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1 Introduction

In this article, we will consider a modified periodic two-component Camassa-

Holm system on the circle S with S = R/Z (the circle of unit lengh).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mt + umx + 2uxm+ ρρx = 0, t > 0, x ∈ R,

ρt + (uρ)x = 0, t > 0, x ∈ R,

m(0, x) = m0(x), x ∈ R,

ρ(0, x) = ρ0(x), x ∈ R,

m(t, x+ 1) = m(t, x), t > 0, x ∈ R,

ρ(t, x+ 1) = ρ(t, x), t > 0, x ∈ R

(1)

where m = (1− 2∂2
x+∂4

x)u = (1−∂2
x)

2u and R is real number. In fact, system

(1) is a two-component generalization of the following equation ( If ρ = 0 in

system (1))

mt + umx + 2uxm = 0, m = (1− ∂2
x)

2u. (2)

Eq.(2) is firstly derived as the Euler-Poincare differential equation on the

Bott-Virasoro group with respect to the H2 metric [1], and it is known as a

modified Camassa-Holm equation and also viewed as a geodesic equation on

some diffeomorphism group [1]. It is shown in [1] that the well-posedness and

dynamics of equation (2) on the unit circle S are significant different from that

of the Camassa-Holm equation. For example, Eq.(2) does not conform with

blow-up solution in finite time.

If m = (1 − ∂2
x)u in system (1), system (1) becomes the two-component

Camassa-Holm system.

⎧⎪⎨
⎪⎩
(1− ∂2

x)ut + u(1− ∂2
x)ux + 2ux(1− ∂2

x)u+ ρρx = 0, t > 0, x ∈ R,

ρt + (uρ)x = 0, t > 0, x ∈ R,
(3)
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where the variable u(t, x) represents the horizontal velocity of the fluid, and

ρ(t, x) is related to the free surface elevation from equilibrium with the bound-

ary assumptions, u → 0 and ρ → 1 as | x |→ ∞. System (3) was found orig-

inally in [2], but it was firstly derived rigorously by Constantin and Ivanov

[3]. The system has bi-Hamiltonian structure and is complete integrability.

Since the birth of the system, a lot of literature was devoted to the study

of the two-component Camassa-Holm system. Some mathematical and phys-

ical properties of the system have been obtained. Chen et al.[4] established a

reciprocal transformation between the two-component Camassa-Holm system

and the first negative flow of the AKNS hierarchy. Escher et al.[5] used Kato’s

theory to establish local well-posedness for the two-component system and

presented some precise blow-up scenarios for strong solutions of the system.

In [3], Constantin and Ivanov described the sufficient conditions for wave-

breaking and global solution to the system. It is worthwhile to mention that

the wave-breaking criterions of strong solutions are established in the Soblev

space Hs × Hs−1 with s > 5
2
and some examples are given to illustrate the

application of the results [6]. The other results related to the system can be

found in [7–17].

The main goal of present paper is to study the local well-posedness and global

existence for the modified periodic two-component Camassa-Holm system (1).

We use the Kato’s theory [18] to prove the local well-posedness theorem in

in the Soblev space Hs × Hs−2 with s > 7
2
. On the other hand, we derive a

sufficient condition for global solution in the Soblev space Hs × Hs−2 with

s > 7
2
, which can be done because ‖ uxxx ‖L∞ and ‖ ρx ‖L∞ can be controlled

by ‖ u ‖Hs and ‖ ρ ‖Hs−2 separately if s > 7
2
.
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2 The main results

We denote by ∗ the convolution and let [A,B] = AB − BA denote the com-

mutator between A and B. Note that if g(x) := 1 + 2
∑∞

n=1
1

1+2n2+n4 cos(nx),

then (1 − ∂2
x)

−2f = g ∗ f for all f ∈ L2(R) and g ∗m = u. We let C denote

all of different positive constants which depend on initial data. To investigate

dynamics of system(1), we can rewrite system (1) in the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut + uux + ∂xg ∗ [u2 + u2
x − 7

2
u2
xx − 3uxuxxx +

1
2
ρ2] = 0, t > 0, x ∈ R,

ρt + (uρ)x = 0, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

ρ(0, x) = ρ0(x), x ∈ R,

u(t, x+ 1) = u(t, x), t > 0, x ∈ R,

ρ(t, x+ 1) = ρ(t, x), t > 0, x ∈ R.

(4)

The main results of present paper are listed as follows.

Theorem 2.1. Given z0 = (u0, ρ0) ∈ Hs(S) × Hs−2(S)(s > 7
2
), there exist

a maximal T = T (‖ z0 ‖Hs(S)×Hs−2(S)) and a unique solution z = (u, ρ) to

problem (4), such that

z = z(·, z0) ∈ C
(
[0, T );Hs ×Hs−2

)
∩ C1

(
[0, T );Hs−1 ×Hs−3

)
.

Moreover, the solution depends continously on the initial data, the mapping

z0 → z(·, z0) : Hs ×Hs−2

→ C
(
[0, T );Hs ×Hs−2

)
∩ C1

(
[0, T );Hs−1 ×Hs−3

)

is continuous.

A sufficient condition of global existence is given in the following.
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Theorem 2.2. Let z0 = (u0, ρ0) ∈ Hs(S)×Hs−2(S), s > 7
2
. Then system (4)

admits a unique solution satisfying

z = (u, ρ) ∈ C
(
[0,∞);Hs ×Hs−2

)
∩ C1

(
[0,∞);Hs−1 ×Hs−3

)
.

3 Local well-posedness

In this section, we establish the local well-posedness for system (1) by using

the Kato’s theory [18].

Set Y = Hs(S) × Hs−2(S), X = Hs−1(S) × Hs−3(S), Λ = (1 − ∂2
x)

1
2 , Q =⎛

⎜⎝Λ 0

0 Λ

⎞
⎟⎠ and f(z) =

⎛
⎜⎝−∂x(1− ∂2

x)
−2(u2 + u2

x − 7
2
u2
xx − 3uxuxxx +

1
2
ρ2)

−uxρ

⎞
⎟⎠ .

In order to verify Theorem 2.1, we need the following Lemmas in which μ1,

μ2, μ3 and μ4 are constants depending only on max{‖ z ‖Y , ‖ y ‖Y }.

Lemma 3.1. ([19]) If X1 and X2 are Banach spaces and Ai ∈ G(Xi, 1, β) ,

i = 1, 2. Then the operator A =

⎛
⎜⎝A1 0

0 A2

⎞
⎟⎠ with D(A) = D(A1)×D(A2).

Let T(t) be a C0-semigroup on X with generator -A and assume that Y is

continuously embedded in X. We say that Y is A-admissible if T (t)Y ⊂ Y for

all t ≥ 0 and the restriction of T (t) to Y is a C0-semigroup on Y .

For later purpose we need the following result.

Lemma 3.2. ([20]) The operator A(u) = u∂x with u ∈ Hs, s > 3
2
belongs to

G(Hs, 1, β).

From Lemmas 3.1-3.2, we have the following lemma.
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Lemma 3.3. The operator A(z) =

⎛
⎜⎝u∂x 0

0 u∂x

⎞
⎟⎠ belongs to G(Hs−1(S) ×

Hs−3(S), 1, β).

Lemma 3.4. LetA(z) =

⎛
⎜⎝u∂x 0

0 u∂x

⎞
⎟⎠. ThenA(z) ∈ L(Hs(S)×Hs−2(S), Hs−1(S)×

Hs−3(S)). Moreover, for all z, y, w ∈ Hs(S)×Hs−2(S),

‖ (A(z)− A(y))w ‖Hs−1×Hs−3≤ μ1 ‖ z − y ‖Hs−1×Hs−3‖ w ‖Hs×Hs−2 .

Proof. Let z, y, w ∈ Hs ×Hs−2, s > 7
2
. Then

(A(z)− A(y))w =

⎛
⎜⎝ (u− v)∂x 0

0 (u− v)∂x

⎞
⎟⎠

⎛
⎜⎝w1

w2

⎞
⎟⎠

=

⎛
⎜⎝ (u− v)∂xw1

(u− v)∂xw2

⎞
⎟⎠ .

Thus, we have

‖ (A(z)− A(y))w ‖Hs−1×Hs−3

≤‖ (u− v)∂xw1 ‖Hs−1 + ‖ (u− v)∂xw2 ‖Hs−3

≤‖ u− v ‖Hs−1‖ ∂xw1 ‖Hs−1 + ‖ u− v ‖Hs−3‖ ∂xw2 ‖Hs−3

≤ C ‖ z − y ‖Hs−1×Hs−3‖ w ‖Hs×Hs−2 .

Taking y = 0 in the above inequality, we obtain that A(z) ∈ L(Hs(S) ×
Hs−2(S), Hs−1(S)×Hs−3(S)). This completes the proof of Lemma 3.4.

Lemma 3.5. ([21]) Let f ∈ Hs, s > 3
2
. Then

‖ Λ−r[Λr+t+1,Mf ]Λ
−t ‖L2≤ C ‖ f ‖Hs , |r|, |t| ≤ s− 1,

where Mf is the operator of multiplication by f and C is a positive constant

depending only on r, t.

Lemma 3.6. ([18]) Let r, t be real numbers such that −r < t ≤ r. Then
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‖ fg ‖Ht≤ C ‖ f ‖Hr‖ g ‖Ht , if r >
1

2
,

‖ fg ‖
Ht+r− 1

2
≤ C ‖ f ‖Hr‖ g ‖Ht , if r <

1

2
,

where C is a positive constant depending on r, t.

Lemma 3.7. For s > 7
2
, z, y ∈ Hs(S)×Hs−2(S) and w ∈ Hs−1(S)×Hs−3(S),

it holds that B(z) = QA(z)Q−1 − A(z) ∈ L(Hs−1 ×Hs−2) and

‖ (B(z)− B(y))w ‖Hs−1×Hs−3≤ μ2 ‖ z − y ‖Hs×Hs−2‖ w ‖Hs−1×Hs−3 .

Proof. Let z, y ∈ Hs ×Hs−2, w ∈ Hs−1 ×Hs−3, s > 7
2
. Then

(B(z)− B(y))w =

⎛
⎜⎝Λ(u− v)∂xΛ

−1w1 − (u− v)∂xw1

Λ(u− v)∂xΛ
−1w2 − (u− v)∂xw2

⎞
⎟⎠ .

Thus, we have

‖ (B(z)− B(y))w ‖Hs−1×Hs−3

≤‖ Λ(u− v)∂xΛ
−1w1 − (u− v)∂xw1 ‖Hs−1

+ ‖ Λ(u− v)∂xΛ
−1w2 − (u− v)∂xw2 ‖Hs−3

≤‖ [Λ, (u− v)∂x]Λ
−1w1 ‖Hs−1 + ‖ [Λ, (u− v)∂x]Λ

−1w2 ‖Hs−3

≤‖ Λs−1[Λ, (u− v)∂x]Λ
−1w1 ‖L2 + ‖ Λs−3[Λ, (u− v)∂x]Λ

−1w2 ‖L2

≤‖ Λs−1[Λ, (u− v)]Λ1−s ‖L2‖ Λs−2∂xw1 ‖L2

+ ‖ Λs−3[Λ, (u− v)]Λ3−s ‖L2‖ Λs−4∂xw2 ‖L2

≤‖ u− v ‖Hs−1‖ w1 ‖Hs−1 + ‖ u− v ‖Hs−3‖ w2 ‖Hs−3

≤ μ2 ‖ z − y ‖Hs×Hs−2‖ w ‖Hs−1×Hs−3 .

where we applied Lemma 3.5 with r = 1 − s and t = s − 1 (with r = 3 − s

and t = s − 3). Taking y = 0 in the above inequality, we obtain B(z) ∈
L(Hs−1 ×Hs−3). This completes the proof of Lemma 3.7.

Lemma 3.8. Let

f(z) =

⎛
⎜⎝−∂x(1− ∂2

x)
−2(u2 + u2

x − 7
2
u2
xx − 3uxuxxx +

1
2
ρ2)

−uxρ

⎞
⎟⎠ .
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Then f(z) is bounded on bounded sets in Hs(S) × Hs−2(S) with s > 7
2
and

satisfies

(a) ‖ f(z)− f(y) ‖Hs×Hs−2≤ μ3 ‖ z − y ‖Hs×Hs−2 , z, y ∈ Hs ×Hs−2.

(b) ‖ (f(z)− f(y)) ‖Hs−1×Hs−3≤ μ4 ‖ z − y ‖Hs−1×Hs−3 , z, y ∈ Hs−1 ×Hs−3.

Proof. (a) Let y = (v, σ), we have

‖ f(z)− f(y) ‖Hs×Hs−2

≤‖ ∂x(1− ∂2
x)

−2(u2 + u2
x −

7

2
u2
xx − 3uxuxxx − v2 − v2x +

7

2
v2xx

+3vxvxxx) ‖Hs + ‖ ∂x(1− ∂2
x)

−2(
1

2
ρ2 − 1

2
σ2) ‖Hs

+ ‖ uxρ− vxσ ‖Hs−2

≤ C(‖ u2 − v2 ‖Hs−3 + ‖ u2
x − v2x ‖Hs−3 + ‖ u2

xx − v2xx ‖Hs−3

+ ‖ uxuxxx − vxvxxx ‖Hs−3 + ‖ ρ2 − σ2 ‖Hs−3 + ‖ uxρ− vxσ ‖Hs−2). (5)

Using Lemma 3.6 with t = r, one has

‖ u2 − v2 ‖Hs−3≤ C(‖ u+ v ‖Hs−3‖ u− v ‖Hs−3) ≤ C ‖ u− v ‖Hs , (6)

‖ u2
x − v2x ‖Hs−3≤ C(‖ u+ v ‖Hs−2‖ u− v ‖Hs−2) ≤ C ‖ u− v ‖Hs , (7)

‖ u2
xx − v2xx ‖Hs−3≤ C ‖ u− v ‖Hs , (8)

‖ ρ2 − σ2 ‖Hs−3≤ C ‖ ρ− σ ‖Hs−2 (9)

and

‖ uxρ− vxσ ‖Hs−2

≤‖ uxρ− uxσ ‖Hs−2 + ‖ uxσ − vxσ ‖Hs−2

≤ C ‖ u ‖Hs‖ ρ− σ ‖Hs−2 +C ‖ σ ‖Hs−2‖ u− v ‖Hs . (10)

For the forth term in (5), we get from Lemma 3.6 with t = r that
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‖ uxuxxx − vxvxxx ‖Hs−3

≤‖ uxuxxx − uxvxxx + uxvxxx − vxvxxx ‖Hs−3

≤‖ uxuxxx − uxvxxx ‖Hs−3 + ‖ uxvxxx − vxvxxx ‖Hs−3

≤ C ‖ u− v ‖Hs , (11)

Therefore, from (6)-(11), we obtain

‖ f(z)− f(y) ‖Hs×Hs−2≤ C ‖ u− v ‖Hs +C ‖ ρ− σ ‖Hs−2

= μ3 ‖ z − y ‖Hs×Hs−2 , (12)

from which we know (a) holds.

Now, we prove (b).

‖ f(z)− f(y) ‖Hs−1×Hs−3

≤‖ ∂x(1− ∂2
x)

−2(u2 + u2
x −

7

2
u2
xx − 3uxuxxx − v2 − v2x +

7

2
v2xx

+3vxvxxx) ‖Hs−1 + ‖ ∂x(1− ∂2
x)

−2(
1

2
ρ2 − 1

2
σ2) ‖Hs−1

+ ‖ uxρ− vxσ ‖Hs−3

≤‖ u2 − v2 ‖Hs−4 + ‖ u2
x − v2x ‖Hs−4 + ‖ u2

xx − v2xx ‖Hs−4

+ ‖ uxuxxx − vxvxxx ‖Hs−4 +c ‖ ρ2 − σ2 ‖Hs−4 + ‖ uxρ− vxσ ‖Hs−3 .(13)

We will estimate each of the terms on the right-hand side of (13). For the first

term , we get from Lemma 3.6 that

‖ u2 − v2 ‖Hs−4≤‖ (u+ v)(u− v) ‖Hs−4

≤‖ u+ v ‖Hs−4‖ u− v ‖Hs−3≤ C ‖ u− v ‖Hs−1 . (14)

In an analogous way to the first term, we have

‖ u2
x − v2x ‖Hs−4≤ C ‖ u− v ‖Hs−1 , (15)

‖ u2
xx − v2xx ‖Hs−4≤ C ‖ u− v ‖Hs−1 (16)

and

‖ ρ2 − σ2 ‖Hs−4≤ C ‖ ρ− σ ‖Hs−3 (17)
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For the forth term in (13), one has

‖ uxuxxx − vxvxxx ‖Hs−4

≤‖ uxuxxx − uxvxxx + uxvxxx − vxvxxx ‖Hs−4

≤‖ uxuxxx − uxvxxx ‖Hs−4 + ‖ uxvxxx − vxvxxx ‖Hs−4

≤‖ ux ‖Hs−3‖ uxxx − vxxx ‖Hs−4 + ‖ vxxx ‖Hs−4‖ ux − vx ‖Hs−3

≤ C ‖ u− v ‖Hs−1 . (18)

For the last term, note that s > 7
2
, it yields

‖ uxρ− vxσ ‖Hs−3

≤‖ uxρ− uxσ ‖Hs−3 + ‖ uxσ − vxσ ‖Hs−3

≤ C ‖ ρ− σ ‖Hs−3 +C ‖ u− v ‖Hs−1 . (19)

Therefore, from (13)-(19), we deduce

‖ f(z)− f(y) ‖Hs−1×Hs−3≤ C ‖ u− v ‖Hs−1 +C ‖ ρ− σ ‖Hs−3

= μ4 ‖ z − y ‖Hs−1×Hs−3 . (20)

This completes the proof of Lemma 3.8.

Proof of Theorem 2.1. Applying the Kato Theorem for abstract quasi-linear

evolution equations of hyperbolic type [18], Lemmas 3.3-3.4, 3.7 and 3.8, we

obtain the local well-posedness of system (4) in Hs ×Hs−2, s > 7
2
, and

z = z(·, z0) ∈ C
(
[0, T );Hs ×Hs−2

)
∩ C1

(
[0, T );Hs−1 ×Hs−3

)
.

4 Global solution

To prove Theorem 2.2, we need the following lemmas.

Lemma 4.1.([22]) The following estimates hold

(i) For s ≥ 0,
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‖ fg ‖Hs≤ C(‖ f ‖Hs‖ g ‖L∞ + ‖ f ‖L∞‖ g ‖Hs). (21)

(ii) For s > 0,

‖ f∂xg ‖Hs≤ C(‖ f ‖Hs+1‖ g ‖L∞ + ‖ f ‖L∞‖ ∂xg ‖Hs). (22)

Lemma 4.2. ([24]) Let r > 0. If u ∈ Hr ∩W 1,∞ and v ∈ Hr−1 ∪ L∞, then

‖ [Λr, u]v ‖L2≤ C(‖ ux ‖L∞‖ Λr−1 ‖L2 + ‖ Λru ‖L2‖ v ‖L∞).

Lemma 4.3. Let z0 = (u0, ρ0) ∈ Hs(S)×Hs−2(S), s > 7
2
. Then ‖ z ‖Hs×Hs−2=‖

(u, ρ) ‖Hs×Hs−2 is finite for 0 < t < ∞.

Proof. Applying Λs to ut = −uux − f(u), where f(u) = ∂xΛ
−4(u2 + u2

x −
7
2
u2
xx − 3uxuxxx +

1
2
ρ2), and multiplying by Λsu and the integrating over S, we

have

d

dt

∫
S

(Λsu)2dx = −2
∫
S

ΛsuΛsuuxdx− 2
∫
S

ΛsuΛsf(u)dx. (23)

From lemma 4.2 and the Cauchy inequality, we reach

∫
S

ΛsuΛsuuxdx ≤
∫
S

Λsu(Λsuux − uΛsux)dx+
∫
S

(Λsu)uΛsuxdx

≤ C ‖ ux ‖L∞‖ u ‖2Hs . (24)

The Cauchy inequality ensures

∫
S

ΛsuΛsf(u)dx ≤‖ u ‖Hs‖ f(u) ‖Hs (25)

and

‖ f(u) ‖Hs≤ C ‖ u2 + u2
x −

7

2
u2
xx − 3uxuxxx +

1

2
ρ2 ‖Hs−3

11



≤ C(‖ u2 ‖Hs−3 + ‖ u2
x ‖Hs−3 + ‖ u2

xx ‖Hs−3 + ‖ uxuxxx ‖Hs−3

+ ‖ ρ2 ‖Hs−3)

≤ C(‖ u ‖L∞‖ u ‖Hs−3 + ‖ ux ‖L∞‖ ux ‖Hs−3

+ ‖ uxx ‖L∞‖ uxx ‖Hs−3 + ‖ ux ‖Hs−2‖ uxx ‖L∞

+ ‖ ux ‖L∞‖ uxxx ‖Hs−3 + ‖ ρ ‖L∞‖ ρ ‖Hs−3), (26)

where we have used Lemma 4.1.

Hence,

d

dt
‖ u ‖2Hs≤ C1(‖ u ‖2Hs + ‖ u ‖3Hs + ‖ u ‖Hs‖ ρ ‖2Hs−2), (27)

where C1 = C1(‖ z0 ‖Hs×Hs−2).

Applying Λs−2 to ρt = −uxρ − uρx, and multiplying by Λs−2ρ and the inte-

grating over S, we have

d

dt

∫
S

(Λs−2ρ)2dx = −2
∫
S

Λs−2ρΛs−2(uxρ)dx− 2
∫
S

Λs−2ρΛs−2(uρx)dx. (28)

From Lemma 4.2 and the Cauchy inequality, we have

d

dt
‖ ρ ‖2Hs−2≤ C(‖ u ‖Hs‖ ρ ‖2Hs−2 + ‖ ρ ‖2Hs−2), (29)

which together to (27) yields

d

dt
(‖ u ‖2Hs + ‖ ρ ‖2Hs−2)

≤ C(‖ u ‖2Hs + ‖ u ‖3Hs + ‖ u ‖Hs‖ ρ ‖2Hs−2 + ‖ ρ ‖2Hs−2)

≤ C(‖ u ‖2Hs + ‖ ρ ‖2Hs−2)(‖ u ‖2Hs + ‖ ρ ‖2Hs−2 +1), (30)

which implies

‖ u ‖2Hs + ‖ ρ ‖2Hs−2

‖ u ‖2Hs + ‖ ρ ‖2Hs−2 +1
≤ ‖ u0 ‖2Hs + ‖ ρ0 ‖2Hs−2

‖ u0 ‖2Hs + ‖ ρ0 ‖2Hs−2 +1
eCt. (31)

Note that 0 ≤ t < ∞, we get from (31) that
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‖ u ‖2Hs + ‖ ρ ‖2Hs−2

‖ u ‖2Hs + ‖ ρ ‖2Hs−2 +1
≤ ‖ u0 ‖2Hs + ‖ ρ0 ‖2Hs−2

‖ u0 ‖2Hs + ‖ ρ0 ‖2Hs−2 +1
,

which results in

‖ u ‖2Hs + ‖ ρ ‖2Hs−2≤‖ u0 ‖2Hs + ‖ ρ0 ‖2Hs−2 . (32)

This completes the proof of Lemma 4.3.

Proof of Theorem 2.2. Theorem 2.2 is a direct consequence of Theorem 2.1

and Lemma 4.3.

Remark. We have investigated the local well-posedness and global existence

of system (1) on the periodic case. In fact, the above results hold true with

m = (1− ∂2
x)

ku, k ≥ 2 on the periodic case.

⎧⎪⎨
⎪⎩
mt + umx + 2uxm+ ρρx = 0, t > 0, x ∈ R,

ρt + (uρ)x = 0, t > 0, x ∈ R.
(33)

More precisely, the local well-posedness Theorem 2.1 and global existence

result Theorem 2.2 hold true in the Soblev space Hs(S) ×Hs−k(S) with s >

2k− 1
2
. More dynamics related to system (1) will be discussed in forthcoming

paper.
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