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In this paper, we discuss the existence of a positive radial solution to a generalized
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combination of a cut-off function, a monotonicity trick and a Pohozaev type identity, we
obtain the boundedness of a Palais–Smale sequence.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider the existence of positive solutions to the following nonlinear generalized Schrödinger–Poisson
system

−∆u + u + qφf (u) = g(u), in R3,

−∆φ = 2qF(u), in R3,
(1.1)

where q > 0 is a parameter, f and g satisfy the following conditions:

(f) f ∈ C(R+,R+) and there exists c > 0 such that |f (t)| 6 c(|t| + |t|α) for all t ∈ R+ = [0,∞), where α ∈ (2, 4);
(g1) g ∈ C(R+,R+) and there exists c1 > 0 such that |g(t)| 6 c1(1 + |t|p−1) for all t ∈ R+ and some p ∈ (2, 6);
(g2) limt→0+ g(t)/t = 0;
(g3) limt→∞ g(t)/t = ∞.

When the function f (t) = t , this system represents the well known Schrödinger–Poisson system
−∆u + u + qφu = g(u), in R3,

−∆φ = qu2, in R3.
(1.2)

Such a system, also known as the nonlinear Schrödinger–Maxwell equations, arises in many mathematical physics context.
Indeed, according to a classical model, the interaction of a charged particle with an electromagnetic field can be described
by coupling the nonlinear Schrödinger and the Poisson equation (we refer the reader to [8] for details on the physical
aspects). Recently, the problem (1.2) has been studied widely by using the modern variational method and the critical point
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theory under various assumptions; see [1–3,6,7,18,10,11,17,20,21,25,27] and the references therein. The greatest part of
the literature focuses on the study of existence, nonexistence of solutions, multiplicity of solutions, ground states, radial
and non-radial solutions of such a system with very special nonlinearity g(t) = |t|p−1t (see [2,7,18,10,11,17,21]). In [18],
the author proved the existence of a nontrivial radial solution of (1.2) when p ∈ (3, 5). The same result was obtained in [11]
for p ∈ [3, 5). By using a Pohozaev type identity, in [10], the authors proved that the problem (1.2) has no nontrivial solutions
for p ∉ (1, 5). This result was completed in [21], where by discussing the behavior of the energy functional and the scopes of
the parameters, the author showed that if p 6 2, the problem (1.2) does not admit any nontrivial solution, and if p ∈ (2, 5),
there exists a nontrivial radial solution of (1.2). The author also pointed that the case p = 2 turns out to be the critical. On the
basis of the result in [21], in [2], the authors discussed the existence of multiplicity solutions to the problem (1.2) by using
the method of critical point theory. In [12], the existence of non-radially symmetric solutions was obtained for p ∈ (3, 5).

In [3,6] the authors discussed the problem (1.2) with the nonlinearity g satisfying the general hypotheses introduced by
Berestycki and Lions [9]. In [3], by using a concentration and compactness argument, the author proved the existence of a
nontrivial non-radial solution to the problem (1.2). In [6], the authors discussed the existence of a nontrivial radial solution
by using the method of a cut-off function.

There are also many references which investigated the well-known Schrödinger–Poisson system in a bounded domain;
see [4,5,8,19,22,23]. In [4], the authors considered the following problem involving the critical growing nonlinearity−∆u = λu + q|u|3uφ, in BR,

−∆φ = q|u|5, in BR,
u = φ = 0, on ∂BR,

where BR is a ball in R3 centered at the origin and with radius R. They proved the existence and nonexistence results by
discussing the scope of the parameter λ.

By using the method of a cut-off function and the variational arguments, the authors in [5] studied the following
Schrödinger–Poisson system in a bounded domain:−∆u + εqφf (u) = η|u|p−1u, inΩ,

−∆φ = 2qF(u), inΩ,
u = φ = 0, on ∂Ω,

whereΩ ⊂ R3 is a bounded domain with smooth boundary ∂Ω, 1 < p < 5, q > 0, ε, η = ±1, f : R → R is a continuous
function and F(t) =

 t
0 f (s)ds. They prove the existence andmultiplicity results assuming on f a subcritical growth condition

and also they consider the existence and nonexistence results under the critical case.
To our knowledge, there were few papers considering the more general Schrödinger–Poisson system (1.1) in R3, where

f is subcritical and g(s) ≠ |s|p−1s is also general. We will use the variational method and the trick of a cut-off to discuss the
problem (1.1). Our main idea is somehow similar to that of [5]. But our nonlinearity g(s) is not equal to |s|p−1s and also does
not satisfy the following global Ambrosetti–Rabinowitz growth hypothesis

(g4) there exists µ > 2 such that 0 < µG(t) 6 tg(t) for all t ∈ R.

Although, we can verify that the corresponding functional has themountain pass geometry under our weaker conditions
(g1)–(g3). But the boundedness of Palais–Smale cannot be obtained only by the standard argument. So, motivated by the
method in [6,5], we combine the method of a monotonicity trick [24] and a cut-off function to get the bounded sequence
which is the main step for the problem (1.1).

Our main result is as follows.

Theorem 1.1. If f satisfies (f) and g satisfies (g1), (g2) and (g3), then there exists q0 > 0 such that, for any q ∈ [0, q0), the
problem (1.1) has at least a positive radial solution (u, φ) ∈ H1(R3)× D1,2(R3).

The paper is organized as follows. In Section 2, we give preliminaries and the variational framework to our problem.
In order to obtain the boundedness of Palais–Smale sequences, a Pohozaev type identity is also given in this section. In
Section 3, we give the proof of Theorem 1.1.

Throughout the paper, we denote by Ci various positive constants which may vary from line to line.

2. Preliminaries

Let H1(R3) be the usual Sobolev space equipped with the inner product and norm

(u, v) =


R3

[∇u · ∇v + uv], ∥u∥ = (u, u)1/2.

We denote by | · |s the usual Ls(R3) norm. Then we have that H1(R3) ↩→ Ls(R3) continuously for s ∈ [2, 2∗
]. Hence there

exists γs such that

|u|s 6 γs∥u∥, u ∈ H1(R3).
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Let H = H1
r (R

3) be the subspace of H1(RN) containing only the radial functions. Then H ↩→ Ls(R3) compactly for s ∈ (2, 6)
[26, Corollary 1.26, p.18]. Let D1,2(R3) be the completion of C∞

0 (R
3) with respect to the norm ∥u∥D1,2 = (


R3 |∇u|2)1/2. It

is well known that D1,2(R3) ↩→ L6(R3) continuously. Let S > 0 be the embedding constant, i.e,

|u|26 6 S−1
∥u∥2

D1,2 , u ∈ D1,2(R3).

In this paper, since we concern the existence of positive solutions to (1.1), we assume that f (t) = g(t) = 0 for t < 0.
By standard arguments, we can prove that the problem (1.1) is variational and that the associated C1 functional εq :

H1(R3)× D1,2(R3) → R is given by

εq(u, φ) =
1
2


R3

[|∇u|2 + u2
] −

1
4


R3

|∇φ|
2
+ q


R3

F(u)φ −


R3

G(u), (2.1)

where G(t) =
 t
0 g(s)ds. Similar to the problem (1.2), by using the Lax–Milgram theorem, we can obtain that the second

equation has a unique solution φu, substituting φu to the first equation of the problem (1.1), then the problem can be
transformed to a one variable equation. In fact, we first have the following lemma.

Lemma 2.1. By condition (f), for any u ∈ H1(R3), there exists a unique φu ∈ D1,2(R3) solution of

−∆φ = 2qF(u), in R3. (2.2)

Moreover

(i) ∥φu∥
2
D1,2 = 2q


R3 F(u)φu;

(ii) φu > 0;
(iii) ∥φu∥D1,2 6 qC(∥u∥2

+ ∥u∥1+α);
(iv)


R3 F(u)φu 6 qC(∥u∥4

+ ∥u∥2(1+α)), whereC is only dependent on c, S, γ12/5 and γ6(1+α)/5;
(v) if u is a radial function then φu is radial, too.

Proof. By condition (f), we can get that there exists C1 > 0 such that

F(t) 6 C1(|t|2 + |t|1+α), t ∈ R.

Then, for any u ∈ H1(R3), we have

|F(u)|6/5 6 C1(|u|212/5 + |u|1+α6(1+α)/5) 6 C2(∥u∥2
+ ∥u∥1+α). (2.3)

Now, for given u ∈ H1(R3), a linear functionalΦ : D1,2(R3) → R is defined as

Φ(v) =


R3

2qF(u)v, v ∈ D1,2(R3).

By (2.3), we have

|Φ(v)| 6 2q|F(u)|6/5|v|6 6 2qS−1/2C2(∥u∥2
+ ∥u∥1+α)∥v∥D1,2 . (2.4)

Hence,Φ : D1,2(R3) → R is continuous. Then, by the Lax–Milgram theorem, there exists a unique φu ∈ D1,2(R3) such that
R3

∇φu · ∇v = 2q


R3
F(u)v, v ∈ D1,2(R3).

Therefore, φu is a weak solution of (2.2), and by [13, Theorem 9.9, p.230] or [16, Lemma 2.3] the integral expression of φu is
in the form

φu(x) = 2q


R3

F(u(y))
|x − y|

dy, x ∈ R3,∀u ∈ H1(R3).

Moreover, φu > 0 when u ≠ 0. By (2.2) and (2.4), the relations

∥φu∥D1,2 6 qC3(∥u∥2
+ ∥u∥1+α),

and 
R3

F(u)φu =
1
2q

∥φu∥
2
D1,2 6 qC(∥u∥4

+ ∥u∥2(1+α))

hold, whereC is only dependent on c, S, γ12/5 and γ6(1+α)/5. The proof is completed. �
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Nowby Lemma 2.1 and (2.1), we can prove that (u, φ) ∈ H1(R3)×D1,2(R3) is a solution of (1.1) if and only if u ∈ H1(R3)
is a critical point of the one variable functional defined as

Jq(u) =
1
2
∥u∥2

+
q
2


R3

F(u)φu −


R3

G(u).

It follows from (g1) and (g2) that Jq is well defined on H and is of C1 for all q > 0, and

(J ′q(u), v) = (u, v)+ q


R3
f (u)φuv −


R3

g(u)v, u, v ∈ H.

By the conditions (f), (g1)–(g3) and Lemma 2.1, it is easy to see that the functional Jq has the mountain pass geometry,
but the standard arguments used to prove the boundedness of Palais–Smale sequences do not work. Under our general
assumptions, we need a different approach. Following [15], we introduce a cut-off function χ ∈ C∞(R+, [0, 1]) satisfying

χ(t) =


1, t ∈ [0, 1/2],
0, t > 1, |χ ′

|∞ 6 4,

and study the following modified functional JTq : H → R defined as

JTq (u) =
1
2
∥u∥2

+
q
2
hT (u)


R3

F(u)φu −


R3

G(u), u ∈ H,

where, for every T > 0, hT (u) = χ(T−2
∥u∥2).

In the following, wewill discuss the existence of a critical point of JTq . In fact, for T > 0 sufficiently large and q sufficiently
small, we can find a critical point of JTq such that ∥u∥ 6 T/

√
2, so u is also a critical point of Jq. We recall the following result.

The ‘‘monotonicity trick’’ at the core of this theorem was invented by Struwe (see [24]).

Theorem 2.2 ([14]). Let (X, ∥ · ∥) be a Banach space and I ⊂ R+ an interval. Consider the family of C1 functionals on X

Jλ(u) = A(u)− λB(u), λ ∈ I,

with B nonnegative and either A(u) → ∞ or B(u) → ∞ as ∥u∥ → ∞ and such that Jλ(0) = 0.
For any λ ∈ I we set

Γλ = {γ ∈ C([0, 1], X) : γ (0) = 0, Jλ(γ (1)) < 0}.

If for every λ ∈ I the set Γλ is nonempty and

cλ = inf
γ∈Γλ

max
t∈[0,1]

Jλ(γ (t)) > 0,

then for almost every λ ∈ I there is a sequence {un} ⊂ X such that

(i) {un} is bounded;
(ii) Jλ(un) → cλ;
(iii) J ′λ(un) → 0 in the dual X−1 of X.

As our case, X = H, I = [δ, 1], where δ ∈ (0, 1) is a positive constant,

A(u) =
1
2
∥u∥2

+
q
2
hT (u)


R3

F(u)φu, B(u) =


R3

G(u). (2.5)

So that the perturbed functional which we discuss is

JTq,λ(u) =
1
2
∥u∥2

+
q
2
hT (u)


R3

F(u)φu − λ


R3

G(u).

Actually, this functional is a restriction to the radial functions of a C1 functional defined on the whole space H1(R3) and for
any u, v ∈ H ,

((JTq,λ)
′(u), v) =


1 + aTq (u)


(u, v)+ qhT (u)


R3

f (u)φuv − λ


R3

g(u)v, (2.6)

where

aTq (u) = qT−2χ ′(T−2
∥u∥2)


R3

F(u)φu. (2.7)

In the next section, we will verify that the functional JTq,λ satisfies the conditions of Theorem 2.2. In order to obtain our
result, we need the following Pohozaev type identity.
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Lemma 2.3. If u ∈ H is a weak solution of
1 + aTq (u)


(−∆u + u)+ qhT (u)φf (u) = g(u), in R3,

−∆φ = 2qF(u), in R3,
(2.8)

then the following Pohozaev type identity holds
1 + aTq (u)

 
R3


1
2
|∇u|2 +

3
2
u2


+

5
2
qhT (u)


R3

F(u)φ = 3


R3
G(u).

Proof. Since u ∈ H is a weak solution of (2.8), by the standard regularity results, u ∈ H2
loc(R

3) ∩ H1(R3). By the divergence
theorem, for any R > 0, we have

BR
−∆ux · ∇u = −

1
2


BR

|∇u|2 −
1
R


∂BR

|x · ∇u|2 +
R
2


∂BR

|∇u|2,
BR

ux · ∇u = −
3
2


BR

u2
+

R
2


∂BR

u2,
BR

f (u)φx · ∇u = −3

BR

F(u)φ −


BR

F(u)x · ∇φ + R

∂BR

F(u)φ,
BR

g(u)x · ∇u = −3

BR

G(u)+ R

∂BR

G(u).

Multiplying the first equation of (2.8) by x · ∇u, the second equation by x · ∇φ and integrating on BR, by above, we have
1 + aTq (u)

 
−

1
2


BR

|∇u|2 −
1
R


∂BR

|x · ∇u|2 +
R
2


∂BR

|∇u|2 −
3
2


BR

u2
+

R
2


∂BR

u2


+ qhT (u)


−3

BR

F(u)φ −


BR

F(u)x · ∇φ + R

∂BR

F(u)φ


= −3

BR

G(u)+ R

∂BR

G(u), (2.9)

and

2q

BR

F(u)x · ∇φ =


BR

−∆φx · ∇φ = −
1
2


BR

|∇φ|
2
−

1
R


∂BR

|x · ∇φ|
2
+

R
2


∂BR

|∇φ|
2. (2.10)

Substituting (2.10) into (2.9), we obtain that
1 + aTq (u)

 
−

1
2


BR

|∇u|2 −
3
2


BR

u2


− 3qhT (u)

BR

F(u)φ +
1
4
hT (u)


BR

|∇φ|
2
+ 3


BR

G(u)

= R

∂BR

G(u)−

1 + aTq (u)

 
−

1
R


∂BR

|x · ∇u|2 +
R
2


∂BR

|∇u|2 +
R
2


∂BR

u2


+ hT (u)


−
1
2R


∂BR

|x · ∇φ|
2
+

R
4


∂BR

|∇φ|
2


− qhT (u)R

∂BR

F(u)φ. (2.11)

We can choose a suitable sequence {Rn} with Rn → ∞ such that the right hand of (2.11) converges to 0. Since
BRn

|∇u|2 →


R3

|∇u|2,

BRn

u2
→


R3

u2,


BRn

G(u) →


R3

G(u),

and


R3 |∇φ|
2

= 2q


R3 F(u)φ, we get


1 + aTq (u)

 
1
2


R3

|∇u|2 +
3
2


R3

u2


+
5
2
qhT (u)


R3

F(u)φ = 3


R3
G(u).

The proof is completed. �
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3. Proof of the main result

In this section, we first verify that the perturbed functional JTq,λ satisfies the conditions of Theorem 2.2; see Lemmas 3.1
and 3.2. So there is a bounded Palais–Smale sequence {uλn} to JTq,λ. Then, for almost every λ ∈ I and under proper assumptions
of q, T , we obtain that there is a subsequence of {uλn} converging to uλ which is a nontrivial critical point of the functional
Jq,λ; see Lemmas 3.3 and 3.4. As a consequence, when λn → 1, there exists a sequence {uλn} (denoted by {un}) of critical
point of JTq,λn . In Lemma 3.5, we give the proof of ∥un∥ 6 T for sufficiently large T > 0 by using the Pohozaev type identity.
At last, we give the proof of our main result.

Lemma 3.1. Γλ ≠ ∅ for all λ ∈ I .

Proof. We choose a radial functionψ ∈ C∞

0 (R
3)withψ > 0, ∥ψ∥ = 1 and supp(ψ) ⊂ BR for some R > 0, by (g3), we have

that for any C1 with 2C1δ

BR
ψ2 > 1, there exists C2 > 0 such that

G(t) > C1|t|2 − C2, t ∈ R+. (3.1)

Then, for t > T ,

JTq,λ(tψ) =
1
2
t2 +

q
2
χ(T−2t2)


R3

F(tψ)φtψ − λ


R3

G(tψ)

=
1
2
t2 − λ


BR

G(tψ)

6
1
2
t2 − δC1t2


BR
ψ2

+ C3.

Then we can choose t > 0 large such that JTq,λ(tψ) < 0. The proof is completed. �

Lemma 3.2. There exists a constant c > 0 such that cλ > c for all λ ∈ I .

Proof. By the conditions (g1) and (g2), for ε ∈ (0, γ−2
2 /2), there exists Cε > 0 such that

g(t) 6 ε|t| + Cε|t|p−1, t ∈ R, (3.2)

g(t) 6 ε|t| + Cε|t|5, t ∈ R, (3.3)

and

G(t) 6
ε

2
|t|2 +

Cε
p

|t|p, t ∈ R. (3.4)

Hence, for any u ∈ H and λ ∈ I , we have

JTq,λ(u) >
1
2
∥u∥2

−


R3


1
2
εu2

+
Cε
p

|u|p


>
1
4
∥u∥2

−
Cε
p
γ p
p ∥u∥p.

Since p > 2, we conclude that there exists ρ > 0 such that JTq,λ(u) > 0 for any λ ∈ I and u ∈ H with ∥u∥ ∈ (0, ρ]. In
particular, for ∥u∥ = ρ, we have JTq,λ(u) > c > 0. Fix λ ∈ I and γ ∈ Γλ, by the definition of Γλ, we have ∥γ (1)∥ > ρ. By the
continuity of γ , there exists tγ ∈ (0, 1) such that ∥γ (tγ )∥ = ρ. Therefore, for any λ ∈ I , we have

cλ > inf
γ∈Γλ

JTq,λ(γ (tγ )) > c > 0.

The proof is completed. �

Lemma 3.3. For any λ ∈ I and 4q2T < 1, each bounded Palais–Smale sequence of the functional JTq,λ admits a convergent
subsequence, whereT = C(T 2

+ T 2α).

Proof. Let λ ∈ I and {un} be a bounded (PS) sequence of JTq,λ, that is, {un} and {JTq,λ(un)} are bounded, (JTq,λ)
′(un) → 0 in H ′,

where H ′ is the dual space of H . We may assume that, up to a subsequence,

un ⇀ u in H,
un → u in Lp(R3),

un → u a.e. in R3.
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By (3.2), we obtain that
R3

g(un)(un − u)
 6


R3

[ε|un| + Cε|un|
p−1

]|un − u|

6 ε|un|2|un − u|2 + Cε|un|
p−1
p |un − u|p

6 εγ 2
2 ∥un∥∥un − u∥ + Cεγ p−1

p ∥un∥
p−1

|un − u|p.

It follows that
R3

g(un)(un − u) → 0.

By the condition (f) and Hölder’s inequality, we have that
R3

f (un)φun(un − u)
 6 c


R3

[|un| + |un|
α
]φun |un − u|

6 c

|φun |6|un|12/5|un − u|12/5 + |φun |6|un|

α
6 |un − u|β


,

where β = 6/(5 − α) ∈ (2, 6). Then, by Lemma 2.1 (iii) and Sobolev’s embedding theorem, we have
R3

f (un)φun(un − u) → 0.

Thus, by (2.6), we have

((JTq,λ)
′(un), un − u) =


1 + aTq (un)


(un, un − u)+ qhT (un)


R3

f (un)φun(un − u)− λ


R3

g(un)(un − u)

=

1 + aTq (un)


(un, un − u)+ o(1),

and then
1 + aTq (un)


(un, un − u) → 0.

When ∥un∥ 6 T , by Lemma 2.1 (iv), we obtain that
R3

F(un)φun

 6 qC 
∥un∥

4
+ ∥un∥

2(1+α) 6 qC 
T 4

+ T 2(1+α)
= qT 2T . (3.5)

By (2.7)aTq (un)
 6 qT−2

χ ′

T−2

∥un∥
2 

R3
F(un)φun

 6 4q2T . (3.6)

It follows from the condition 4q2T < 1 that 1+ aTq (un) > 1− 4q2T > 0 and ∥un∥ → ∥u∥. This together with un ⇀ u shows
that un → u in H . The proof is completed. �

Lemma 3.4. Let 4q2T < 1. Then for almost every λ ∈ I , there exists uλ ∈ H \ {0} such that (JTq,λ)
′(uλ) = 0 and JTq,λ(u

λ) = cλ.

Proof. First, by (2.5), it is easy to see that B is nonnegative, A(u) → ∞ as ∥u∥ → ∞ and JTq,λ(0) = 0. Then by Lemmas 3.1
and 3.2 and Theorem 2.2, for almost every λ ∈ I , there exists a bounded sequence {uλn} ⊂ H such that

JTq,λ(u
λ
n) → cλ,

(JTq,λ)
′(uλn) → 0.

By Lemma 3.3, we can obtain that there exists uλ ∈ H such that uλn → uλ in H . Therefore, (JTq,λ)
′(uλ) = 0 and JTq,λ(u

λ) = cλ.
It follows from Lemma 3.2 that uλ ∈ H \ {0}. �

According to Lemma 3.4, when λn → 1− with {λn} ⊂ I , we can find a sequence {uλn} (denoted by {un} for simplicity)
satisfying

JTq,λn(un) = cλn , (JTq,λn)
′(un) = 0.

The following lemma shows that ∥un∥ 6 T for all n ∈ N = {1, 2, . . .} which is the key for this paper.

Lemma 3.5. Let un be a critical point of JTq,λn at level cλn . Then for T > 1 sufficiently large, there exists q0 > 0with 8q20T
2T < 1

such that for any q ∈ [0, q0), ∥un∥ 6 T/
√
2 for all n ∈ N.
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Proof. First, since (JTq,λn)
′(un) = 0, by (2.6), un is aweak solution of (2.8)with g replaced by λng . So by Lemma 2.3, un satisfies

the following Pohozaev identity
1 + aTq (un)

 
1
2


R3

|∇un|
2
+

3
2


R3

u2
n


+

5
2
qhT (un)


R3

F(un)φun = 3λn


R3

G(un). (3.7)

On the other hand, by JTq,λn(un) = cλn , we have that

3
2


R3

[|∇un|
2
+ u2

n] +
3
2
qhT (un)


R3

F(un)φun − 3λn


R3

G(un) = 3cλn . (3.8)

Hence, by (3.7), (3.8) and 8q2T < 1, we can obtain that

1
2


R3

|∇un|
2 6


1 + aTq (un)

 
R3

|∇un|
2

= 3cλn +
3
2
aTq (un)∥un∥

2
+ qhT (un)


R3

F(un)φun . (3.9)

We now estimate the right hand side of (3.9). By themin–max definition of themountain pass level, Lemma 3.1 and (3.1),
we have

cλn 6 max
t

JTq,λn(tψ)

6 max
t


1
2
t2 − λn


R3

G(tψ)


+ max
t

q
2
χ(t2T−2)


R3

F(tψ)φtψ

6 max
t


1
2
t2 − δC1t2


BR
ψ2

+ C3


+ Aq(T )

= C3 + Aq(T ).

If t > T , then χ(t2T−2) = 0. Thus, by (3.5), we have that

Aq(T ) 6
q
2

max
t∈[0,T ]


R3

F(tψ)φtψ

 6
1
2
q2T 2T .

By (3.5) and (3.6), we have also that

qhT (un)


R3

F(un)φun 6 q2T 2T ,
and

|aTq (un)|∥un∥
2 6 4q2T 2T .

Then, by (3.9), we have

1
2


R3

|∇un|
2 6 3


C3 +

1
2
q2T 2T

+ 6q2T 2T + q2T 2T = 3C3 +
17
2

q2T 2T . (3.10)

On the other hand, since ((JTq,λn)
′(un), un) = 0, by (2.6) and (3.3), we have that

[1 + aTq (un)]∥un∥
2
+ qhT (un)


R3

f (un)φunun = λn


R3

g(un)un 6 ε|un|
2
2 + Cε|un|

6
6. (3.11)

Thus, by (3.6), (3.10) and (3.11), we obtain that

(1/2 − εγ 2
2 )∥un∥

2 6 Cε|un|
6
6 6 S−3Cε|∇un|

6
2 6 S−3Cε


6C3 + 17q2T 2T3

,

and then

∥un∥
2 6 C4


6C3 + 17q2T 2T3

. (3.12)

One chooses T sufficiently large such that T 2 > 2C4(6C3 + 17/8)3. We then choose q0 > 0 such that 8q20T
2T < 1. Hence, for

all q ∈ [0, q0), we have from (3.12) that

∥un∥
2 6 C4 (6C3 + 17/8)3 6 T 2/2,

that is ∥un∥ 6 T/
√
2. Thus we obtain the conclusion. �
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4. Proof of Theorem 1.1

Proof of Theorem 1.1. Let T , q0 be defined as in Lemma 3.5, and let un be a critical point for JTq,λn at level cλn . Then from
Lemma 3.5 we have that ∥un∥ 6 T/

√
2 and {cλn} is bounded. Hence

JTq,λn(un) =
1
2
∥un∥

2
+

q
2


R3

F(un)φun − λn


R3

G(un).

In the following, we show that {un} is a (PS) sequence of Jq. Indeed, since

Jq(un) = Jq,λn(un)+ (λn − 1)


R3
G(un),

(J ′q(un), v) = ((JTq,λn)
′(un), v)+ (λn − 1)


R3

g(un)v, v ∈ H.

From (3.2) and (3.4), the boundedness of {un} implies


R3 G(un) is bounded and


R3 g(un)v
 6 C∥v∥. Thus, when λn → 1,

we have that {Jq(un)} is bounded and J ′q(un) → 0. Therefore {un} is a bounded (PS) sequence of Jq.
By Lemma 3.3, {un} has a convergent subsequence. We may assume that un → u. Consequently, J ′q(u) = 0. According to

Lemma 3.2, we have that Jq(u) = limn→∞ Jq(un) = limn→∞ JTq,λn(un) > c > 0 and u is a positive solution by the conditions
(f) and (g1). The proof is completed. �
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