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Abstract

This paper deals with a fully parabolic chemotaxis system ut = Δu−χ∇·(uv∇v), vt = Δv−v+u
with singular sensitivity χ

v (χ > 0) on a bounded domain Ω ⊂ R
n, n ≥ 2. The main result solves

the open problem of uniform-in-time boundedness of solutions for χ <
√

2
n , which was conjectured

by Winkler [16].
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1 Introduction

We consider the Neumann initial-boundary value problem for a fully parabolic chemotaxis system
with singular sensitivity ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ut = Δu− χ∇ · (uv∇v), x ∈ Ω, t > 0,

vt = Δv − v + u, x ∈ Ω, t > 0,
∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.1)

in a bounded domain Ω ⊂ R
n, n ≥ 2 with smooth boundary, where χ > 0 and{

u0 ∈ C0(Ω̄), u0 ≥ 0 in Ω̄, u0 �≡ 0,

v0 ∈ W 1,∞(Ω), v0 > 0 in Ω̄.
(1.2)

The particular choice of the sensitivity function χ
v in the present problem (1.1) was proposed in an

original model by Keller and Segel [11] in order to account for the so-called Weber-Fechner law of
stimulus perception in the process of chemotactic response.

As to the problem (1.1) with logistic source in the two dimensional setting, Aida, Osaki, Tsujikawa,
Yagi and Mimura [1] asserted global existence of classical solutions, leaving open the question whether

or not they are bounded. Winkler [16] proved that if χ <
√

2
n , then (1.1) possesses a global classical

solution without relying on logistic source. As pointed out in [16], the result did not rule out the
possibility that the solution may become unbounded as t → ∞. The question of boundedness of the
solution to (1.1) has been posted as an open problem. Indeed, in this context, Kavallaris and Souplet
[10] studied a precise grow-up rate and asymptotic estimates for solutions to a simplified chemotaxis
system without 1

v . Moreover, as to the problem (1.1) without 1
v , Cieślak and Stinner [3] showed

that the solutions blow up in finite time under some conditions. As to the present problem (1.1)

with 1
v , global existence of weak solutions was established when χ <

√
n+2
3n−4 ([16]). In the radially

symmetric setting, Stinner and Winkler [14] constructed certain weak solutions under the condition

χ <
√

n
n−2 . Moreover, in virtue of additional dampening kinetic terms, Manásevich, Phan and Souplet

[12] proved global existence and boundedness in a related system for all χ. As compared to the above,
the parabolic-elliptic case has been studied more precisely ([2, 13, 4, 6, 5]). Many references to earlier
work on chemotaxis systems can be found in Hillen and Painter [8].

In the present paper we improve the approach in [16] and establish uniform-in-time boundedness of
solutions to (1.1). The main result reads as follows.

Main Theorem Let n ≥ 2. Assume that χ satisfies

0 < χ <

√
2

n
,

and suppose that u0 and v0 satisfy (1.2). Then the global solution of (1.1) is bounded in the sense
that there exists C > 0 such that

‖u(·, t)‖L∞(Ω) ≤ C for all t > 0.
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The above theorem states uniform-in-time boundedness of solutions under the same condition as in
[16]. There are two difficulties in deriving boundedness. The first difficulty stems from the singularity
of 1

v . To overcome this difficulty we shall establish a time-independent pointwise lower bound for v
(Lemma 2.2). Note that the strong maximum principle easily implies

v(·, t) ≥ η(t) := min
x∈Ω̄

v0(x) · e−t for all t > 0.

However, this is useless in proving uniform-in-time boundedness of solutions, since η(t) → 0 as t → ∞.
The second difficulty lies in deducing time-independent Lp-boundedness of solutions. Although the Lp-
estimate in [16] depends on time, we shall reconstruct the method in [16] and remove the dependence.
Invoking the above two time-independent estimates, we establish boundedness.

Remark 1.1 In the regular case that 1
v is replaced with 1

(1+αv)k
(α > 0, k > 1), global existence and

boundedness were shown for all χ > 0 by Winkler [15]. After the completion of the present paper,
using the time-independent pointwise lower bound for v (Lemma 2.2), the boundedness result in [15]
was extended to the strongly singular case 1

vk
(k > 1) [7]. We note that the methods in [15, 7] cannot

be applied to the critical case k = 1.

This paper is organized as follows. Section 2 will be concerned with preliminaries, including the
announced pointwise lower bound for v. In Section 3 we deduce time-independent Lp-boundedness of
solutions and complete the proof of Main Theorem.

2 Preliminaries

We first recall the global existence result established in [16].

Lemma 2.1 Assume that 0 < χ <
√

2
n . If the initial data (u0, v0) satisfies (1.2), then (1.1) has a

global classical positive solution

u ∈ C2,1(Ω̄× (0,∞)) ∩ C0([0,∞);C0(Ω̄)),

v ∈ C2,0(Ω̄× (0,∞)) ∩ C0([0,∞);C0(Ω̄)).

Moreover, the first component of the solution satisfies the mass identity∫
Ω
u(x, t) dx =

∫
Ω
u0(x) dx for all t > 0. (2.1)

The following lemma is a cornerstone of our work. The mass identity (2.1) plays a key role in the
proof of this lemma. We shall denote by (u, v) the solution of (1.1) in the rest of the paper.

Lemma 2.2 There exists η > 0 such that

inf
x∈Ω

v(x, t) ≥ η > 0 for all t ≥ 0,

where η does not depend on t.
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Proof. We use a known result for the Neumann heat semigroup etΔ. In the same way as in the
proof of [9, Lemma 3.1], we can obtain the pointwise estimate from below

etΔw(x) ≥ 1

(4πt)
n
2

e−
(diamΩ)2

4t ·
∫
Ω
w > 0 (x ∈ Ω, t > 0) for all nonnegative w ∈ C0(Ω̄),

where diamΩ := maxx,y∈Ω̄ |x− y|. First by the positivity of v0 > 0 in Ω̄ and the maximum principle
we have

v(t) ≥ min
x∈Ω̄

v0(x) · e−t > 0 for all t ≥ 0.

Now fix τ > 0. Then it follows that

v(t) ≥ min
x∈Ω̄

v0(x) · e−τ =: η1 > 0 for all t ∈ [0, τ ].

Next, the representation formula of v, the maximal principle and (2.1) imply that

v(t) = et(Δ−1)v0 +

∫ t

0
e(t−s)(Δ−1)u(s) ds

≥
∫ t

0

1

(4π(t− s))
n
2

e
−
(
(t−s)+

(diamΩ)2

4(t−s)

)
·
(∫

Ω
u(x, s) dx

)
ds

= ‖u0‖L1(Ω) ·
∫ t

0

1

(4πr)
n
2

e−
(
r+

(diamΩ)2

4r

)
dr

≥ ‖u0‖L1(Ω) ·
∫ τ

0

1

(4πr)
n
2

e−
(
r+

(diamΩ)2

4r

)
dr =: η2 > 0 for all t ∈ [τ,∞).

Therefore we have v(t) ≥ min{η1, η2} =: η for all t ≥ 0. This completes the proof. �
To achieve boundedness of the norm of u(·, t) in Lp(Ω) we shall use the following lemmas.

Lemma 2.3 Let p ∈ R and q ∈ R. Then the following identity holds for all t > 0 :

d

dt

∫
Ω
upvq + q

∫
Ω
upvq − q

∫
Ω
up+1vq−1

=− p(p− 1)

∫
Ω
up−2vq|∇u|2 +

∫
Ω
upvq−2 · [− q(q − 1) + pqχ

] · |∇v|2

+

∫
Ω
up−1vq−1 · [− 2pq + p(p− 1)χ

]∇u · ∇v.

Proof. Proceeding analogously to [16, Lemma 2.3], we can prove the desired identity. �

Lemma 2.4 Let 1 ≤ θ, μ ≤ ∞.

(i) If n
2 (

1
θ − 1

μ) < 1, then there exists C > 0 such that

‖v(·, t)‖Lμ(Ω) ≤ C
(
1 + sup

s∈(0,∞)
‖u(·, s)‖Lθ(Ω)

)
for all t > 0.
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(ii) If 1
2 + n

2 (
1
θ − 1

μ) < 1, then there exists C > 0 such that

‖∇v(·, t)‖Lμ(Ω) ≤ C
(
1 + sup

s∈(0,∞)
‖u(·, s)‖Lθ(Ω)

)
for all t > 0.

Proof. We can argue similarly as in [16, Lemma 2.4] due to the estimate for et(Δ−1):

‖et(Δ−1)ϕ‖Lμ(Ω) ≤ c t
−n

2
( 1
θ
− 1

μ
)
e−δt‖ϕ‖Lθ(Ω) for all t > 0, ϕ ∈ Lθ(Ω),

with some constants c, δ > 0. �

3 Proof of Main Theorem

We follow the same way as in [16]. The difference is that our estimates are independent of time.

Lemma 3.1 Let n ≥ 2 and 0 < χ <
√

2
n . Assume that p ∈ (1, 1

χ2 ) and r ∈ (r−(p), r+(p)), where

r±(p) := p−1
2 (1±

√
1− pχ2). If there exists a constant c > 0 such that

‖v(·, t)‖Lp−r(Ω) ≤ c for all t > 0, (3.1)

then there exists C > 0 such that∫
Ω
up(x, t)v−r(x, t) dx ≤ C for all t > 0.

Proof. Choosing q := −r in Lemma 2.3, we obtain

I :=
d

dt

∫
Ω
upv−r − r

∫
Ω
upv−r + r

∫
Ω
up+1v−r−1

=− p(p− 1)

∫
Ω
up−2v−r|∇u|2 −

∫
Ω
upv−r−2

[
r(r + 1) + prχ

] · |∇v|2

+

∫
Ω
up−1v−r−1

[
2pr + p(p− 1)χ

]∇u · ∇v (3.2)

for t > 0. Applying Young’s inequality to the last term, we have

∣∣∣ ∫
Ω
up−1v−r−1

[
2pr + p(p− 1)χ

]∇u · ∇v
∣∣∣

≤ p(p− 1)

∫
Ω
up−2v−r|∇u|2 + 1

4p(p− 1)

∫
Ω
upv−r−2

[
2pr + p(p− 1)χ

]2 · |∇v|2.

Therefore (3.2) yields

I ≤ −
∫
Ω
upv−r−2h(p, r, χ)|∇v|2, (3.3)
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where

h(p, r, χ) :=r(r + 1) + prχ−
[
2pr + p(p− 1)χ

]2
4p(p− 1)

. (3.4)

As p ∈ (1, 1
χ2 ) and r ∈ (r−(p), r+(p)), we thus obtain

4(p− 1)h(p, r, χ) = −4r2 + 4(p− 1)r − p(p− 1)2χ2

= 4(r+(p)− r)(r − r−(p)) > 0.

In view of the positivity h > 0, (3.2) and (3.3) imply

d

dt

∫
Ω
upv−r + r

∫
Ω
up+1v−r−1 ≤ r

∫
Ω
upv−r for all t > 0. (3.5)

Now unlike the proof of [16, Lemma 4.2] we pay attention to the term r
∫
Ω up+1v−r−1. Hölder’s

inequality implies that∫
Ω
upv−r =

∫
Ω
(up+1v−r−1)

p
p+1 · v−r− p(−r−1)

p+1 ≤
(∫

Ω
up+1v−r−1

) p
p+1

(∫
Ω
vp−r

) 1
p+1

.

In virtue of the assumption (3.1), we see that∫
Ω
upv−r ≤ c

p−r
p+1

(∫
Ω
up+1v−r−1

) p
p+1

.

Hence we have that

c
− p−r

p

(∫
Ω
upv−r

) p+1
p ≤

∫
Ω
up+1v−r−1. (3.6)

Combining (3.6) with (3.5), we establish the following inequality:

d

dt

∫
Ω
upv−r ≤ −rc

− p−r
p

(∫
Ω
upv−r

) p+1
p

+ r

∫
Ω
upv−r.

Since we find p+1
p > 1, thus the standard ODE technique completes the proof. �

We are now in a position to prove our main theorem.

Proof of Main Theorem The proof is divided into two steps.

(Step 1) In this step we shall gain Lp-boundedness of solutions. We will prove that there exist some
p > n

2 and Cp > 0 such that

‖u(·, t)‖Lp(Ω) ≤ Cp for all t > 0. (3.7)

We consider an iterative argument. First we pick a pair (p0, r0) such that⎧⎪⎨
⎪⎩

p0 ∈
(
1, min

{ 1

χ2
, n+ 1,

n+ 2

n− 2

})
,

r0 :=
p0 − 1

2
.

(3.8)
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Then we can confirm that

p0 > r0, r0 <
n

2
, r0 ∈ (r−(p0), r+(p0)) and p0 − r0 =

p0 + 1

2
<

n

n− 2
.

Since n
2 (1 − 1

p0−r0
) < 1 due to the inequality p0 − r0 < n

n−2 , Lemma 2.4 (i) together with the mass
identity (3) allows us to find a constant c0 > 0 fulfilling

‖v(·, t)‖Lp0−r0 (Ω) ≤ C
(
1 + sup

s∈(0,∞)
‖u(·, s)‖L1(Ω)

)
≤ c0 for all t > 0.

Therefore Lemma 3.1 yields that there exists a constant c′0 > 0 such that∫
Ω
up0v−r0 ≤ c′0 for all t > 0.

Now we claim that for all q0 ∈ (1,min{p0, n(p0−r0)
n−2r0

}) there exists a constant c′′0 > 0 such that∫
Ω
uq0 ≤ c′′0 for all t > 0. (3.9)

Indeed, applying Hölder’s inequality, we obtain∫
Ω
uq0 =

∫
Ω
(up0v−r0)

q0
p0 · v

r0q0
p0

≤ ( ∫
Ω
up0v−r0

) q0
p0 ·

(∫
Ω
v

q0r0
p0−q0

) p0−q0
p0

≤ c′0
q0
p0 ·

(∫
Ω
v

q0r0
p0−q0

) p0−q0
p0

. (3.10)

Since n
2 (

1
q0

− p0−q0
q0r0

) < 1 due to q0 <
n(p0−r0)
n−2r0

, it follows from Lemma 2.4 (i) that

sup
t>0

‖v(·, t)‖
L

q0r0
p0−q0 (Ω)

≤ K0

(
1 + sup

t>0
‖u(·, t)‖Lq0 (Ω)

)

with K0 > 0. Applying this estimate to (3.10), we have

sup
t>0

‖u(·, t)‖Lq0 (Ω) ≤ K ′
0

(
1 + (sup

t>0
‖u(·, t)‖Lq0 (Ω))

r0
p0

)

with K ′
0 > 0. Since r0

p0
< 1, we can verify (3.9).

In the above argument, if p0 >
n
2 , then we can pick q0 >

n
2 and we establish (3.7). On the other hand,

if p0 ≤ n
2 , then we consequently deduce that for all q0 ∈ (1, n(p0+1)

2(n−p0+1)) there exists c′′0 > 0 satisfying

∫
Ω
uq0 ≤ c′′0 for all t > 0 (3.11)

due to p0 ≥ n(p0−r0)
n−2r0

= n(p0+1)
2(n−p0+1) when p0 ≤ n

2 .
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We proceed the second iteration. We fix a pair (p1, r1) such that⎧⎪⎨
⎪⎩

p1 ∈
(
p0, min

{ 1

χ2
, n+ 1,

p0(n+ 2)

n− 2p0

})
,

r1 :=
p1 − 1

2
.

(3.12)

Then we see that

p1 > r1, r1 <
n

2
and r1 ∈ (r−(p1), r+(p1)).

Moreover, we can calculate that

p1 − r1 =
p1 + 1

2
<

p0(n+2)
n−2p0

+ 1

2

=
n(p0 + 1)

2(n− 2p0)
=

n(p0 + 1)

2{(n− p0 + 1)− (p0 + 1)} =
n · n(p0+1)

2(n−p0+1)

n− 2 · n(p0+1)
2(n−p0+1)

.

Hence, we can find some q0 ∈ (1, n(p0+1)
2(n−p0+1)) satisfying

p1 − r1 <
nq0

n− 2q0
.

Noting that n
2 (

1
q0

− 1
p1−r1

) < 1, we deduce from Lemma 2.4 (i) and (3.11) that there exists a constant
c1 > 0 such that

‖v(·, t)‖Lp1−r1 (Ω) ≤ C
(
1 + sup

s∈(0,∞)
‖u(·, s)‖Lq0 (Ω)

)
≤ c1 for all t > 0

and Lemma 3.1 yields that there exists a constant c′1 > 0 fulfilling∫
Ω
up1v−r1 ≤ c′1 for all t > 0.

Using a similar estimate as the first iteration, we have that for all q1 ∈ (1,min{p1, n(p1−r1)
n−2r1

}) there
exists a constant c′′1 > 0 such that ∫

Ω
uq1 ≤ c′′1 for all t > 0.

If we can choose p1 > n
2 , then we can pick q1 > n

2 and establish (3.7). Moreover if p1 ≤ n
2 , then we

have that for all q1 ∈ (1, n(p1+1)
2(n−p1+1)) there exists a constant c′′1 > 0 satisfying

∫
Ω
uq1 ≤ c′′1 for all t > 0.
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Consequently, we can define a pair (pk, rk) (k ∈ N):⎧⎪⎨
⎪⎩

pk ∈
(
pk−1, min

{ 1

χ2
, n+ 1,

pk−1(n+ 2)

n− 2pk−1

})
,

rk :=
pk − 1

2
,

(3.13)

and if pk ≤ n
2 , then we deduce that for all qk ∈ (1, n(pk+1)

2(n−pk+1))∫
Ω
uqk ≤ c′′k for all t > 0

with constant c′′k > 0. Because 2
n < min{ 1

χ2 , n+ 1} due to the condition χ <
√

2
n and the increasing

function f(x) := x(n+2)
n−2x satisfies f(x) > 1 (x > 1) and f(x) → ∞ as x → n

2 , we can obtain some k0
large enough such that pk0 > n

2 and hence qk0 > n
2 . Therefore we prove (3.7).

(Step 2) In light of Lp-boundedness of solutions (Step 1), we show L∞-boundedness in this step.
Building on Lemma 2.4 (ii), we invoke the standard semigroup technique (e.g. [16, Lemma 3.4]) to
imply that there exists C > 0 such that

‖u(·, t)‖L∞(Ω) ≤ C for all t > 0.

Thus we can complete the proof. �

Remark 3.2 Our method in this work can be applied to the general case:{
ut = Δu− χ∇ · ( u

vk
∇v), x ∈ Ω, t > 0,

vt = Δv − v + u, x ∈ Ω, t > 0,
(3.14)

with k > 1. Indeed, instead of h(p, r, χ) in (3.4), set

h(p, r, χ, v) : = r(r + 1) + prχ · 1

vk−1
−

[
2pr + p(p− 1)χ · 1

vk−1

]2
4p(p− 1)

≥ r(r + 1) + prχ · 1

ηk−1
−

[
2pr + p(p− 1)χ · 1

ηk−1

]2
4p(p− 1)

.

Replacing χ with χ̄ := χ
ηk−1 , we can argue similarly as our proofs. Hence, if χ <

√
2
n · ηk−1 we can

establish boundedness of solutions to (3.14) with k > 1.
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