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Sobolev spaces, the existence theory of global solutions to the stationary profile is
established. Furthermore, when the H~* norm (s € (0, 3)) of initial perturbation

f\](:g;gifgigkes equations is finite, we obtain the optimal time decay rates of the solutions in L?-norm. As a
Potential force corollary, the LP—L4 (3/2 < p < 2) type of the decay rates follows without requiring
Global existence that the LP norm of initial perturbation is small.
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1. Introduction

In this paper, we consider the initial value problem of the compressible Navier—Stokes equations with a
potential force as follows:

pe +div(pu) =0,

P
VP(p) _Hp, + PHAG dive — Vo(z), (1.1)
p P P

(p;u)(0,2) = (po,u0)(x) = (Poo, 0),  as [a] — o0,

u + (u-Viu+

where z = (z1,72,23) € R3, ¢t > 0. Here, p = p(x,t) > 0, u = (ui(z,t),ua(x,t),us(z,t)) and P =
P(p) denote the density, velocity and the pressure function, respectively; —V¢(z) is the time independent
potential force; p, A are viscosity constants, satisfying p > 0, 2u + 3X > 0 which deduce p+ A > 0. In
addition, (pso,0) is the state of initial data at infinity, while p., is a positive constant and P(p) is smooth
in a neighborhood of ps, with P’(ps) > 0.
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For the Navier—Stokes equations (1.1);—(1.1)y with potential force, the stationary solution (p.,u.)(z)
satisfies, cf. [17]

P ()

There are many works which were devoted to proving the global existence, unique and time decay rates
of solutions to the compressible Navier—Stokes equations with or without external forces, cf. [2,5-9,11,12,
14-18,22,24] and references therein. In the following, we mainly mention some studies on the time decay
rates of the solutions.

When omitting the external force, the stationary solution is just a constant. Matsumura and Nishida
in [16] obtained the first global existence of small solutions when the initial perturbation is small in H3(R?).
They also studied the L?-norm decay rates in H*(R3) N L!(R3), see [15]. Moreover, the optimal LP-norm
time decay rates were proved by Ponce in [18]. Furthermore, the pointwise estimates of solutions were
shown in [6,7,14] when the small initial perturbation in H™(R") N L*(R") with N > [5] 4 3. Under the
framework of H2(IR?), by some elaborate estimates, the global existence of a strong solution and its optimal
decay estimates were obtained in [24] when the initial data is bounded in L!-norm. Recently, by using a
nonnegative and negative Sobolev space HN(R3) N H—*(R3) (s € [0,3/2)) to replace HN (R3) N LP(R3)
with N > 3, Guo and Wang in [5] developed a general energy method and obtained the following optimal
time-decay estimates of solutions, i.e.

V5 (p = pes ) )| p2zay < CC1 +1)7" %, for —s <k < N.

When a general external force is involved, the stationary solution (p.,u.) may not be a constant. For
this, when the initial disturbance belongs to H?(R?)N L5/5(R?), the following convergence rate was obtained
by Shibata and Tanaka in [20] for isentropic viscous fluid

1

Hv(p = Pxy U — u*)(t)HLQ(RB) < C(l + t)_§+’i7

for any small constant x > 0. The same decay rate for non-isentropic case was established by Qian and
Yin in [19]. For the external potential force, based on the energy method and the spectral analysis on the
linearized system (see (4.19)), Duan et al. studied the optimal time decay estimates

(o = pes ) O] o sy < CA 12670,

and

when the initial perturbation belongs to H3(R3) N LP(R3), cf. [4] for p =1 and [3] for 1 < p < 6/5.
Motivated by [3,4], we prove LP—L? type time decay estimates of solutions for 3/2 < p < 2 by employing
a negative Sobolev space H™%(R?) to replace LP(R3). To be specific, we study the global existence and
optimal time decay estimate of solutions to the problem (1.1) in both H2-framework and H3-framework.
First of all, when the initial perturbation is small in H?(R3), for the existence part, the diffi-
culty mainly comes from the appearance of non-trivial stationary solutions. We should avoid the terms
fot IV3(p — pu)(7)|| 2dT and fot |V4u(7)| p2dr during the process of deducing a priori estimates. To over-
come the difficulties, we employ a refined energy method. Moreover, when the initial perturbation is bounded
in H—*(R3), we obtain the optimal time decay estimates by the general energy method introduced in [3].
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Finally, when the initial perturbation belongs to H?(R?), based on the existence of the global solutions
obtained in [3,16], we establish the optimal L?-norm time decay estimates of the solution by employing
the representation of the solution and the LP—L? type estimate on linearized system. As an immediate
by-product, the optimal LP—L4 (3/2 < p < 2) time decay rate is shown directly by the Hardy-Littlewood—
Sobolev theorem (see Lemma A.5 in Appendix A). It is also worth mentioning that we don’t require that
the LP-norm of the initial perturbation is small.

The rest of the paper is organized as follows. After reformulating the problem and stating the main results
in the next section, we give the global existence of solutions when the initial perturbation is in H?(R?) by
using the energy method in Section 3. In Section 4, we obtain the decay estimates of solutions to the Cauchy
problem (1.1) in both H2-framework and H?>-framework. In Appendix A, we show some useful inequalities.

2. Preliminary and main results

In this section, we first introduce some notation for later use. Then, we give the reformulation of the
problem (1.1) and show the main results in this paper.

Let C be denoted as a generic positive constant. The notation “a < b” means that “a < Cb” for a universal
constant C' > 0. For a multi-index o = (a1, az,a3), 0y = 051092052 and |a| = Zle a;. We denote a set

composed of all mth partial derivatives with respect to the variable z by V™. H™(R3), m € Z,, denotes
the usual Sobolev space with its norm

1F L m sy = D IVEFI] oy
k=0

In particular, we use || - [l,, = || - ||am®s) and || - || = || - ||[z2(r3). And (-,-) denotes the inner-product
in L2(R3). In addition, let f(£) be the Fourier transform of f(x) with respect to z € R3, ie. f(€) =
(2m)~"/2 [ f(z)e"*¢dz. The operator A%, s € R, is defined by

2 f(x) = / €° Fe)et e,
R3

We define the homogeneous Sobolev space H*(R?) of all f for which || f|| ;7. is finite, where

£l e = (14 F|l = = [[1€1°F

L2’

Throughout this paper, we will use the non-positive index s. For convenience, we will change the index to
be “—s” with s > 0.
Now, we will reformulate the problem (1.1) as follows. Set

p Bt A
H1 = —, Mo = ——, Y= VP (poo)-

Poo Poo

Taking change of variables by

ﬁ(.ﬁ(),t) Zp($,t) —,0*(33), a(xvt) :u(x,t),

and

() = pu(2) = po,
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the initial value problem (1.1) is reformulated as

Pt + pecV - = Sy,
P (poo .
Lvﬁ — 5, (2.1)

o0

(ﬁa ﬁ)(%t)hzo = (PO - P*,UO)(x) — (070)’ as |$| — 00,

Uy — 1 AU — poV div i +

where 5'1 and 5‘2 are the source terms. Denote
o(z,t) = p(x,t), w(x,t) = ———=1(x, t),

by (1.2), then the problem (2.1) can be rewritten as
o +7V -w =51,
wy — 1 Aw — paVdivw + yVo = S, (2.2)

(O—’ w)(fL‘, t)]t=0 = (UOa WO)(x)v

where
S, = _% div[(o + p)w], (2.3)
2.2 = =
_ #iy o+p THD o
Sy = — 2 (w~V)w—u1U+p*Awf,ugo_i_p*levw
P’ ) Plp)]e P’ YD) Plps
m[ (0+ps) (p)]vpm[ (0+p)  Plps) Vo, (2.4)
poloo+ps P poloo+ps Poc
and

(00, wo)(z) = <p0 — Pus %uo> () — (0,0), as |z| — co.

We consider the global existence and time decay rates of the solution (p,u) to the steady state (px,0),
that is, the existence and decay rates of the perturbed solution (o,w). In what follows, we begin to state
our main result in H2-framework as follows.

Theorem 2.1. Let (0g,wp)(z) € H2(R?). If ||(00,wo)||2 < € and the potential function ¢(z) satisfies

lollsars + | (1412 Vel oo + (14 121) V26| oo + | (1 + [2) V20 12 <€, (2:5)
for some small constant € > 0, then the Cauchy problem (2.2) admits a unique global solution (o,w) satisfying

t

o) ®)]l; + / (IVo@l} + [Ve@)|f;)dr < Cl @0, w5, ¢ = 0. (2.6)
0

In addition, for s € (0,1/2), (50,wo) € H™*(R?) satisfies
H(Uo,wo)HH,s < 400,

then there exists a constant Cqy such that
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A7 (o,w)(#)|| < Co, for s € (0,1/2), (2.7)
and
[V*(o,w)(®)]| < Co(1+¢)72, k=0,1,2. (2.8)

The Hardy—Littlewood—Sobolev theorem (see Lemma A.5 in Appendix A) shows that for any p € (3/2,2),
LP ¢ H™® with s = 3(% — 1) € (0,1/2). Then, from the decay estimates stated in Theorem 2.1, we have
the following LP—L? type time decay results.

Corollary 2.1. Under the assumptions of Theorem 2.1 except that we replaced the H™5 assumption by that
(oo,wo) € LP for p € (3/2,2), the problem (2.2) admits a unique global solution (o,w) which enjoys the
following time decay estimates:

Hvk(mw H <C(+t) 1G3), fork=0,1,2.

Under the framework of H?(R3), the global existence and energy inequalities of solutions to the prob-
lem (2.2) near the steady state was proved by Matsumura—Nishida in [16] and Duan et al. in [3]. Precisely,
the results can be stated as follows.

Theorem 2.2. (See [3,16].) Let (0g,wo)(z) € H3(R3). If ||(00,wo)|l3 < €1 and the potential function ¢(z)
satisfies

I@llmsnre + | (L+ 2) VOl o + D |1+ 2)) VG|, <, (2.9)
2<k<4

for some small constant e; > 0, then there exists a unique global solution (o,w) of the Cauchy problem (1.1)
satisfying

(o )®)][; + / (Vo @I, + [[Vem)|[s)dr < Cll @0, wo)5, ¢ = 0. (2.10)
0

Moreover, there is a Lyapunov-type energy inequality in the form of

%(f) +L(t) < CO[|V(o.w) )|, (2.11)

where L(t) is an energy functional which is equivalent to |V (o,w)(t)||3.

The following is the optimal time decay rates of the solution when the initial perturbation is bounded in
a negative Sobolev space H~*(R?).

Theorem 2.3. Assume all hypotheses of Theorem 2.2 hold. In addition, for s € (0,1/2), (cg,wp) is bounded
in H=*(R?), then there exists a constant Cy such that

||/1_s H <y, forse(0,1/2),

H Uw( | < Co(1+1)72,

and

IVE(o,w) ()] < Co(l+6)~7F, k=1,2.
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Similar to Corollary 2.1, we have the LP—L? type time decay estimates as follows.

Corollary 2.2. Assume all hypotheses of Theorem 2.2 hold. If further, (co,wo) € LP for p € (3/2,2), the
problem (2.2) admits a unique global solution (o,w) which enjoys the following time decay estimates:

(o, 0)(®)|| < C(1+1)2G2), (2.12)
[VE(o,w)t)|| < CA+)7 26772 fork=1,2. (2.13)

Furthermore, for any 2 < q < 6, we have
[(o,w)(®)]| . < CA+1)"2G7a). (2.14)

Remark 2.1. The decay estimate (2.14) is obtained directly by Lemmas A.1-A.2, i.e.

[(0,0)(®)]] .0 < (@) | ()]~
< C|VEw®| el ™ < cu+ e, (2.15)

where 6 = % — %. Compared with the decay result in [3], we expand the LP—L? type time decay estimate

from 1 <p<6/5t03/2<p<2.
3. Global existence

In this section, we are devoted to proving the existence part of Theorem 2.1, i.e. the global existence of
solutions to the problem (2.2) when the initial perturbation is small in H?(R?).

3.1. Local existence

In this section, we will show the local existence of solution to the initial value problem (2.2). Before we
proceed, we should remark that parts of our ideas come from [10,17]. First of all, (2.2) can be rewritten as

pr+1-Vp=Fi[p,l,

B ) - /L+)\ o~ ~ ~

e e 2191 .
(5, @) (2, t)|1=0 = (po, ti0)(x),

where
Fy [ﬁa ﬁ] = —pV - @ — div(p.1), (3.2)
- Ppt+p)g. [P(o+p)  Plps)
Ep,u) = ——Vp— = — V. 3.3
2[p, ] P+ pPx P+ P« Px (3:3)

Let’s define the function set X = X(0,T; Ey) as follows. X (0,T; Ey) consists of functions (5, a) satisfying
the following properties, for any 0 < T < +o0,

peC’0,T;H*(RY),  peC'(0,T; H'(R?)),
e C(0,T;H*(R?)),  Vae L*(0,T;H'(R?)),
@ € C°(0,T; L*(R?)) N L*(0,T; H' (R?)),
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and
¢
sup ||(ﬁ, ﬂ)(T)H; + /HV&(T)szT < 4E§,
0<r<t )
|0:p(t)||, + ||0vi(t)|| < C1Eo, for t € [0,T7,
where Ey = ||(po, To)]||2 and C1 is a suitable positive constant.

Theorem 3.1 (Local existence). Suppose that (po,to)(x) € H2(R?), (2.5) and Ey is suitably small. Then
there exists a positive constant Ty > 0 depending on py and g, such that the initial value problem (3.1) has
a unique solution (p,u)(x,t) € X (0,To; Ey) which satisfies

(p,1) € C°(0,To; H*(R*)) N C* (0, To; H' (R?)).

Moreover, the solution verifies

5 fort €[0,Tp).

.03+ [Ivam|Far < ). )]
0

Proof. Step 1. We introduce the successive approximate sequence {(p", @")(x,t)} for the initial value prob-
lem as follows (p°, %) (x,t) = (po, tip)(x) and

gt At vttt = Ry [pt, A,

A
att - P At - P Gt = [ e, oy
(7", @) @, g = (o, 70) ),

for n = 0,1,2,.... Now, we will show that if (", a") € X(0,T;Ep) then ("1 a"*!) € X(0,T;Ep),
provided that Ey and T are chosen to be suitably small. This shows that X (0,T; Ey) is an invariant set of
the mapping (5", a") — (p" 1, a"*h). If (5", @") € X(0,T; Ey), by using Lemmas A.1 and A.3 and (2.5), it
follows from (3.2) and (3.3) that

5[], + 5., < v (), 35)

By using the standard energy method and Lemmas A.1 and A.3, we have

d ~n ~n ~n
a7 s < v a 177 + 1z, (3.6)

and

d
Ll 2 w2 4 v a2 < o, [t 4 57)

N =

From (3.6) and (3.7), by noticing (p",a") € X(0,T; Ey) and using (3.5), the smallness of Fy and the
Gronwall inequality, we have

t
[yl + [Ivas far < o 202 o, i) + OB, 35)
0
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Take T} so that

1
elo Bo < §7 CE§T, < H(ﬁo,ﬂo)H;

Then (3.8) becomes
t
e ar )@l + [Ivar|ar < a8,
0

By using (3.1)1—(3.1)2 and (3.5), we have

e O], + @ @) < Co([[Va™ |, + V2 H]) + [ Fully + [ Fl
< (4C3 + C)Ey < C1 Ey,

where C5 is a positive constant.

Then, {(p",a™)(z,t)} is well defined and is uniformly bounded with respect to n > 0, i.e. (p",a") €
X(0,To; Eo).

Step 2. Applying the standard energy estimate for the linear symmetric system satisfied by the dif-
ference (p"tt — p*, a"tl — @), we find that {(p",@")} is a Cauchy sequence in C°(0,7p; H'(R?)). So,
there exists functions (5, )(x,t) with (p,@) € C°(0,Tp; H'(R?)) such that (p",a") — (p,a) strongly in
C°(0,Ty; HY(R3)) as n — +oo.

On the other hand, {(p",@")} is uniformly bounded in L% (0, Tp; H%(R3)). Then, there is a subsequence
(which is denoted by the same symbol) such that (p",@") — (p,@) weakly star in L>°(0,Ty; H?(R3)).
Consequently, we have a solution (p, @)(z,t) of the problem (3.1) satisfying

p € L>(0,Ty; H*(R%)),
@€ L>(0,To; H*(R?)) N L*(0,T; H? (R?)).
Moreover, it follows from Eq. (3.1) and (p,@)(t) € X(0,To; Eo) that
pr € L>(0,To; H' (R?)),
@y € L>(0,To; L*(R?)) N L*(0, To; H' (R?)).

Similar to proving Lemma 2.6 in [10], we have (5, %) € C°(0, Tp; H*(R?)) and g, € C°(0,Tp; H'(R?)) and
@iy € C°(0, Tp; L2(R?)). Thus, we finish the proof of Theorem 3.1. O

3.2. Some a priori estimates

In this section, we will establish some a priori estimates of solution to the problem (2.2). With the
help of the local existence theory and those estimates, the global existence of solutions will be obtained by
employing the stranded continuity argument. To begin with, we make a priori assumption

sup H(a,w)(7‘)“2 <0, (3.9)

0<7<¢t

where a constant § > 0 is sufficiently small. Now, we show the energy estimate for (o,w).
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Lemma 3.1. There exists a suitably large constant D1 > 0, which is independent of §, such that for 0 < k < 2,
d
GIVF @O + D[V w@|* £ @+ ([Vo@)f; + [ Ve)]3). (3.10)

Proof. Multiplying V¥ (2.1);, V¥ (2.1)3 by V¥o and VFw respectively, and then integrating over R3, we
have from the sum of the resultant equalities that

1d
LS (94l + [9Rl?) + | T4+ | ¥ v
= (VFo(t),VFS1(t)) + (VFw(t), VFSa(t)) (3.11)

Prior to estimating the terms on the right-hand side of (3.11), we notice that the source terms S; and S
have the following equivalent properties under the conditions (2.5) and (3.9):

S1~Vo-w+oV-w+Vp-w+pV-w, (3.12)
Sy~ (w-Vw+ocAw+0oVV -w+oVo + pAw + pVV - w+ Vpo + pVo. (3.13)

When k£ = 0, by using the Holder inequality, Lemma A.1, (1.2), (2.5) and the Young inequality, we obtain

_ w _
(0,81) S llollzsVollllwllzs + llolzellolcs Vel + llollzs || (1 + [2) Vo] o 1+|$|H + llollzellpll s Ve
S @+ (Vo] + [[Vwl?), (3.14)
where we have used the following Hardy inequality
w
— < .
|l < e
From (3.13), similar to the proof of (g, S1), we get
(w,82) S (6 + ) (IVal? + IVw?). (3.15)

Plugging (3.14)—(3.15) into (3.11) yields

oI + V21 £ 6+ (Vo] + [ Tw]?).

DN | =

When 1 <k <2, from (3.12), we have

(VFEa(t),VFS1(t)) S [(VFa(t), VE(Va(t) - wt)))| + [(VFa(t), VF(eV - w))|
+ [(VFa(t), VE(Vi-w))| + [(VFo(t), VF(pVw))]
=0 4+ I+ Is+ Iy (3.16)
For Iy, it holds from integration by parts, Lemmas A.1 and A.3, the assumption (3.9) and the Young
inequality that
I S |(VFa(t), VE(Vo(t) - w(t)))]
S |IVwl pee HVk0H2 + HVkUH HV’“(VU ‘w) —V*Vo - w||
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SIVellz= [ Vool + [ V¥ol (| V o IVl + [Vollze V5wl )

SVl 195 + V4ol (|95 | [[V2w]], + Vol 7+ )

S3(|[VFa | + [IVE el + V2wl fy). (3.17)
Similarly, for I, we have

L 5 Vo[ ([V ol Vwll= + ol |V**wl])
S 8([|VFo|* + IV w] + V2w fy). (3.18)

As to I3 and Iy, by using Lemma A.1, (1.2), (2.5) and the Holder inequality, we get
I3 S |(V¥a(t), VE(Vp-w))|

<ol (v va-ul + ¥ 995 7))

0<I<k—-1

S (G PR S LA

0<i<k—1
< [0 (V] + ¢ Hvk—mwu)
0<i<k-1
Se|[Veal Y [Vl
1<I<k41
SGHVkO'HQ—I—G Z | (3.19)
1<I<k+1
and
I S |(VFa(t), VE(pVw))|
<94l (o7l + 3 98] 95 .
1<I<k
S0l (W 94l + € 3 (942 )
1<I<k
§e<||VkaH2+ >y HvW). (3.20)
2<I<k+1
Putting (3.17)-(3.20) and (3.16) together yields
(V*o(t), V"5, (1)) < <5+e><uvkau2 - HVle2>. (3.21)

1<i<3

By virtue of (3.12) and integration by parts over R?, the second term on the right-hand side of (3.11)
can be estimated as follows:

<ka(t),VkSg(t)> < |<Vk+1w(t),Vk71((w : V)w)>| + |<Vk+1w(t),Vk71(aAw)>’
+ ’<Vk+1w(t), AR CAVAVR w))| + ‘(Vkﬂw(t), vkil(UVU)H
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+ [(VE W (t), VI (pAw))| + [(VFw(t), VI (pVV - w))]
+ (VT w(t), VR (Vpe))| + (VT w(t), VI (Vo))
=i+ L+ I3+ 4+ J5+ Jg+ J7 + Js. (322)

Similar to the estimates on I; (i = 1,2,3,4), for 1 < k < 2, we obtain
i+ Ji+Jr+Js S (0 +e) <||VU||§ + > HvleQ). (3.23)
1<i<k+1
The estimate on Js follows from Lemma A.1, the assumption (3.9) and the Holder inequality:
Jy SUVF (), VI (0 Aw)) |
SV e[[VEH eaw)|
SVl (leavi e + [[VoviT2Aw])

< lollz= V20| + | Vw1V ol s | V0| o

< o[ v, (3.24)
where |[VoV*~2Aw|| has vanished when k = 1, and hereafter, etc.
For Js, by using Lemma A.1 and (2.5), we have
T S|V hw(), VE (pAw)))|
< 19l (171 9 A + 197125 [ 7420 )
< e VFw) % (3.25)
Similarly, J; and Jg satisfy
Js+ Jo S (6 + )| VE | (3.26)
Then, (3.22)(3.26) give
(VEw(t), VFSa(t)) S (6 + e)(||va|§ + ) }|vlw||2). (3.27)

1<I<k+1

Substituting (3.21) and (3.27) into (3.11) and noticing the smallness of § and €, we get (3.10). Thus, we
complete the proof of Lemma 3.1. O

Now, we show the dissipation estimate for o by using Eq. (2.2).

Lemma 3.2. There exists a suitably large constant Dy > 0, which is independent of §, such that for0 <k <1,

%(VkVo(t), VEw()) + Dol [V a(t)||* < mo|| Vo )| + (8 + )| Vo )| + || Ve (t)|2, (3.28)

where 1y is a small positive constant.
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Proof. From (2.2)s, it is obvious that
YWVo = —wi + p1Aw + peVdivw + Ss. (3.29)

Multiplying (3.29) by Vo and integrating it over R?, and then using (2.2); and the Young inequality, we
have

%@vw IV £ [(w, VOio)| + | (Aw, Vo) | + [(V dive, Vo) | + | (Vo, )]
SHV - w, V-w)| + (V- w,51)] + [(Aw, Vo) | + [(Vdivw, Vo) | + [(Va, S2)|

S ol Va2 + || Vwl? + ||V2w||2 + (V- w, 81|+ [(Va, S| (3.30)

Then, a similar argument for obtaining (3.14) and (3.15) in the proof of Lemma 3.1 gives the following
estimates

(V- w, 90| S 6+ (| V2| + [Vw]]?), (3.31)
and
(V0,9 S (6 + ) (| V20| + |V ]3). (3.32)

Then, by (3.31) and (3.32), (3.30) becomes

d
&(w, Vo) +v||Val||* < mol|Vall* + (6 + e)(HV2UH2 + | Vwl3). (3.33)

Applying 02 (Ja| = 1) to (3.29) and multiplying it by 92V and then integrating the resultant over R3,
we have
G (080.00V) + |V
S (08w, 09V 00)| + (09 Aw, 85V )| + [0V divw, 03 Vo) | + (9 G2, 05 V)|
=K1+ Ko+ K3+ Ky. (334)

For K1, it follows from (2.2); and the Holder inequality that

K1 S 00V - w, 09V - w)| + [(99V - w, 0551)|
S V2] + || V2| |05 51 - (3.35)

By using (3.12), the Holder inequality, Lemma A.1 and the assumption (3.9), we have

0551 S (|07 (Vo - w)|| + |05 (0V - w)|| + (|02 (V5 - w)|| + |02 (pV - w) |
Sogvollllwllze + 1Vollzs |05w]| 1o + (|05 0] oIV - wllzs
ol 5 ol + 9w + V532l + |08 -] + 0257 -]
SOV (o, w) || + ([ V20| s lwllze + 16l Lo || V2w]| + IV Al s | V]| Lo
< 0|V + (6 + )| V|- (3.36)
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Then, by the Young inequality, it is straightforward to show that
Ky S 68||V20 | + (Vw3 (3.37)
Applying the Young inequality to Ko and K3, we have
Ky + K3 S mo| V20| + || V30| (3.38)
It follows from (1.2), (2.5), (3.13) and Lemma A.1 that, for |a| =1,
J05a] 5 02 [ W]l + 2w A + 0277 )] + 5 (0¥
+ (|02 (pAw) || + |02 (pVV - w)|| + (|05 (Vo) + |05 (Vo) ||
SVl |[Vw| s + lwll 2 |05 V|| + [|082 Awl| + [|05oAw|| + ||cdS VY - w|
+|050VV - w|| + |020|| s IV llLs + o]l =||05 Ve || + || 505 Aw]| + || 05 pA||

+ |08 (pVV - w)|| + ||05(Vpo)|| + |05 (5V o)
S @+ (IVelh +[1Vell).

Therefore, K4 can be estimated by using the Holder inequality as follows
S oz vol[[|agSe]] S (6 + &) (IIVal? + [Vwl3)- (3.39)

Putting (3.37)-(3.39) into (3.34) and noticing that |a| =1 yield

d
dt<Vw Vo) + HVQUH < UOHVQUH + (8 +&)IVali + | Vw3 (3.40)

Combining (3.33) with (3.40) yields (3.28). Thus, we complete the proof of Lemma 3.2. 0O

By summing up (3.10) for from k = 0 to 2, since J and € are small, we have
d
o ST IVEew@| + Y Ve < ot S [ VEa)) (3.41)
0<k<2 0<k<2 1<k<2
Summing up (3.28) for from k& = 0 to 1, since 7, 6 and € are small, we have
— Z (VEu(t), VEVa(t)) + C2 Y [[VEVe)||* < Y |[VFw(®)|. (3.42)
0<k<1 0<k<1 1<k<3

Now, multiplying (3.42) by 2C, (8 + €)/C5, adding it with (3.41) and using the smallness of § and ¢, we
have

H T Mol + 228 5 (v, vva)

0<k<2 0<k<1

+C5{ STV )* + S ||v’“+1w(t)u2} <0. (3.43)

0<k<1 0<k<2

From (3.43) and the smallness of ¢ and €, we obtain the a priori estimate (2.6). Thus, the global existence
of solutions to the problem (2.2) stated in Theorem 2.1 is obtained.
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4. Convergence rate

In this section, we first show negative Sobolev norm estimates of the solution (o, w) in both H?2-framework
and H3-framework. Then, we obtain time decay rates of the solution to the problem (2.2) under the two
frameworks, respectively.

4.1. Negative Sobolev estimates

Lemma 4.1. For s € (0,1/2), there exists a constant Cs > 0 such that
d
Ao + 147w @) + VA < Com| A~ Vo) + Ce|vumf  (41)

Proof. Applying A=* to (2.1)1, (2.1)2 and multiplying the resultant equalities by A~%c, A~%w respectively,
combining them and then integrating over R3, we obtain

[l Ayt |94 ot a5
R3
S (A0, A 80) | + [(A5w, A7255)). (4.2)

1d
2dt

By using the Plancherel theorem and (3.12), we have

(Ao, A75718)| = [(A' 50, 45718
< (4140, A7 (To )| + [ (450, 407 )
+ (A 50, A7 (Vo w))| 4 (A 00, A7 (pVw) )|
=U; + Uy +Us 4+ Uy. (4.3)
For s € (0,1/2), we have that 1/2 4+ (s +1)/3 < 1 and 2 < 3/(s 4+ 1) < 3. Then, using the Holder
inequality, Lemma A.2 and the Young inequality, for Uy, we have
U S Vol |40
S IVollll 129wl /2= [ 4>V |

S IVl ([l + | Vwlf?) + o] A 50> (4.4)

A similar argument leads to

2

Us S V]2 (ol + Vo) +nol|A* 0%, (4.5)
and
Uy S (A0, A7 (pVw))|
S AVl s/ ]| 40|
< NAIVwl*+72 | V2|27 | 450 |
S eIVl + [[V2w][) +mof| 4" . (4.6)
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For Us, thank to the Hardy inequality, Lemmas A.1-A.2 and the Young inequality, we have

o]

L3/(s+1)

s+1/2 w
V SR
<1+|93)

<+ 1) Vo [ Vwl| V2 Vw2 | Ao |
S e(IVwll? + [IVwl?) + mol|A o). (4.7)

s 5 1+ 1) V7 |

1+ |z
1/2—s

<+ 1) VAl |40

1+ |z

Then, putting (4.4)—(4.7) into (4.3) leads to
[(A™5Vo, 47718 S mol| A0 || + €| Ve 3. (4.8)
Similarly, we get
(470, A7285)] = [(A"=2, A= 7155)] S o[ 4" + el V. (4.9

By using (4.8), (4.9) and (4.2) and noticing the smallness of constants 79 and e yield (4.1). Thus, the
proof of Lemma 4.1 is finished. O

Lemma 4.2. Let s € (0,1/2), then we have

CA0(1), 4V () + AV ()|]* < A=) > + O To o)} + |Vt

Iy I (4.10)

Proof. Applying A~% to (3.29) and multiplying it by A7*Vo and then integrating the resultant over R?, we
have

%<Afsw,/175vg> —|—'yH/175VaH2 < ‘(Afsw,/lfsvataﬂ + ’<A75Aw,A75VG>|
+ (AT V divw, A75Vo)| + [(A7° S, A™*Vo)|
=V 4+ Vo + Vs + V. (4.11)

For s € (0,1/2), we have that 5/6 + s/3 < 1 and 2 < 3/(s + 1) < 3. Then, as to Vi, by using (2.2);,
integration by parts, the Holder inequality, (3.12) and Lemma A.1, we have

Vi S (A 5w, AV divw)| + [{(A7%w, A7V Sy )|
—s 2 —s —s
S a7l 47V g

< A w|| + || A 5w |V Syl

1
15/6+s/3

< A rw]? + At 5w||(||v2ol|||w| A IVallIVel, oy + Dol o V%]

+ | (1 +[2[) V35| =

L+1

| 1o, 1wt + 181, )

S Al + |4l (1% el + 1V ol Vel + lloll][ V2w
+ |+ =) V2B IVl + [1all2] Vel 1)
S A7Vl + 8|V} + (5 + o)l Vel (4.12)



W. Wang / J. Math. Anal. Appl. 423 (2015) 1448-1468 1463

Similarly, we have
Vi< %HA_SVUHQ + C||Vall1 + C||Vw]3. (4.13)
By using the Young inequality and Lemma A.5, it is obvious that
Vot Vs < 5[4 Vo | + Cl|4> |
< 2470 + O[] " Vul®

S %||A_3Va||2+0||Vw||2+C’]|V2wH2. (4.14)

Then, substituting (4.12) and (4.14) into (4.11) and using the smallness of 79, we complete the proof of
Lemma 4.2. O

Multiplying (4.10) by 2C3np and adding it with (4.1), we have
d
E(HA’S(cr,w)(t)HQ + (Aw(t), A5V () + Camol|[A*Vo @) ||* + |4V (®)|?
< Ol A= V)| + OlVa(t)]; + €[ w5 (4.15)

Integrating (4.15) with respect to ¢, by the smallness of 7 and the Young inequality, Lemma A.4
and (2.10), we have

||A’5(cr,w)(t)}|2+/||A’SV(a,w)(7')H2dT
0
< HA_S(U(),W())H2 + 203770|</1_st, /11_80'0>| + 203770|</1_sw(t), Al_sg(t)>|
+ C’HAl_SoJ(t)H2 + C/(HVO’(T)H? + HVw(T)Hi)dT
0

< Ol 4 (00,w0)|* + C| A" 00 ||* + C[| A= (o, ) ()| + C| (00, w0)
< |47 (o0,w0)[|* + CII V0|2 o | + C|| Vo (8) |||
+ C[[Ve®|*" ™ lw®]** + Cll(oo,w0)|l3
< |47 (o0,w0) || + € (00, wo) |3 + Clo ][} + Cllw®)];
< C||A~*(o0,w0)||* + €| (a0, wo) |5 (4.16)

Then, we obtain the negative Sobolev estimates (2.7).
4.2. Time-decay rates in H?-framework

We consider decay-in-time estimates on (o, w) in H?-framework. Precisely, we have the following lemma.

Lemma 4.3. Under the assumptions of Theorem 2.1, the solution (o,w) to the problem (2.2) satisfies

[(0;0)®)]l, < CO+1)75. (4.17)
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Proof. Define the temporal energy functional

H(t) = ||(J,w)(t)||§ + %Z—’_G)KVJ(t),w(t» + <VVO(t), V- w(t))},

where it is noticed that H(t) is equivalent to ||(o,w)(t)||3 since the positive constants § and e can be
sufficiently small. Then, from (3.43), we have

dH(¢
PO o)l + [ve] <o (4.18)
In view of Lemma A .4, for s € (0,1/2), we have

IV(0,) ()] = Cll A (@.w)®)] e

(o,w)(t

By using (4.16), there exists a constant Cy > 0 such that

IVe.) | = C{ @)@},
Then, we have

—d%d[it) + OyH() s <.

Solving this inequality directly gives

H(t) < (H(o>—% + @>_s < Co(1+1)7%.

S

Thus, we complete the proof of Lemma 4.3. 0O
4.3. Time decay rates in H3-framework

In order to obtain time decay estimates of solutions stated in Theorem 2.2, we first show the LP—L4
estimate on linearized system for later use. The linearized equations corresponding to system (2.2) takes
the form

Ot + ’yV U= 0,
wy — 1 Aw — e Vdivw +yVo = 0, (4.19)
(07 W)lt:() = (007 WO)'
Then, the solution (o, w) to the problem (4.19) can be defined by (o, w)(z,t) = et (00, wo) () (t > 0) with
A = A(D,) being a matrix-valued differential operator given by

A(Dm):< 0 ~ div )

’}/v —/LlA - ,UQV div
The semigroup e~ %4 has the following properties on the decay in time, cf. [11,12].

Lemma 4.4. Let k > 0 be an integer with 1 < p <2 < g < oo. Then for any t > 0, it holds that

Hvke_tA(U(%wO)HLq < C(l + t)ig(%ié)ig |’<007w0)’|meHk'
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By using the LP—L? estimates on linearized system, we obtain the time decay rates of the solution to the
problem (2.2) as follows.

Lemma 4.5. Under the assumptions of Theorem 2.3, the solution (o,w) to the initial value problem (2.2)

satisfies

IV*(o,0))], < C(L+1)" %, k=1,2,3. (4.20)
Proof. Firstly, we denote that

M(t) == sup {(1+7)""°L(7)}.

0<7r<t

Then, we have

|V (0, w)(7) L)< (A+7)"2 MY, 0<7<t

I, =

By applying the Plancherel theorem, Lemma 4.4 and Lemma A.4, we have, for any s € (0,1/2) and
k=0,1,

t
[V (o, w)@)|| S ||VF e "4 A7 (00, wo)]| + /||vke—tA(sl,52)(7)|\dT
S Hvke_tAA_S(Joawo)||178Hvk+1e_m/1_8(007WO)HS
t
+/<1+t—TrH||<sl,sz><7>|\mmd¢
0

S 40747 (00, 00) | oo

t
+(5+¢) / Ft—7) 8T (14 r) T 2/ M(D)dr
0
<(+)" [Lo + e1V/M(t)], (4.21)
where Ly := ||(00,wo)|| g-sngr+1 and we have made use of the Hélder inequality, the Hardy inequality

and (2.10) to estimate the right-hand side term as

1(S1,S2) 0] 2 S ([ )OI, + 121+ [1(1 + 2) V| |V (0, ) O],
,SelHV o,w)(t)

and

1650, 5211 < (H(o,w)(t)HWl,m e+ S (14 |x|)v’€p||m)||V<o,w><t>||2

1<k<2

< elHV(U,w)(t)HZ.
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Then, by using Gronwall inequality and (4.21), from (2.11), we have

t

L(t) < L0)e ™" + / e ||V (0,w)(7)|[dr

~

0
t

< L(0)et + /e*(“f)(l + 1) UF (L2 + M (1)) dr
0
S+ L)+ L3+ EM(t)}.

Noticing the definition of M (¢) and the smallness of €1, we have
M(t) S L£(0) + Lg. (4.22)
Thus, we complete the proof of Lemma 4.5. O
Moreover, from (4.21) and (4.22), we have
(o, w)@)]| < C(1+1¢)"5.
Thus, we complete the proof of Theorem 2.3. O
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Appendix A

In this appendix, we state some useful inequalities in the Sobolev space. The proof of the following lemma
can be found in [1].

Lemma A.1. Let f € H*(R?). Then

(@) £l < CIVAMIVEE < CUV Sl
(i) [ fllze < CIV L
(iil) [fllze < Clfllar, 2 < g <6.

The following is the usual Sobolev interpolation of the Gagliardo—Nirenberg—Sobolev inequality.

Lemma A.2. Let 0 < m,a <, then we have

19l < IV A1 19

where 0 < 0 <1 and « satisfies

- (5o (-2

Here when p = oo we require that 0 < 6 < 1.
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We recall the following two lemmas. One can find them in [13,23].

Lemma A.3. Let m > 1 be an integer, then we have

IV o S N Ieo [V e + (V" F || o2 gl (A.3)

and

(V™ (f9) = 1Y)l o S UV Flees [V g oy + IV F | s gl s (A4)
where 1 <p; < +o00 (i=1,...,6) and

1 1 1 1 1 1 1
ST i (A.5)
p P1 P2 P3s D4 Ps  De

Lemma A.4. Let s € (0,1/2), then we have

V=2 £l < IV A2 A1

The Hardy-Littlewood—Sobolev theorem implies the following L? type inequality for the Riesz potential,
cf. [21].

Lemma A.5. Let 0 < s < 3,1 <p<qg<oo,1/q+s/3=1/p, then

A7 f ] o S M fllee-
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