t
RZ
i / f [0+ R) X(—o0,— At x(}) — @+ R) Koo,y ] dxds
0 S

t

+ 210 f f u(s, 0@ —a+ + (ng) @ — (ng) @) dxds

0 S

t
R2
< (7 - C(D)//[/O»-i— R) X (=00, —r) At x(A) — (@ + R)X(—oo,—R)] dxds
S

0 S
<0. (4.27)

Then, from (4.26)-(4.27), we obtain

1
/(2 @+)? - (q+)2]+[ng(q)—ng(q)])(t,X)dx

t

1,—— -
<R //(5[(%)2 —@)?]+ [ng @ - nE(q)D dxds.

0 R

Using the Gronwall inequality and (4.16), we conclude that
1,—— — _
f(i[(q+)2 —(q)%] + [nx @ — ng (q)])(t, x)dx=0.
S
By the Fatou lemma and (4.2), sending R — oo yields

0< [(q_2 —q%)(t,xdx<0, t>0.
S
Consequently,
Pex () =855 (0) forae. (t,x) € RT x R.

This completes the proof of Theorem 4.1. O
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Theorem 4.2. Under the assumption of Theorem 1.1, there holds
qe(t,x) = q(t,x) = ux(t,x) ae.onRy xR. (4.28)

Proof. In view of Lemma 3.2 and Theorem 4.1, we deduce qc(t,X) — q(t, x) = ux(t,x) a.e. on Ry x S, we get the conclusion
(4.28). O

And ge(t, ) and q(t, -) being in L%(S), we obtain that

(ue)x — Uy, inLE (Ry xS). (4.29)

With all the preparations given in the previous, it is easy to see that the proof of Theorem 1.1 is completed. Let u be the limit
of the viscous approximate solutions ue as € — 0. From Theorem 2.1 and Lemma 4.1, it follows that u € C([0, +00) x R) N
% (R,, H'(S)) and (1.9)-(1.10) hold. From Lemma 4.1, Theorem 4.2 and (4.29), we deduce that u. — u, w(ue) — w(u),

loc
(Ue))? > (U2, Ue(Ue)e — Uty and ac(t) = 3 [swe)?(t, x)dx — a(t) = 1 [ul(t,x)dx, in the sense of distributions on
R4 x R. Then we obtain that

1 1
Oxg * <2M(ue)ue + E(ue))%) — g * (2u(u)u + 5”’2‘>'

Thus we see that u is a dissipative weak solution to (1.1). This completes the proof of Theorem 1.1.
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