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In this paper, we study positive Toeplitz operators on the Bergman space via their
Berezin transforms. Surprisingly we show that the positivity of a Toeplitz operator
on the Bergman space is not completely determined by the positivity of the Berezin
transform of its symbol. In fact, we show that even if the minimal value of the
Berezin transform of a quadratic polynomial of |z| on the unit disk is positive, the
Toeplitz operator with the function as the symbol may not be positive.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let dA denote Lebesgue area measure on the unit disk D in the complex plane, normalized so that the
measure of the disk D is 1. The Bergman space L2

a is the Hilbert space consisting of the analytic functions
on D that are square integrable with respect to the measure dA. For ϕ ∈ L∞(D), the Toeplitz operator Tϕ

with symbol ϕ, is the operator defined on L2
a by

Tϕf = P (ϕf),

where P : L2(D, dA) → L2
a is the orthogonal projection. Using the reproducing kernel Kz(w) = 1

(1−zw)2 , we
express the Toeplitz operator to be an integral operator:

Tϕf(z) =
∫
D

ϕ(w)f(w)Kz(w) dA(w)

=
∫
D

ϕ(w)f(w)
(1 − wz)2 dA(w).
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This immediately gives

〈Tϕf, g〉 =
∫
D

ϕ(w)f(w)g(w) dA(w)

for f, g ∈ L2
a, and hence Tϕ is self-adjoint if and only if ϕ is real-valued. If ϕ(z) � 0 for z ∈ D, then Tϕ is

positive.
Like pseudodifferential operators, there are deep connections between properties of Toeplitz operators

and properties of their symbols [1,5,13]. In this paper we study the simple but fundamental problem when
Tϕ is positive. We will show that the positivity of Tϕ is not completely determined by the positivity of ϕ.

First we observe that if Tϕ is positive, then

〈Tϕkz, kz〉 � 0,

where kz called the normalized Bergman reproducing kernel of L2
a given by

kz(w) = Kz(w)
‖Kz‖

= 1 − |z|2
(1 − zw)2 .

For A a bounded operator on L2
a, the Berezin transform of A is the function Ã on D defined by

Ã(z) = 〈Akz, kz〉.

For ϕ ∈ L∞(D), ϕ̃ is called the Berezin transform of ϕ given by

ϕ̃(z) = T̃ϕ(z).

The Berezin transform is very useful in studying Toeplitz operators on the Bergman space and enjoys many
nice properties:

(1) Tϕ = 0 iff ϕ̃(z) = 0 for z ∈ D; moreover, A = 0 iff Ã(z) = 0 for all z ∈ D (see [12]);
(2) Tϕ is self-adjoint on L2

a iff ϕ̃ is real-valued;
(3) Tϕ is compact on the Bergman space iff ϕ̃(z) → 0 as |z| → 1− (see [2]);
(4) There is no constant M > 0 such that

‖Tf‖ � M‖f̃‖∞

for all f ∈ L∞(D) [10]. In general Coburn [3] showed that there is no constant M > 0 such that

‖A‖ � M‖Ã‖∞

for all bounded operators A on the Bergman space.

These lead to the following natural question:

Is Tϕ positive if the Berezin transform ϕ̃(z) is nonnegative on D?

The answer to the analogous question for Toeplitz operators on Hardy space H2 is positive by means of
well known result of the spectral theorem for the self-adjoint Hardy Toeplitz operators or the harmonic
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extension. On the Bergman space the answer is also affirmative if the symbol of the Toeplitz operator is
harmonic on the unit disk.

To study the above question, we note that the Berezin transform ϕ̃ has a deep connection with the Mellin
transform of a function g integrable on [0, 1], which is defined by

ĝ(z) =
1∫

0

g(r)rz−1 dr.

Every function ϕ in L2(D, dA) can be written in the polar form:

ϕ
(
reiθ

)
=

∞∑
k=−∞

ϕk(r)eikθ.

Cuckovic obtained in [4] the connection between the Berezin transform and the Mellin transform:

ϕ̃
(
reiθ

)
= 2

(
1 − r2)2 ∞∑

k=−∞
r|k|

[ ∞∑
n=1

n
(
n + |k|

)
ϕ̂k

(
2n + |k|

)
r2(n−1)

]
eikθ.

For a radial function ϕ(z), i.e. ϕ(reiθ) = ϕ(r) for z ∈ D, the affirmative answer to the above question is
equivalent to

ϕ̃(z) � 0 on D iff ϕ̂(2n) � 0 for n � 1.

But using (4) we will show that the answer is no for a bounded function ϕ on the unit disk. In this
paper, we will show that the positivity of Tϕ is not completely determined by the positivity of the Berezin
transform of ϕ. However, it is more difficult to characterize the positivity of a Bergman Toeplitz operator
even if the symbol ϕ is a continuous function on the closure of the unit disk. We consider the special case
of the radial function ϕ(z) = |z|2 + a|z| + b, where a and b are both real numbers. For this type of ϕ, we
will prove that Tϕ � 0 and ϕ̃ � 0 are “almost” equivalent, but in the last section we will show an example
that ϕ̃ is strictly positive on the unit disk and Tϕ is not positive.

2. Main results

First let us consider the Toeplitz operators on Hardy spaces. The following theorem is a consequence of
Hartman–Wintner’s theorem or the harmonic extension. We will present two proofs which both work on
the Bergman space for harmonic symbols.

Theorem 2.1. Let ϕ ∈ L∞(∂D), then the Toeplitz operator Tϕ is positive on the Hardy space if and only if
ϕ � 0 a.e. on the unit circle ∂D.

Proof. As we pointed out in the introduction, by the integral representation of Toeplitz operators, we see
that if the symbol ϕ is nonnegative, then Tϕ is positive. So we need only to show that if Tϕ is positive, then
ϕ is nonnegative. The first proof follows from Hartman–Wintner’s theorem in [5] or [7]

σ(Tϕ) =
[
ess inf(ϕ), ess sup(ϕ)

]
if ϕ is a real-valued function in L∞(∂D). If Tϕ is positive, then the spectrum σ(Tϕ) must be nonnegative.
Thus ϕ(z) is nonnegative (almost everywhere on the unit circle).
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The second method uses the harmonic extension. Let kz denote the reproducing kernel of the Hardy
space at z ∈ D. If Tϕ is positive, then

〈Tϕkz, kz〉 � 0.

On the other hand,

〈Tϕkz, kz〉 =
∫
∂D

1 − |z|2
|1 − zeiθ|2ϕ

(
eiθ

)
dθ,

which is the harmonic extension of ϕ at z. The radial limit of the above functions converges to ϕ(eiθ) almost
everywhere if z = reiθ → eiθ [5]. Thus ϕ(eiθ) � 0 almost everywhere on the unit circle. �

Now we consider the Toeplitz operator Tϕ acting on L2
a. If ϕ is harmonic on D, then we have the same

result as one in Theorem 2.1. The following theorem is also a consequence of the spectrum of Tϕ for a real
valued harmonic function ϕ in [9]. But we present the proof by using the Berezin transform to follow the
second method in the proof of the above theorem.

Theorem 2.2. Let ϕ ∈ L∞(D) be a harmonic function. Tϕ � 0 on the Bergman space iff ϕ(z) � 0 for all
z ∈ D.

Proof. If Tϕ is positive, then

〈Tϕkz, kz〉 � 0

for z ∈ D. Thus this implies

ϕ̃(z) � 0

for z ∈ D. So we obtain

ϕ(z) = ϕ̃(z) � 0.

The first equality follows from the fact that

ϕ̃(z) = ϕ(z)

for all z ∈ D (see Proposition 6.13 in [13]) since ϕ is harmonic.
Conversely, in the first section we have pointed out that Tϕ is positive if ϕ(z) � 0 for z ∈ D. �
For a harmonic function ϕ, the above theorem implies that Tϕ is positive on the Bergman space iff the

Berezin transform ϕ̃(z) � 0 on the unit disk. For a general function ϕ in L∞(D), the following theorem
shows that this is not true.

Theorem 2.3. The positivity of Toeplitz operators on the Bergman space is not completely determined by the
positivity of the Berezin transform of their symbols.

Proof. Suppose that for any real-valued functions f in L∞, if f̃(z) � 0 on D, then Tf is positive. We will
show that this implies the following inequality

‖Tf‖ � 2‖f̃‖∞
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for all f in L∞(D), which is a contraction to the following fact in [10] that there is no constant M > 0 such
that

‖Tf‖ � M‖f̃‖∞

for all f ∈ L∞(D).
To do this, we consider that f is a real-valued function in L∞(D). Then

˜‖f̃‖∞ ∓ f(z) � 0

for z ∈ D. Thus we have

T‖f̃‖∞∓f � 0,

to get

‖f̃‖∞ � ±Tf .

So this gives that for any h in L2
a,

‖f̃‖∞‖h‖2
2 � ±〈Tfh, h〉.

Hence

‖f̃‖∞‖h‖2
2 �

∣∣〈Tfh, h〉
∣∣.

Since for a self-adjoint operator Tf ,

‖Tf‖ = sup
‖h‖�1, h∈L2

a

∣∣〈Tfh, h〉
∣∣,

we obtain

‖Tf‖ � ‖f̃‖∞.

Next for f ∈ L∞(D), we also have

‖�̃f‖∞ � ‖f̃‖∞,

and

‖	̃f‖∞ � ‖f̃‖∞,

to get

‖Tf‖ = ‖T�f + iT�f‖
� ‖T�f‖ + ‖T�f‖

� ‖�̃f‖∞ + ‖	̃f‖∞
� 2‖f̃‖∞.

This completes the proof. �
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Little is known concerning the positivity of the Toeplitz operator with symbol ϕ in C(D), but for the
special case of ϕ(z) = |z|2 + a|z| + b we have the following result.

Theorem 2.4. Let ϕ(z) = |z|2 + a|z|+ b (a, b ∈ R). Suppose a ∈ R \ (−2,−5
4 ), then Tϕ is positive if and only

if ϕ̃(z) is a nonnegative function on D.

On the other hand, we have the following counter examples of the above theorem even for quadratic
polynomials of |z|.

Theorem 2.5. For each a ∈ (−14
9 ,−5

4 ) ⊂ (−2,−5
4 ), there exist some b ∈ R and δ > 0 such that the Berezin

transform

ϕ̃(z) � δ

of ϕ(z) = |z|2 + a|z| + b for all z in D, but Tϕ is not positive.

The details of Theorem 2.5 will be contained in Section 5 and the proof of Theorem 2.4 will be presented
in Section 4.

3. Berezin transform ϕ̃ and the matrix representation of Tϕ

Let en(z) =
√
n + 1zn, then {en}∞n=0 form an orthonormal basis of the Bergman space L2

a. For the special
case of ϕ(z) = |z|2 + a|z| + b we can find the relationship between the positivity of Tϕ and the Berezin
transform ϕ̃ by its matrix. The matrix of Tϕ with respect to this basis is a diagonal matrix. More precisely,
we have the following lemma.

Lemma 3.1. Let ϕ(z) = |z|2 + a|z| + b (a, b ∈ R) and {en}∞n=0 be as above, then the matrix of the Toeplitz
operator Tϕ under the basis is

diag
({

2n + 2
2n + 4 + a

2n + 2
2n + 3 + b

}∞

n=0

)
.

Proof. For each k ∈ N, we have

T|z|ken(z) = 〈T|z|ken,Kz〉

=
〈
|w|ken,Kz

〉
=

√
n + 1

∫
D

|w|k wn

(1 − wz)2 dA(w)

=
√
n + 1

∫
D

|w|kwn
∞∑
j=0

(j + 1)wjzj dA(w)

=
√
n + 1 1

π

2π∫
0

1∫
0

rk · rn · einθ
∞∑
j=0

(j + 1)rje−j(iθ)zjr dr dθ

= 2
√
n + 1(n + 1)
2n + k + 2 zn

= 2n + 2
en(z).
2n + k + 2
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Thus the matrix representation of T|z|k is a diagonal matrix under the basis {en}∞n=0. So is the matrix
representation of Tϕ = T|z|2+a|z|+b = T|z|2 +aT|z|+bI since it is a linear combination of T|z|k . In fact we have

Tϕen(z) =
[
2n + 2
2n + 4 + a

2n + 2
2n + 3 + b

]
en(z).

This gives the matrix representation as desired in the theorem. �
The above matrix representation of Tϕ immediately gives the following criterion on the positivity of Tϕ

for ϕ = |z|2 + a|z| + b.

Lemma 3.2. Let ϕ(z) = |z|2 + a|z| + b (a, b ∈ R). Tϕ is positive if and only if

1 + a + b � a

2n + 3 + 2
2n + 4

for n � 0.

On the other hand, for ϕ(z) = |z|2 + a|z| + b (a, b ∈ R), we are going to compute the Berezin transform
of ϕ to get the following precise formula.

Lemma 3.3. Let ϕ(z) = |z|2 + a|z| + b and let ϕ̃(z) be the Berezin transform of ϕ(z), then

ϕ̃(z) =
[
2 − 1

|z|2 − (1 − |z|2)2
|z|4 log

(
1 − |z|2

)]
+ a

2

[
3 − 1

|z|2 + (1 − |z|2)2
2|z|3 log1 + |z|

1 − |z|

]
+ b

for all z ∈ D.

Proof. First, for each l ∈ N, we compute |̃z|l. By the definition of the Berezin transform, we have

|̃z|l = 〈T|z|lkz, kz〉

=
∫
D

|w|l
∣∣kz(w)

∣∣2 dA(w)

=
∫
D

|w|l (1 − |z|2)2
|1 − zw|4 dA(w)

=
(
1 − |z|2

)2 1
π

2π∫
0

1∫
0

rl

( ∞∑
n=0

(n + 1)znrneinθ
)( ∞∑

m=0
(m + 1)zmrme−imθ

)
r dr dθ

=
(
1 − |z|2

)2 1
π

2π∫
0

1∫
0

rl

( ∞∑
n=0

(n + 1)2|z|2nr2n

)
r dr dθ

= 2
(
1 − |z|2

)2 ∞∑
n=0

(n + 1)2

2n + l + 2 |z|
2n.

Using the above formula for l = 1, 2, we get

ϕ̃(z) =
∫

ϕ(w)
∣∣kz(w)

∣∣2 dA(w) = 2
(
1 − |z|2

)2[ ∞∑
n=0

(n + 1)2

2n + 4 |z|2n + a

∞∑
n=0

(n + 1)2

2n + 3 |z|2n
]

+ b.
D
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Simple calculations give that for z ∈ D,

∞∑
n=0

(n + 1)2

2n + 4 |z|2n = 1
2

[
|z|2

(1 − |z|2)2 − 1
|z|2 − log(1 − |z|2)

|z|4
]
,

and

∞∑
n=0

(n + 1)2

2n + 3 |z|2n = 1
4

[
1 + |z|2

(1 − |z|2)2 − 1
|z|2 + 1

2|z|3 log1 + |z|
1 − |z|

]
.

Combining above three formulae, we obtain

ϕ̃(z) =
[
2 − 1

|z|2 − (1 − |z|2)2
|z|4 log

(
1 − |z|2

)]
+ a

2

[
3 − 1

|z|2 + (1 − |z|2)2
2|z|3 log1 + |z|

1 − |z|

]
+ b

for all z ∈ D, to complete the proof. �
The following proposition gives values of ϕ̃ at 0 and 1, which is useful to get necessary conditions for

ϕ̃(z) � 0 on D.

Proposition 3.4. Let ϕ(z) = |z|2 + a|z| + b (a, b ∈ R), then ϕ̃(0) = b + 2a
3 + 1

2 and ϕ̃(1) = b + a + 1.

Proof. Using

ϕ̃(z) = 2
(
1 − |z|2

)2[ ∞∑
n=0

(n + 1)2

2n + 4 |z|2n + a

∞∑
n=0

(n + 1)2

2n + 3 |z|2n
]

+ b

and letting |z| = 0 in the above power series, we obtain

ϕ̃(0) = 2
(

1
4 + a

3

)
+ b.

This gives ϕ̃(0) = b + 2a
3 + 1

2 .
Since ϕ(z) = |z|2+a|z|+b is continuous on the closure of the unit disk, we obtain that ϕ̃ is also continuous

on the closure of the unit disk D and ϕ̃ = ϕ on ∂D (see Proposition 6.14 in [13]). Thus we get

ϕ̃(1) = ϕ(1) = 1 + a + b,

to complete the proof. �
If ψ(z) = |z| − a, the following theorem says that the positivity of Tψ is completely determined by the

positivity of the Berezin transform of ψ but not the positivity of ψ.

Theorem 3.5. Let ψ(z) = |z| − a, where a ∈ R. Then the following are equivalent:

(i) Tψ � 0;
(ii) a � 2

3 ;
(iii) ψ̃(z) � 0 for all z ∈ D.
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Proof. First we show that (i) ⇐⇒ (ii). The proof of Lemma 3.1 gives that the matrix of Tψ is a diagonal
operator with diagonal entries {

2n + 2
2n + 3 − a

}∞

n=0
.

Thus

Tψ � 0 ⇐⇒ a � 2n + 2
2n + 3 (∀n � 0).

Since {2n+2
2n+3}∞n=0 is an increasing sequence, we see that

a � 2n + 2
2n + 3 (∀n � 0) ⇐⇒ a � 2

3 ,

to get that (i) ⇐⇒ (ii).
In the first section we have pointed out that if Tψ is positive, then the Berezin transform ψ̃(z) is nonneg-

ative on the unit disk. Thus (i) =⇒ (iii). To complete the proof we need only to verify that (iii) =⇒ (ii).
To do this, we note that

ψ̃(z) = 2
(
1 − |z|2

)2[ ∞∑
n=0

(n + 1)2

2n + 3 |z|2n
]
− a (by the proof of Proposition 3.4).

Letting z = 0 in the above equality gives

ψ̃(0) = 2
3 − a.

If ψ̃(z) � 0 on the unit disk, we get a � 2
3 , which proves the theorem. �

Example. Let ψ(z) = |z|−a and 0 < a � 2
3 . The above theorem gives that Tψ is positive but ψ(0) = −a < 0

and hence ψ(z) is not a nonnegative function on the unit disk.

4. Proof of Theorem 2.4

In this section we give the proof of Theorem 2.4. Let ϕ(z) = |z|2 + a|z| + b (a, b ∈ R). Assume

ϕ̃(z) � 0

for all z ∈ D. By Proposition 3.4, we have

ϕ̃(0) = b + 2a
3 + 1

2

and

ϕ̃(1) = b + a + 1.

Thus

b + 2a + 1 � 0
3 2
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and

b + a + 1 � 0.

By Lemma 3.2, we have

Tϕ � 0 ⇐⇒ 1 + a + b � a

2n + 3 + 2
2n + 4 for all n � 0.

We need only to show

1 + a + b � a

2n + 3 + 2
2n + 4 (n � 0).

To do this, we consider the following three cases.

Case I. Suppose −∞ < a � −2. In this case, we have

a � −2 + 2
2n + 4

for all n � 0. Thus

a

2n + 3 + 2
2n + 4 � 0 (∀n � 0).

Recall that

1 + a + b � 0,

so we obtain

1 + a + b � a

2n + 3 + 2
2n + 4 (∀n � 0).

Case II. Suppose −9
8 � a < +∞. In this case, we have

a � −3
2 + 3

4(n + 2)

for all n � 0. This implies

a

2n + 3 + 2
2n + 4 − a

3 − 1
2 � 0 (∀n � 0).

Thus we have

b + 2a
3 + 1

2 � 0 � a

2n + 3 + 2
2n + 4 − a

3 − 1
2

for all n � 0, to get

1 + a + b � a

2n + 3 + 2
2n + 4

for all n � 0, as desired.
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Case III. Suppose −5
4 � a � −9

8 .
First we observe that √

−a
2

1 −
√

−a
2

∈ [3, 5].

Next we want to find the maximal term of the sequence { a
2n+3 + 2

2n+4}∞n=0. To do this, let

F (x) = a

x
+ 2

x + 1 ,

where x = 2n + 3 � 3. A simple calculation gives that F (x) is increasing if x <

√
−a
2

1−
√

−a
2

and F (x) is

decreasing if x �
√

−a
2

1−
√

−a
2

. This implies that the maximal term of the above sequence is

max
{

a

2n + 3 + 2
2n + 4: n � 0

}
= F (3)

(
since a � −5

4 and F (3) � F (5)
)

= a

3 + 1
2 .

Since ϕ̃ is nonnegative, Proposition 3.4 gives

b + 2a
3 + 1

2 � 0.

Thus we obtain

1 + a + b � a

3 + 1
2

= max
{

a

2n + 3 + 2
2n + 4: n � 0

}
,

to complete the proof. �
5. Proof of Theorem 2.5

Theorem 2.4 tells us that there are many real numbers a and b such that Tϕ is positive if and only if the
Berezin transform ϕ̃ of ϕ(z) = |z|2 + a|z|+ b is nonnegative. In this section we will show that the positivity
of a Toeplitz operator with the symbol |z|2 + a|z| + b is not completely determined by the positivity of the
Berezin transform of its symbol. The following lemma will be used in the proof of Theorem 2.5.

Lemma 5.1. For each r ∈ (− 2
15 ,−

1
18 ), the polynomial

K(x) = x3 + r − 1
2 x2 +

(
r + 1

6

)
x +

(
6r + 1

3

)
has exactly one real root x0 in (0, 1).

In order to prove the above lemma, we need the following Sturm theorem [11]:
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Theorem 5.2 (Sturm). Let p0 = p, p1, . . . , pm be a Sturm chain, where p is a square-free polynomial, and let
σ(ξ) denote the number of sign changes (ignoring zeroes) in the sequence

p0(ξ), p1(ξ), p2(ξ), . . . , pm(ξ).

For two real numbers a < b, the number of distinct roots of p in the half-open interval (a, b] is σ(a) − σ(b).

To obtain a Sturm chain, apply Euclid’s algorithm to p and its derivative p′:

p0(x) := p(x),

p1(x) := p′(x),

p2(x) := −rem(p0, p1) = p1(x)q0(x) − p0(x),
...

pi+1(x) := −rem(pi−1, pi) = pi(x)qi−1(x) − pi−1(x) (1 � i � m− 1),
...

0 = −rem(pm−1, pm).

Note that each qi−1(x) is the quotient of the polynomial long division of pi−1 by pi, −pi+1(x) = rem(pi−1, pi)
is the remainder. It can be seen that {pi(x)} is a sequence of polynomials of decreasing degree, which must
eventually terminate in a polynomial pm(x), where m � deg(p) is the minimal number of polynomial
divisions needed to obtain a zero remainder, pm(x) is the greatest common divisor of p0(x) and p1(x) and
hence of every pi(x). That is, the final polynomial pm is the greatest common divisor of p and its derivative.

Remarks. Usually, we use the canonical Sturm sequence to determine the number of zeros of a square-free
polynomial p in some open interval (a, b). However, even if p is not square-free, the difference σ(a)− σ(b) is
the number of distinct roots of p in (a, b) whenever a < b are real numbers such that p(a) �= 0 and p(b) �= 0,
see Sturm’s theorem in [6].

Proof of Lemma 5.1. If 7− 5
√

2 � r < − 1
18 , we use the criteria on cubic equations [8] to get that K(x) has

only one root in (0, 1) since

9 × 1 ×
(
r + 1

6

)
− 3

(
r − 1

2

)2

= −3
4
(
r2 − 14r − 1

)
� 0

(
since 7 − 5

√
2 � r < − 1

18

)
and

K(0) = 6r + 1
3 < 0, K(1) = 15r

2 + 1 > 0.

If − 2
15 � r < 7 − 5

√
2, we will use the above Sturm theorem to find the number of roots in (0, 1) for the

polynomial K(x). First we get the Sturm sequence by long division. Let

p0(x) = K(x) = x3 + r − 1
2 x2 +

(
r + 1

6

)
x +

(
6r + 1

3

)
.

Applying polynomial long division to the pair p0(x) and
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p1(x) = p′0(x) = 3x2 + (r − 1)x +
(
r + 1

6

)
gives the remainder r1(x). Multiplying r1(x) by −1 we obtain

p2(x) =
(
r2

18 − 7
9r −

1
18

)
x +

(
r2

18 − 653
108r −

37
108

)
.

Next dividing p1(x) by p2(x) and then multiplying the remainder by −1, we obtain a constant p3(x).
Then evaluating p0(x), p1(x), p2(x) and p3(x) at 0 gives

p0(0) = 1
3 + 6r < 0;

p1(0) = r + 1
6 > 0;

p2(0) = 1
108

(
6r2 − 653r − 37

)
> 0 (since r < 7 − 5

√
2 );

p3(0) is a constant.

Similarly, we also have

p0(1) = 15
2 r + 1 > 0;

p1(1) = 2r + 13
6 > 0;

p2(1) = 1
108

(
12r2 − 737r − 43

)
> 0 (since r < 7 − 5

√
2 );

p3(1) = p3(0) is a constant.

Thus we obtain that K(x) has a root x0 ∈ (0, 1) as p0(0) is negative and p0(1) is positive. To finish the
proof we need only to show that x0 is the unique root of K(x) in (0, 1). To do so, we consider the following
three cases:

(1) If p3(0) is negative, then the sequence of signs of p0(0), p1(0), p2(0), p3(0) is {−,+,+,−} and the
sequence of signs of p0(1), p1(1), p2(1), p3(1) is {+,+,+,−}, thus σ(0) = 2 and σ(1) = 1. So the Sturm
theorem gives that the number of roots of K(x) in (0, 1) equals

σ(0) − σ(1) = 2 − 1 = 1;

(2) If p3(0) is positive, the sequences of signs are {−,+,+,+} and {+,+,+,+}, thus σ(0) = 1 and
σ(1) = 0. So the Sturm theorem gives that the number of roots of K(x) in (0, 1) equals

σ(0) − σ(1) = 1 − 0 = 1;

(3) If p3(0) equals 0, note that neither 0 nor 1 is a root of K(x), it is easy to see that the number of roots
is 1 − 0 = 1. This completes the proof. �

We are now ready to prove Theorem 2.5.

Proof of Theorem 2.5. The main idea of this proof is to estimate the minimal value of ϕ̃(z) on the unit
disk. To do so, let x = |z|2. Then x is in (0, 1) if z is in the unit disk. Simple calculations give
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∞∑
n=0

(n + 1)2

2n + 4 xn = 1
4 +

∞∑
n=1

n2 + 2n + 1
2n + 4 xn

= 1
4 + 1

2

∞∑
n=1

(
n + 1

n + 2

)
xn

= 1
4 + 1

2

∞∑
n=1

nxn + 1
2

∞∑
n=1

1
n + 2x

n

= 1
4 + x

2(1 − x)2 + 1
2

∞∑
n=1

1
n + 2x

n

and

∞∑
n=0

(n + 1)2

2n + 3 xn = 1
3 +

∞∑
n=1

n2 + 2n + 1
2n + 3 xn

= 1
3 + 1

2

∞∑
n=1

(n2 + 3
2n) + (1

2n + 1)
n + 3

2
xn

= 1
3 + 1

2

∞∑
n=1

nxn + 1
4

∞∑
n=1

xn +
∞∑

n=1

1
8n + 12x

n

= 1
3 + x

2(1 − x)2 + x

4(1 − x) +
∞∑

n=1

1
8n + 12x

n.

Combining the above two series with the proof of Lemma 3.3 gives

ϕ̃(z) = 2(1 − x)2
[ ∞∑

n=0

(n + 1)2

2n + 4 xn + a
∞∑

n=0

(n + 1)2

2n + 3 xn

]
+ b

=
(

1
2 + a

6

)
x2 + a

6x +
(

1
2 + 2

3a + b

)
+ (1 − x)2

2

∞∑
n=1

(4 + a)n + (2a + 6)
(n + 2)(2n + 3) xn

�
(

1
2 + a

6

)
x2 + a

6x +
(

1
2 + 2

3a + b

)
+ (1 − x)2

2

2∑
n=1

(4 + a)n + (2a + 6)
(n + 2)(2n + 3) xn (since a > −2)

= 1
420

[
(30a + 105)x4 − (18a + 70)x3 + (16a + 35)x2 + (112a + 140)x

]
+

(
1
2 + 2

3a + b

)
= 30a + 105

420

[
x4 − 18a + 70

30a + 105x
3 + 16a + 35

30a + 105x
2 + 112a + 140

30a + 105 x

]
+
(

2a
3 + b + 1

2

)
.

Letting

r = 1
10 + 35

a

,

we have that r is in (− 2
15 ,−

1
18 ) (since a ∈ (−2,−5

4 )) and

G(x) := x4 − 18a + 70
30a + 105x

3 + 16a + 35
30a + 105x

2 + 112a + 140
30a + 105 x

= x4 +
(

2r − 2
)
x3 +

(
1 + 2r

)
x2 +

(
4 + 24r

)
x.
3 3 3 3
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Thus

ϕ̃(z) � 30a + 105
420 G(x) +

(
2a
3 + b + 1

2

)
� 30a + 105

420 inf
x∈[0,1]

G(x) +
(

2a
3 + b + 1

2

)
.

To finish the proof, it suffices to show that for each a ∈ (−14
9 ,−5

4 ), there exists a real constant b such
that

inf
z∈D

ϕ̃(z) > 0

and Tϕ is not positive. As we show above, we need

δ := 30a + 105
420 inf

x∈[0,1]
G(x) +

(
2a
3 + b + 1

2

)
> 0.

This gives

−2
3a− 1

2 − 30a + 105
420 inf

x∈[0,1]
G(x) < b.

By Lemma 3.2 we have that Tϕ is positive if and only if

1 + a + b � max
{

a

2n + 3 + 2
2n + 4: n � 0

}
.

In order that Tϕ is not positive, the above inequality gives

1 + a + b < max
{

a

2n + 3 + 2
2n + 4: n � 0

}
.

These are equivalent that there exists a real constant b such that

−2
3a− 1

2 − 30a + 105
420 inf

x∈[0,1]
G(x) < b < max

{
a

2n + 3 + 2
2n + 4: n � 0

}
− a− 1.

Indeed, we will show that

max
{

a

2n + 3 + 2
2n + 4: n � 0

}
+ 30a + 105

420 inf
x∈[0,1]

G(x) > a

3 + 1
2

for each a ∈ (−14
9 ,−5

4 ) i.e. for each r ∈ (− 1
12.5 ,−

1
18 ). To do this, the proof will be divided into four steps.

Let K(x) = 1
4G

′(x) (x ∈ (0, 1)) and recall that F (x) = a
x + 2

x+1 (x = 2n + 3 � 3).

Step 1. Suppose r is in (− 1
15.2 ,−

1
18 ). Then√

−a
2

1 −
√

−a
2

∈ [3, 5] and F (5) � F (3),

and so
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max
{

a

2n + 3 + 2
2n + 4: n � 0

}
= F (5) (by the proof of Theorem 2.4)

= a

5 + 1
3 .

Thus we are going to show that

inf
x∈[0,1]

G(x) > 2
3 + 12r

for each r ∈ (− 1
15.2 ,−

1
18 ). We consider the following three cases:

(I) If r is in (− 1
15.9 ,−

1
17.59 ), then a simple computation gives

K(0) = 1
3 + 6r

<
1
3 − 6

18

(
since r < − 1

18

)
= 0

and

K

(
1
2

)
= 53r

8 + 5
12

> −53
8 × 1

15.9 + 5
12

(
since r > − 1

15.9

)
= −53

8 × 10
159 + 5

12

= 0.

Thus there exists a point x0 ∈ (0, 1
2 ) such that K(x0) = 0. By Lemma 5.1 above, we see that x0 is the

unique point where G(x) reaches its minimal value. Moreover, x0 satisfies the following equation:

x3
0 + r − 1

2 x2
0 +

(
r + 1

6

)
x0 +

(
6r + 1

3

)
= 0,

and hence

x4
0 + r − 1

2 x3
0 +

(
r + 1

6

)
x2

0 +
(

6r + 1
3

)
x0 = 0.

So we have

inf
x∈[0,1]

G(x) = r − 1
6 x3

0 + 1 + 6r
6 x2

0 + (1 + 18r)x0.

Let

L(t) = r − 1
6 t3 + 1 + 6r

6 t2 + (1 + 18r)t
(
t ∈ (0, 1)

)
.

Taking derivative of L(t) gives
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L′(t) = r − 1
2 t2 + 1 + 6r

3 t + (1 + 18r) < 0

for all t ∈ (0, 1) if r < − 1
17.59 . This yields

inf
x∈[0,1]

G(x) = L(x0)

� L

(
1
2

) (
since x0 ∈

(
0, 1

2

))
= 445

48 r + 25
48

>
2
3 + 12r

(
since r < − 1

17.59

)
.

(II) Suppose r is in (− 1
15.2 ,−

1
15.9 ]. Using the same method as one in (I), we get

K

(
1
2

)
< 0, K

(
3
5

)
> 0,

and hence x0 ∈ (1
2 ,

3
5 ). Thus we have

inf
x∈[0,1]

G(x) = L(x0)

� L

(
3
5

) (
since x0 <

3
5

)
>

2
3 + 12r

(
since r � − 1

15.9

)
.

(III) Suppose that r is in (− 1
17.59 ,−

1
18 ). In this case, we need to consider the following three subcases.

(1) Let r be in (− 1
17.59 ,−

1
17.6 ]. Simple computations give

K(0.131) < 0 and K(0.141) > 0.

This implies that x0 is in (0.131, 0.141). Noting

L′′(t) = (r − 1)t + 1
3 + 2r

> (r − 1) × 0.141 + 1
3 + 2r

= 2.141r + 1
3 − 0.141

> 2.141 ×
(
− 1

17.59

)
+ 1

3 − 0.141

> 0,

we see that L′(t) is increasing in (0.131, 0.141), and hence

L′(t) � L′(0.141)

< 18.29r + 1.038
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� 18.29 ×
(
− 1

17.6

)
+ 1.038

< 0.

This implies that L(t) is decreasing in (0.131, 0.141). Thus we obtain

L(x0) −
(

2
3 + 12r

)
� L(0.141) −

(
2
3 + 12r

)
> 2.56r + 0.14 − 2

3 − 12r

>
9

1000

(
since r � − 1

17.6

)
.

(2) Let r be in (− 1
17.6 ,−

1
17.7 ]. Using the same idea as one in (1) of (III) above, we have that

inf
x∈[0,1]

G(x) > 2
3 + 12r

for each r ∈ (− 1
17.6 ,−

1
17.7 ].

(3) Let r be in (− 1
17.7 ,−

1
18 ). Observe that

inf
x∈[0,1]

G(x) = r − 1
6 x3

0 + 1 + 6r
6 x2

0 + (1 + 18r)x0

= − 1
36

[
3
(
r2 − 14r − 1

)
x2

0 +
(
6r2 − 653r − 37

)
x0 + 2

(
18r2 − 17r − 1

)]
.

It suffices to show that

− 1
36

[
3
(
r2 − 14r − 1

)
x2

0 +
(
6r2 − 653r − 37

)
x0 + 2

(
18r2 − 17r − 1

)]
>

2
3 + 12r.

To get the above inequality, we need to show

3
(
r2 − 14r − 1

)
x2

0 +
(
6r2 − 653r − 37

)
x0 + 2

(
18r2 + 199r + 11

)
< 0.

To do so, let

R(t) = 3
(
r2 − 14r − 1

)
t2 +

(
6r2 − 653r − 37

)
t + 2

(
18r2 + 199r + 11

)
.

Taking derivative of R(t) gives

R′(t) = 6
(
r2 − 14r − 1

)
t +

(
6r2 − 653r − 37

)
.

If r is in (− 1
17.7 ,−

1
18 ), then

r2 − 14r − 1 < 0 and 6r2 − 653r − 37 < 0.

This implies that R(t) is decreasing in (0, 1) and so

R(x0) � R(0)
(
since x0 ∈ (0, 1)

)
= 2

(
18r2 + 199r + 11

)
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= 36(r + 11)
(
r + 1

18

)
< 0.

Step 2. Suppose that r is in (− 1
14 ,−

1
15.2 ]. Then

√
−a
2

1 −
√

−a
2

∈ [5, 7] and F (5) � F (7).

Using the same idea as one in (I) of Step 1, we need only to show

inf
x∈[0,1]

G(x) > 2
3 + 12r

for each r ∈ (− 1
14 ,−

1
15.2 ]. Indeed,

K

(
1
2

)
< 0, K(0.63) > 0,

so x0 ∈ (1
2 , 0.63) and L(x0) � L(0.63) > 2

3 + 12r.

Step 3. Suppose r is in (− 7
90 ,−

1
14 ]. Then

√
−a
2

1 −
√

−a
2

∈ [5, 7] and F (5) < F (7),

and thus

max
{

a

2n + 3 + 2
2n + 4: n � 0

}
= F (7) (by the proof of Theorem 2.4)

= a

7 + 1
4 .

So we need to prove

inf
x∈[0,1]

G(x) > 1 + 50
3 r

for each r ∈ (− 7
90 ,−

1
14 ]. One can show the above inequality using the same method as one in (I) and the

details are omitted here.

Step 4. Suppose r is in (− 1
12.5 ,−

7
90 ]. In this case, we have

√
−a
2

1 −
√

−a
2

∈ [7, 9] and F (7) � F (9).

Thus we also need to prove
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inf
x∈[0,1]

G(x) > 1 + 50
3 r

for each r ∈ (− 1
12.5 ,−

7
90 ]. This can be showed easily by the method used in (I) of Step 1. This completes

the proof. �
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