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1. Introduction

Geometry of Banach spaces has been intensively developed during the last decades, since it has found a lot 
of applications in many branches of mathematics. The metric geometry deals with properties invariant under 
isometries (for example rotundity, uniform rotundity and many intermediate properties). The monotonicity 
properties (strict and uniform monotonicity) play an analogous role in the geometry of Banach lattices. 
However, the studies of global properties are not always sufficient. When the Banach space (Banach lattice) 
has not the global property then it is natural to ask about the local structure. This leads among others to 
the notion of an extreme point. The respective role in the theory of Banach lattices play the points of lower 
and upper monotonicity. The local geometry has been deeply investigated recently (see [7,14,16,26–28]) and 
one of the important reasons is an application to local best dominated approximation problems in Banach 
lattices (see [7]).
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In Section 2 we recall the necessary terminology.
Section 3 is devoted to symmetric Banach function spaces. The essential question in the global geometry 

is whether a geometric property can be equivalently considered only on the positive cone E+ of E (see [21,22]
for further references). We prove the local version of such result, namely a point x is an Hg point if and 
only if |x| is an Hg point. The more delicate question is whether a point x has some local property P if 
and only if its nonincreasing rearrangement x∗ has the same property P and the positive answer is very 
useful in verifying local properties in particular classes of symmetric function spaces (see [7]). The goal 
of this paper is to study the structure of Hg and Hl points from that point of view. Moreover, we will 
show the relationships between Hg, Hl points and points of upper monotonicity, generalizing the global 
characterization from [5]. Furthermore, we prove that, for an Hg point, the norm is lower semicontinuous
with respect to the global convergence in measure, similarly as, for the point of order continuity, the norm 
is lower semicontinuous with respect to the convergence a.e.

Section 4 concerns the Lorentz spaces Γp,w and Λp,w. We give the full characterization of Hg and Hl

points. Several corollaries concerning respective global properties are also deduced.
In the last section, we show applications of Hg and Hl points to local best dominated approximation 

problems in Banach lattices. It is known that global monotonicity properties (strict and uniform mono-
tonicity) play an analogous role in the best dominated approximation problems in Banach lattices as the 
respective rotundity properties (strict and uniform rotundity) do in the best approximation problems in 
Banach spaces (see [30]). The points of lower (upper) monotonicity of a Banach lattice E play an analogous 
role like the extreme points in a Banach space X. Similarly, the role of points of upper (lower) local uni-
form monotonicity in Banach lattices is analogous to that of points of local uniform rotundity in Banach 
spaces. The role of lower (upper) monotonicity points and points of order continuity in local best dominated 
approximation problems in Banach lattices has been investigated in [7]. We will show that although the 
order continuity and property Hg are not comparable each to other, Hg point has a similar impact in local 
best dominated approximation problems in Banach lattices as a point of order continuity. Recall that global 
properties of Hg and Hl points have been investigated among others in [10,22,23]. The uniform versions of 
these properties have been studied in [36].

2. Preliminaries

Let R and N be the sets of real and positive integers, respectively. As usual S(X) (resp. B(X)) stands 
for the unit sphere (resp. the closed unit ball) of a Banach space (X, ‖ · ‖X).

Denote by L0 the set of all (equivalence classes of) extended real valued Lebesgue measurable functions 
on [0, α), where α = 1 or α = ∞. Let m be the Lebesgue measure on [0, α).

A Banach lattice (E, ‖ · ‖E) is called a Banach function space (or a Köthe space) if it is a sublattice of L0

satisfying the following conditions:

(1) if x ∈ L0, y ∈ E and |x| ≤ |y| a.e., then x ∈ E and ‖x‖E ≤ ‖y‖E ;
(2) there exists a strictly positive element x ∈ E.

By E+ we denote the positive cone of E, that is, E+ = {x ∈ E : x ≥ 0}. We use the notation Ac = [0, α)\A
for any measurable set A.

A point x ∈ E is said to have an order continuous norm if for any sequence (xn) in E such that 
0 ≤ xn ≤ |x| and xn → 0 m-a.e. we have ‖xn‖E → 0. A Köthe space E is called order continuous
(E ∈ (OC )) if every element of E has an order continuous norm (see [20,31]). As usual Ea stands for the 
subspace of order continuous elements of E.

We will assume in the whole paper (unless it is stated otherwise) that E has the Fatou property
(E ∈ (FP)), that is, if 0 ≤ xn ↑ x ∈ L0 with (xn)∞n=1 in E and supn∈N‖xn‖E < ∞, then x ∈ E and 
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limn‖xn‖E = ‖x‖E . A space E has the semi-Fatou property (E ∈ (s − FP)) if conditions 0 � xn ↑ x ∈ E

with xn ∈ E imply ‖xn‖E ↑ ‖x‖E .
A point x ∈ E+ \ {0} is said to be a point of upper monotonicity if for any y ∈ E+ such that x ≤ y

and y 	= x, we have ‖x‖E < ‖y‖E . A point x ∈ E+ is called a point of upper local uniform monotonicity if 
‖xn − x‖E → 0 for any sequence xn ∈ E such that x ≤ xn and ‖xn‖E → ‖x‖E . We will write shortly that 
x is a UM -point and ULUM -point, respectively. Recall that if each point of E+ \ {0} is a UM point, then 
we say that E is strictly monotone (E ∈ (SM )) (see [2,13]). Similarly, if each point of E+ \ {0} is a ULUM
point, then we say that E is upper locally uniformly monotone (E ∈ (ULUM )).

A point x ∈ E is said to be an Hg point (resp. Hl point) in E if for any (xn) ⊂ E such that xn → x

globally (resp. locally) in measure and ‖xn‖E → ‖x‖E , we have ‖xn − x‖E → 0. We say that the space E
has Kadec–Klee property globally (resp. locally) in measure if each x ∈ E is an Hg point (resp. Hl point) 
in E.

For x ∈ L0 we denote its distribution function by

dx(λ) = m
{
s ∈ [0, α) :

∣∣x(s)
∣∣ > λ

}
, λ ≥ 0,

and its decreasing rearrangement by

x∗(t) = inf
{
λ > 0 : dx(λ) ≤ t

}
, t ≥ 0.

A function x ∈ L0 is said to be ∗regular if

m
({

t ∈ suppx :
∣∣x(t)

∣∣ < x∗(α)
})

= 0.

The above equality works under the convention x∗(∞) = limt→∞ x∗(t). It is easy to see that every x ∈ L0

is ∗regular whenever α = 1. Moreover, if α = ∞, then every x ∈ L0 with x∗(∞) = 0 is ∗regular.
Given x ∈ L0 we define the maximal function of x∗ by

x∗∗(t) = 1
t

t∫
0

x∗(s)ds.

It is well known that x∗ ≤ x∗∗, x∗∗ is nonincreasing and subadditive, i.e.

(x + y)∗∗ ≤ x∗∗ + y∗∗ (1)

for any x, y ∈ L0. For the properties of dx, x∗ and x∗∗, the reader is referred to [1,29].
Two functions x, y ∈ L0 are called equimeasurable (x ∼ y for short) if dx = dy. We say that a Banach 

function space (E, ‖ · ‖E) is rearrangement invariant (r.i. for short) or symmetric if whenever x ∈ L0 and 
y ∈ E with x ∼ y, then x ∈ E and ‖x‖E = ‖y‖E . Given an r.i. Banach function space E, by φE we denote 
its fundamental function, that is φE(t) = ‖χ(0,t)‖E for any t ∈ [0, α) (see [1]).

The relation ≺ is defined for any x, y in L1 + L∞ by

x ≺ y ⇔ x∗∗(t) ≤ y∗∗(t) for all t > 0.

Recall that a symmetric space E is K-monotone (KM for short) or has the majorant property if for any 
x ∈ L1 + L∞ and y ∈ E such that x ≺ y, we have x ∈ E and ‖x‖E ≤ ‖y‖E .

It is well known that a symmetric space is K-monotone iff it is exact interpolation space between 
L1 and L∞. Moreover, symmetric spaces with Fatou property as well as separable symmetric spaces are 
K-monotone (see [29]).



M. Ciesielski et al. / J. Math. Anal. Appl. 426 (2015) 700–726 703
3. Symmetric Banach function spaces

Lemma 3.1. Let E be a symmetric Banach function space on [0, α), where α = 1 or α = ∞. The following 
conditions are equivalent:

(i) x ∈ E is an Hg (resp. Hl) point in E;
(ii) |x| is an Hg (resp. Hl) point in E;
(iii) |x| is an (Hg)+ (resp. (Hl)+) point in E, that is for any sequence (xn) in E+ with xn → |x| globally

(resp. locally) in measure and ‖xn‖E → ‖x‖E we have ‖xn − |x|‖E → 0.

Proof. We prove only the lemma for Hg points, because the proof for Hl points is similar. Moreover, the 
global version of the lemma for Hl points was shown in [15].

The implication (ii) ⇒ (i) follows the same way as in the proof of Lemma 3.5 from [22]. We prove 
(i) ⇒ (ii). Let xn → |x| in measure and ‖xn‖E → ‖x‖E . Set

A+ =
{
t ∈ [0, α) : x(t) ≥ 0

}
and A− =

{
t ∈ [0, α) : x(t) < 0

}
.

Define

yn(t) =
{
xn(t) if x ∈ A+,

−xn(t) if x ∈ A−.

Then yn → x in measure. Clearly, ‖yn‖E → ‖x‖E . By the assumption we have ‖yn − x‖E → 0. Moreover,∥∥xn − |x|
∥∥
E
≤

∥∥(xn − |x|
)
χA+

∥∥
E

+
∥∥(xn − |x|

)
χA−

∥∥
E

=
∥∥(yn − x)χA+

∥∥
E

+
∥∥(−yn + x)χA−

∥∥
E
→ 0.

The implication (ii) ⇒ (iii) is obvious. Finally, (iii) ⇒ (ii) follows again as in the proof of Lemma 3.5 
from [22]. �

The following lemma is a local version of the implication (ii) ⇒ (iii) from Lemma 3.2 in [22].

Lemma 3.2. Let E be a symmetric Banach function space on [0, α) with α = 1 or α = ∞. If x is an Hg

point, then ‖xχAn
‖E → 0 for any sequence (An) of measurable sets satisfying m(An) → 0.

Proof. Take a sequence (An) of measurable sets with m(An) → 0. Since the convergence of the sequence 
‖xχAn

‖E we will prove by using the double extract subsequence theorem, without loss of generality we can 
assume that 

∑∞
i=1 m(Ai) < ∞. Define

Bn :=
∞⋃
i=n

Ai.

Obviously, Bn+1 ⊂ Bn for every n ∈ N and m(Bn) → 0. For any n ∈ N define

xn = xχ[0,α)\Bn
.

Clearly, 0 ≤ xn ↑ x in measure, whence, by E ∈ (FP), limn→∞‖xn‖E = ‖x‖E . Consequently, ‖xn −
x‖E → 0, because x is an Hg-point. Therefore

‖xχAn
‖E ≤ ‖xχBn

‖E = ‖xn − x‖E → 0. �
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Theorem 3.3. Let E be a symmetric Banach function space on [0, α), where α = 1 or α = ∞. If a ∗regular 
element x ∈ E is an Hg-point in E, then x∗ is an Hg-point in E.

Proof. Suppose yn → x∗ in measure and ‖yn‖E → ‖x∗‖E . By Lemma 3.1, we may take (yn) in E+. We 
divide the proof in two parts.

I. Let α = 1. There exists a measure preserving transformation σ : [0, 1) → [0, 1) such that x∗ ◦ σ = |x|
a.e. (see [1]). Then yn ◦ σ → |x| in measure and ‖yn ◦ σ‖E → ‖|x|‖E . Moreover,∥∥yn − x∗∥∥

E
=

∥∥(yn − x∗) ◦ σ∥∥
E

=
∥∥yn ◦ σ − |x|

∥∥
E
→ 0

because, by Lemma 3.1, |x| is an Hg-point.
II. Suppose α = ∞. Let x∗(∞) = 0. If m(suppx) < ∞ (m(suppx) = ∞), by Lemma 2 in [17], there is a 

measure preserving transformation σ : I → I (σ : suppx → [0, ∞)) with x∗ ◦σ = |x| a.e. (x∗ ◦σ = |x| a.e. on 
suppx). In the first case the proof can be easily finished with the sequence zn = yn ◦ σ. If m(suppx) = ∞
then we follow with the sequence

zn(t) =
{
yn(σ(t)) if t ∈ suppx,

0 if t /∈ suppx.

Now suppose that x∗(∞) > 0. First we claim that without loss of generality we may assume that

yn ≥ x∗(∞)χ[0,∞).

Otherwise, we set

An =
{
t ∈ [0,∞) : yn(t) ≤ x∗(∞)

}
, Bn =

{
t ∈ [0,∞) : yn(t) > x∗(∞)

}
and

ỹn = ynχBn
+ x∗(∞)χAn

.

Then |ỹn − x∗| ≤ |yn − x∗|, whence ỹn → x∗ in measure. We prove that∥∥(yn − x∗)χAn

∥∥
E
→ 0. (2)

Since x∗(∞) > 0, χ[0,∞) ∈ E. Set ε > 0 and

Aε
n =

{
t ∈ An : x∗(t) − yn(t) > ε

2‖χ[0,∞)‖E

}
.

Define

C =
{
t ∈ [0,∞) :

∣∣x(t)
∣∣ > x∗(∞)

}
and D =

{
t ∈ [0,∞) :

∣∣x(t)
∣∣ = x∗(∞)

}
.

By Lemma 2.2 in [7], there is a measure preserving transformation σ : C → [0, m(C)) such that x∗ ◦σ = |x|
a.e. on C. In the case of m(C) < ∞ and m(D) = ∞ we apply the construction from the proof of Proposi-
tion 2.3 in [24], i.e. we employ a measure preserving transformation β : D → [m(C), ∞) and define

γ = σχC + βχD.

Observe that γ : C ∪D → [0, ∞) is also a measure preserving transformation and
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x∗ ◦ γ = x∗ ◦ σχC + x∗ ◦ βχD = |x|χC + x∗(∞)χD = |x|χC∪D.

For simplicity, in both cases when m(C) = ∞ and m(C) < ∞, we use one notation γ as a measure preserving 
transformation that recovers |x| from x∗ a.e. on C and C ∪D, respectively. Then∥∥(yn − x∗)χAn

∥∥
E
≤

∥∥(x∗−yn
)
χAε

n

∥∥
E

+
∥∥(x∗−yn

)
χAn\Aε

n

∥∥
E
≤

∥∥x∗χAε
n

∥∥
E

+ ε/2

=
∥∥(x∗ ◦ γ

)
(χAε

n
◦ γ)

∥∥
E

+ ε/2 =
∥∥|x|χγ−1[Aε

n]
∥∥
E

+ ε/2.

By Lemma 3.2, we get ‖|x|χγ−1[Aε
n]‖E → 0 because m(γ−1[Aε

n]) = m(Aε
n) → 0 and x is an Hg-point in E. 

Consequently, (2) is proved. Since

‖yn‖E ≤ ‖ỹn‖E =
∥∥yn − ynχAn

+ x∗(∞)χAn

∥∥
E
≤ ‖yn‖E +

∥∥(x∗−yn
)
χAn

∥∥
E

and

lim
n→∞

‖yn‖E = lim
n→∞

(
‖yn‖E +

∥∥(x∗−yn
)
χAn

∥∥
E

)
=

∥∥x∗∥∥
E
,

by the squeeze theorem, limn→∞‖ỹn‖E = ‖x∗‖E .
Moreover, ∥∥(ỹn − x∗)∥∥

E
≤

∥∥yn − x∗∥∥
E

=
∥∥(yn − x∗)χAn

+
(
yn − x∗)χBn

∥∥
E

=
∥∥(x∗(∞) − x∗)χAn

+
(
yn − x∗)χBn

+
(
yn − x∗(∞)

)
χAn

∥∥
E

≤
∥∥(ỹn − x∗)∥∥

E
+

∥∥(x∗ − yn
)
χAn

∥∥
E
,

whence

lim
n→∞

∥∥(ỹn − x∗)∥∥
E

= lim
n→∞

∥∥yn − x∗∥∥
E
,

which finishes the proof of our claim.
Define

xn = yn ◦ σχC + x∗(∞)χsupp(x)\C .

We have

m
({

t ∈ C :
∣∣xn(t) −

∣∣x(t)
∣∣∣∣ > δ

})
= m

({
t ∈ C :

∣∣yn(σ(t)
)
− x∗(σ(t)

)∣∣ > δ
})

= m
({

t ∈
[
0,m(C)

)
:
∣∣yn(t) − x∗(t)

∣∣ > δ
})

for δ > 0. Hence, by the assumption,

xnχC → |x|χC (3)

in measure. Now we proceed the proof in two cases.
Case 1. Let m(C) = ∞. Clearly, xn → |x| in measure. Then,

m
({

t ∈ [0,∞) : |x|χC(t) > δ
})

= m
({

t ∈ [0,∞) : |x|(t) > δ
})

for every δ > x∗(∞). Furthermore,
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m
({

t ∈ [0,∞) : |x|(t) > δ
})

≥ m
({

t ∈ [0,∞) : |x|χC(t) > δ
})

= ∞

for any δ ≤ x∗(∞). Hence, |x|χC ∼ |x|. Moreover, by the equality

m
({

t :
∣∣(yn ◦ σχC)(t)

∣∣ > δ
})

= m
({

t ∈ C :
∣∣yn(σ(t)

)∣∣ > δ
})

= m
(
σ−1{s ∈ [0,∞) :

∣∣yn(s)
∣∣ > δ

})
= m

({
s ∈ [0,∞) :

∣∣yn(s)
∣∣ > δ

})
,

it follows that yn ◦ σχC ∼ yn. Consequently,

‖xnχC‖E = ‖yn ◦ σχC‖E = ‖yn‖E → ‖x‖E =
∥∥|x|χC

∥∥
E
. (4)

Now we show that

‖xn‖E → ‖x‖E . (5)

If δ ≥ x∗(∞), then

m
(
t ∈ [0,∞) : |xn|(t) > δ

)
= m

(
t ∈ [0,∞) : |yn ◦ σχC |(t) > δ

)
.

For each 0 < δ < x∗(∞) we have dyn◦σχC
(δ) = ∞ for all n, because yn ≥ x∗(∞)χ[0,∞). Then dxn

(δ) ≥
dyn◦σχC

(δ) = ∞ for all n, whence ‖xn‖E = ‖yn ◦ σχC‖E = ‖yn‖E and condition (5) is proved. Since, by 
Lemma 3.1, |x| is an Hg-point, it follows that∥∥xnχC − |x|χC

∥∥
E

=
∥∥xn − |x|

∥∥
E
→ 0.

Consequently, ∥∥yn − x∗∥∥
E

=
∥∥yn ◦ σ − x∗ ◦ σ

∥∥
E

=
∥∥xnχC − |x|χC

∥∥
E
→ 0.

Case 2. Let m(C) < ∞. Then m(D) = ∞. Now, according to the construction of the measure preserving 
transformation γ, we get

z = x∗ ◦ γ = |x|χC∪D.

Define

zn = yn ◦ γ = yn ◦ σχC + yn ◦ βχD.

Then

m
({

t ∈ C ∪D :
∣∣zn(t) − z(t)

∣∣ > ε
})

= m
({

t ∈ C :
∣∣yn(σ(t)

)
− x∗(σ(t)

)∣∣ > ε
})

+ m
({

t ∈ D :
∣∣yn(β(t)

)
− x∗(∞)

∣∣ > ε
})

= m
({

t ∈
[
0,m(C)

)
:
∣∣yn(t) − x∗(t)

∣∣ > ε
})

+ m
({

t ∈
[
m(C),∞

)
:
∣∣yn(t) − x∗(∞)

∣∣ > ε
})

= m
({

t ∈ [0,∞) :
∣∣yn(t) − x∗(t)

∣∣ > ε
})

for any ε > 0 and n ∈ N. Hence, zn converges to z in measure. It is easy to observe that

‖zn‖E = ‖yn ◦ γχC∪D‖E = ‖yn‖E → ‖x‖E = ‖z‖E .
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Since z = |x|χC∪D = |x| is an Hg-point in E, then∥∥yn − x∗∥∥
E

=
∥∥yn ◦ γ − x∗ ◦ γ

∥∥
E

= ‖zn − z‖E → 0. �
Lemma 3.4. Let E be a symmetric Banach function space on [0, α), where α = 1 or α = ∞. If an element 
x ∈ E is an Hl point then x∗ is an Hl point in E.

Proof. We follow similarly as in the proof of Theorem 3.3, case II, because each Hl point is a point of order 
continuity, whence x∗(∞) = 0. �
Theorem 3.5. Let E be a symmetric Banach function space on [0, α), where α = 1 or α = ∞. If x ∈ Ea and 
x∗ is an Hg point in E, then x is an Hg point in E.

Proof. Suppose that xn → x in measure and ‖xn‖E → ‖x‖E . Then∥∥x∗
n

∥∥
E

= ‖xn‖E → ‖x‖E =
∥∥x∗∥∥

E
. (6)

By property 11o in [29], x∗
n converges to x∗ a.e. We will show that x∗

n → x∗ in measure. Only the case 
[0, ∞) should be considered. Since x ∈ Ea, we have x∗(∞) = 0. Hence, for any ε > 0 there exists tε > 0
such that

x∗(t) < ε and x∗
n(tε) → x∗(tε)

for all t ≥ tε. Furthermore, since x∗
n, for n ∈ N, and x∗ are decreasing functions, there is Nε ∈ N such that∣∣x∗

n(t) − x∗(t)
∣∣ < ε

for all n ≥ Nε and t ≥ tε. Consequently,

m
({

t ∈ [tε,∞) :
∣∣x∗

n(t) − x∗(t)
∣∣ > ε

})
→ 0

for every ε > 0. Since x∗
n → x∗ a.e., x∗

n converges to x∗ locally in measure. Thus

m
({

t ∈ [0, tε] :
∣∣x∗

n(t) − x∗(t)
∣∣ > ε

})
→ 0.

Hence x∗
n converges to x∗ in measure. Now, in view of condition (6) and the assumption that x∗ is Hg point 

in E, we have ∥∥x∗
n − x∗∥∥

E
→ 0.

Since x ∈ Ea, x∗
n → x∗ in measure and also in norm of E, by Proposition 2.4 in [9], it follows that

‖xn − x‖E → 0. �
The above two theorems imply immediately

Corollary 3.6. Suppose x ∈ Ea. Then x is an Hg-point in E if and only if x∗ is an Hg-point in E.

The following lemma shows a nice analogy to a characterization of point of order continuity. Namely, 
replacing the convergence a.e. by the convergence globally in measure, we get
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Lemma 3.7. Let E be a symmetric Banach function space on [0, α) with the semi-Fatou property, where 
α = 1 or α = ∞. If x ≥ 0 is an Hg-point, then for each sequence (dn) in L0 with 0 ≤ dn ≤ x and dn → 0
globally in measure we have ‖dn‖E → 0.

Proof. Assume for the contrary that 0 ≤ dn ≤ x, dn → 0 globally in measure and ‖dn‖E � 0. Passing to 
a subsequence if necessary, we have ‖dn‖E ≥ δ > 0 for some δ > 0. Clearly, m(An(ε)) → 0 for each ε > 0, 
where An(ε) = {t ∈ [0, α) : dn(t) > ε}. Since x is an Hg point, by Lemma 3.2,

‖dnχAn(ε)‖E ≤ ‖xχAn(ε)‖E → 0

for each ε > 0. For ε1 = 1 we find an index n1 with ‖dn1χAn1 (ε1)‖E < 1 and m(An1(ε1)) < 1. Next, for 
ε2 = 1/2 we find an index n2 > n1 with ‖dn2χAn2 (ε2)‖E < 1/2 and m(An2(ε2)) < 1/2. Consequently, 
passing to a subsequence if necessary, we may assume that

‖dnχAn(εn)‖E < 1/n and m
(
An(εn)

)
< 1/n

for εn = 1/n. Suppose x∗(∞) > 0. Then ‖χ[0,α)‖E < ∞. Notice that ‖dnχ[0,α)\An(εn)‖E ≥ δ/2 for sufficiently 
large n ∈ N. Therefore

δ/2 ≤ ‖dnχ[0,α)\An(εn)‖E ≤ 1
n
‖χ[0,α)‖E

for n ∈ N large enough, a contradiction.
Assume x∗(∞) = 0. By Theorem 3.3, x∗ is an Hg-point. We have 0 ≤ d∗n ≤ x∗. Moreover, it is not 

difficult to show that d∗n → 0 globally in measure (see for example the proof of Theorem 3.5). Similarly as 
above, take sequences εn ↓ 0 and Bn(εn) = {t ∈ [0, α) : d∗n(t) > εn} such that

m
(
Bn(εn)

)
→ 0 and

∥∥d∗nχBn(εn)
∥∥
E
→ 0.

For each εn there is tεn satisfying x∗(tεn) ≤ εn. Set tεn = inf{t : x∗(t) ≤ εn}. First we claim that 
‖εnχ[0,tεn )‖E → 0. Otherwise, set zn = (x∗ − εn)χ[0,tεn ). Then zn is nondecreasing. Moreover, |zn − x∗| =
εnχ[0,tεn )+x∗χ[tεn ,∞). Note that tεn → ∞ when m(suppx∗) = ∞ and tεn → m(suppx∗) if m(suppx∗) < ∞. 
In both cases we conclude that zn ↑ x∗ globally in measure. Consequently, by E ∈ (s −FP), ‖zn‖E → ‖x∗‖E . 
On the other hand, ∥∥zn − x∗∥∥

E
≥ ‖εnχ[0,tεn )‖E � 0,

a contradiction with x∗ is an Hg point. This proves the claim. Note that∥∥d∗nχ[0,tεn )∩Bn(εn)
∥∥
E
≤

∥∥d∗nχBn(εn)
∥∥
E
→ 0.

Therefore, ∥∥d∗nχ[0,tεn )
∥∥
E
≤

∥∥d∗nχ[0,tεn )∩Bn(εn)
∥∥
E

+
∥∥d∗nχ[0,tεn )\Bn(εn)

∥∥
E
→ 0.

Consequently,

δ/2 ≤
∥∥d∗nχ(tεn ,∞)

∥∥
E
≤

∥∥x∗χ(tεn ,∞)
∥∥
E

for sufficiently large n ∈ N. Taking yn = x∗χ[0,tεn ), we conclude yn → x∗ globally in measure and ‖yn‖E →
‖x∗‖E . On the other hand, ‖yn−x∗‖E ≥ δ/2 for sufficiently large n ∈ N. This means x∗ is not an Hg-point, 
a contradiction with Theorem 3.3. This finishes the proof. �
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It is well known that the norm is lower semicontinuous with respect to weak convergence. Moreover, if 
E ∈ (OC ), the norm is lower semicontinuous with respect to convergence almost everywhere. Namely, if 
xn → x ∈ Ea a.e. then ‖x‖E ≤ lim inf‖xn‖E . We will prove the analogous result for global convergence in 
measure and for an Hg point in symmetric Banach function spaces (recall that properties Hg and OC are 
not comparable in general, see Section 5 below).

Lemma 3.8. Let E be a symmetric Banach function space on [0, α) with the semi-Fatou property, where 
α = 1 or α = ∞. Suppose x is an Hg point. If xn → x globally in measure, then ‖x‖E ≤ lim inf‖xn‖E.

Proof. Assume for a moment that x, xn ≥ 0. Set

wn = max{x, xn} and dn = (x− xn)χAn
, where An =

{
t : xn(t) ≤ x(t)

}
.

Then 0 ≤ dn ≤ x and dn → 0 globally in measure. By Lemma 3.7, ‖dn‖E → 0. Moreover, xn = wn − dn
and wn ≥ x ≥ dn. Consequently,

‖wn‖E − ‖dn‖E ≤ ‖xn‖E ≤ ‖wn‖E + ‖dn‖E ,

whence

‖x‖E ≤ lim inf‖wn‖E = lim inf‖xn‖E .

Take arbitrary x, xn such that xn → x globally in measure. By the inequality

m
({

t :
∣∣∣∣x(t)

∣∣− ∣∣xn(t)
∣∣∣∣ > ε

})
≤ m

({
t :

∣∣x(t) − xn(t)
∣∣ > ε

})
we conclude that |xn| → |x| globally in measure. By Lemma 3.1, |x| is an Hg point. Since the lemma holds 
for elements of positive cone of E, we get ‖|x|‖E ≤ lim inf‖|xn|‖E , which finishes the proof. �
Lemma 3.9. Let E be a symmetric Banach function space on [0, α), where α = 1 or α = ∞. If x ∈ Ea and 
a sequence (xn) of elements in E converges to x locally in measure, then there exists a sequence (An) of 
measurable subsets of finite measure such that χAn

→ χsupp x locally in measure and a subsequence (xnk
) of 

the sequence (xn) such that

‖xnk
χAk

− x‖E → 0 and ‖xχ[0,α)\Ak
‖E → 0.

Proof. Let us consider two cases.
Case 1. Suppose that m(suppx) < ∞. Then xnχsupp x → x in measure. Hence there is an increasing 

sequence of positive integers (nk) such that

m

({
t ∈ suppx :

∣∣xnk
(t) − x(t)

∣∣ > 1
k

})
<

1
k

for any k ∈ N. Denote

Ak =
{
t ∈ suppx :

∣∣xnk
(t) − x(t)

∣∣ ≤ 1
k

}
for any k ∈ N. Obviously, m(suppx\Ak) < 1

k for k ∈ N. Therefore, by the order continuity of x, we have

‖xχ[0,α)\An
‖E = ‖xχsupp x\An

‖E → 0.
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Moreover,

‖xnk
χAk

− x‖E ≤
∥∥(xnk

− x)χAk

∥∥
E

+ ‖xχ[0,α)\Ak
‖E

≤ 1
k
‖χsupp x‖E + ‖xχ[0,α)\Ak

‖E → 0.

Case 2. Suppose that m(suppx) = ∞. Then α = ∞. For all n ∈ N define

Cn =
{
t ∈ suppx :

∣∣x(t)
∣∣ ≥ 1

n

}
.

By the order continuity of x, we have m(Cn) < ∞ for any n ∈ N. Taking into account that (suppx \Cn) ↓ ∅, 
we get ‖xχsupp x\Cn

‖E → 0. For any k ∈ N we obtain xnχCk
→ xχCk

in measure. Hence, there exists a 
positive integer nk such that

m

({
t ∈ Ck :

∣∣xnk
(t) − x(t)

∣∣ > 1
2k

})
<

1
2k .

Define for any k ∈ N,

Ak =
{
t ∈ Ck :

∣∣xnk
(t) − x(t)

∣∣ ≤ 1
2k

}
.

Since m(Ck\Ak) < 1
2k , by the order continuity of x, we have

‖xχ[0,∞)\Ak
‖E = ‖xχsupp x\Ak

‖E ≤ ‖xχsupp x\Ck
‖ + ‖xχCk\Ak

‖E → 0.

Notice that

∥∥(xnk
− x)χAk

∥∥
E
≤ 1

2k ‖χAk
‖E ≤ 1

2k ‖χCk
‖E = k

2k

∥∥∥∥1
k
χCk

∥∥∥∥
E

≤ k

2k ‖xχCk
‖E ≤ k

2k ‖x‖E → 0,

whence

‖xnk
χAk

− x‖E ≤
∥∥(xnk

− x)χAk

∥∥
E

+ ‖xχ[0,∞)\Ak
‖E → 0,

which completes the proof. �
The global version of the next result has been proved in [5, Theorem 3.2]. Although we use partially some 

methods from [5] and [7], the local approach has required also new techniques.

Theorem 3.10. Let E be a symmetric Banach function space on [0, ∞) and x ∈ E+ \{0}. Then the following 
conditions are equivalent:

a) x is an Hl-point in the space E;
b) x ∈ Ea, x is a UM point and x is an Hg-point;
c) x ∈ Ea and x is a ULUM point.

Proof. a) ⇒ b). Let x be an Hl point in the space E. Then x ∈ Ea (see Lemma 6 in [16] for LLUM point 
but the same proof works for Hl point, see also Theorem 2.1 in [10]) and x is an Hg point. Suppose for the 
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contrary that x is not a UM point. Then there is y ∈ E such that x ≤ y, x 	= y and ‖x‖E = ‖y‖E . Since 
x ∈ Ea gives x∗(∞) = 0, the conditions x ≤ y with x 	= y imply that x∗ ≤ y∗ with x∗ 	= y∗ (see Lemma 3.2 
in [18]). Take t0 > 0 with x∗(t0) < y∗(t0). Define

z = y∗χ[ 12 t0,2t0) + x∗χ[0, 12 t0)∪[2t0,∞).

Note that x∗ ∈ Ea (see Lemma 2.6 in [7]). Obviously, z ∈ Ea, x∗ ≤ z ≤ y∗, x∗ 	= z and z∗χ[2t0,∞) =
x∗χ[2t0,∞). Moreover, ∥∥x∗∥∥

E
≤ ‖z‖E ≤

∥∥y∗∥∥
E

=
∥∥x∗∥∥

E
,

whence ‖x∗‖E = ‖z‖E . Define v = z∗ − x∗. Then supp v ⊂ [0, 2t0). Set

vn(s) =
{ 0 if s < n;
v(s− n) if s ≥ n,

for every n ∈ N. By Lemma 3.1 in [5],

xn = x∗ + vn ≺ x∗ + v = z∗

for any n ∈ N. It is clear that xn → x∗ locally in measure. Moreover,∥∥x∗∥∥
E
≤

∥∥x∗ + vn
∥∥
E

= ‖xn‖E ≤
∥∥z∗∥∥

E
= ‖z‖E =

∥∥x∗∥∥
E
,

whence ‖x∗‖E = ‖xn‖E for any n ∈ N. Since x is an Hl-point, we have x∗(∞) = 0. By Lemma 3.4, we 
conclude that x∗ is an Hl-point. Thus

‖vn‖E =
∥∥xn − x∗∥∥

E
→ 0.

Since ‖v‖E = ‖vn‖E for any n ∈ N, we conclude that ‖v‖E = 0. Consequently, z∗ = x∗ and in particular 
y∗(t0) = z∗(t0) = x∗(t0). A contradiction, because y∗(t0) > x∗(t0).

b) ⇒ c). This implication has been proved in [7, Theorem 2.2 (i)]. However, the assumption that x ∈ Ea

should be added there. Moreover, some steps of that proof require modifications. Hence we present the 
whole proof for the convenience of the reader.

Let x ≤ xn and ‖xn‖E → ‖x‖E . By Helly’s selection principle, passing to subsequence if necessary, we 
may assume that x∗

n → z∗ a.e. Moreover, x∗ ≤ x∗
n and consequently x∗ ≤ z∗. We claim that

x∗
n(∞) → 0.

If this is not true, then there is δ > 0 such that x∗
nk

(∞) ≥ δ for some (nk) ⊂ N. Passing to subsequence and 
relabeling we get x∗

n(∞) ≥ δ for all n ∈ N. Since x is a point of order continuity, it follows that x∗ is also 
a point of order continuity and x∗(∞) = 0 (see [7]). Hence x∗

n(∞) ≥ δ > x∗(∞) = 0, so there exists t0 > 0
such that x∗(t) < δ for any t ≥ t0. We have

x∗ ≤ x∗χ[0,t0] + δχ(t0,∞) ≤ x∗
n

for all n ∈ N and

x∗ 	= x∗χ[0,t0] + δχ(t0,∞).
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Since x is a UM point, we obtain that x∗ is a UM point (see Proposition 2.2 in [7]). Therefore,∥∥x∗∥∥
E
<

∥∥x∗χ[0,t0] + δχ(t0,∞)
∥∥
E
≤

∥∥x∗
n

∥∥
E
.

By the assumption that ‖x∗
n‖E → ‖x∗‖E , we obtain a contradiction, which proves the claim. Now, by 

convergence of x∗
n to z∗ a.e., there exist (nk) ⊂ N and (tk) ⊂ [0,∞) such that nk → ∞, tk → ∞ and 

x∗
nk

(tk) → 0 and also for any k ∈ N,

∣∣x∗
nk

(tk) − z∗(tk)
∣∣ < 1

k
.

Therefore, z∗(∞) = 0 and since x∗
n → z∗ a.e., we may easily show that x∗

n → z∗ in measure on [0, ∞). We 
prove that

x∗ = z∗.

Suppose for the contrary that x∗ 	= z∗. Let

An =
{
t ∈ [0,∞) : z∗(t) − x∗(t) > 1

n

}
for any n ∈ N. In consequence, m(An0) > 0 for some n0 ∈ N. Moreover, since z∗(∞) = x∗(∞) = 0, it follows 
that m(An0) < ∞. For every n ∈ N we define

yn = x∗
nχAn0

+ x∗χAc
n0
.

Notice that for any n ∈ N, ∥∥x∗∥∥
E
≤ ‖yn‖E ≤

∥∥x∗
n

∥∥
E
.

Thus, by ‖x∗
n‖E → ‖x∗‖E , we have ‖yn‖E → ‖x∗‖E . Set

Bn =
{
t ∈ An0 :

∣∣z∗(t) − x∗
n(t)

∣∣ ≤ 1
2n

}
for any n ∈ N. Since x∗

n converges to z∗ in measure, there is a subsequence (x∗
nk

) of (x∗
n) such that, for all 

k ∈ N,

m

(
t ∈ An0 :

∣∣z∗(t) − x∗
nk

(t)
∣∣ > 1

2k

)
≤ 1

2k .

Passing to subsequence if necessary, we obtain

m

(
t ∈ An0 :

∣∣z∗(t) − x∗
n(t)

∣∣ > 1
2n

)
≤ 1

2n

for any n ∈ N. Clearly, m(Bn) → m(An0). We have for each t ∈ Bn,

x∗
n(t) ≥ z∗(t) − 1

2n .

Then, for sufficiently large n ∈ N, we get m(Bn) > 0, 2n0
n < 1 and
2
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yn = x∗
nχAn0

+ x∗χAc
n0

≥
(
z∗ − 1

2n

)
χBn

+ x∗
nχBc

n
+ x∗χAc

n0

≥
(
z∗ − 1

2n0

2n0

2n

)
χBn

+ x∗χAc
n0∪Bc

n

≥
(
z∗ − 1

2n0

)
χBn

+ x∗χAc
n0

∪Bc
n

>

(
x∗ + 1

2n0

)
χBn

+ x∗χAc
n0∪Bc

n

= x∗ + 1
2n0

χBn
.

Thus,

‖xn‖E ≥ ‖yn‖E ≥
∥∥∥∥(z∗ − 1

2n0

)
χBn

+ x∗χAc
n0

∪Bc
n

∥∥∥∥
E

≥
∥∥∥∥x∗ + 1

2n0
χBn

∥∥∥∥
E

for sufficiently large n ∈ N. Since z∗ ≥ x∗ and z∗(∞) = 0, by definition of the set An0 , there is t0 > 0 such 
that z∗(t) ≤ 1

n0
and x∗(t) ≤ 1

n0
for all t ≥ t0 and An0 ⊂ [0, t0]. Consequently,

(
x∗ + 1

2n0
χBn

)∗∗
≥

(
x∗ + 1

2n0
χ[t0,t0+m(Bn)]

)∗∗

for all n ∈ N. Since m(Bn) → m(An0) and Bn ⊂ An0 , we may assume that m(Bn) > m(An0)/2 for 
sufficiently large n ∈ N. Therefore,(

x∗ + 1
2n0

χBn

)∗∗
≥

(
x∗ + 1

2n0
χ[t0,t0+m(Bn)]

)∗∗

≥
(
x∗ + 1

2n0
χ[t0,t0+m(An0 )/2]

)∗∗
. (7)

Set

w = x∗ + 1
2n0

χ[t0,t0+m(An0 )/2] 	= x∗.

Clearly, w ≥x∗ and w 	= x∗. Since x∗ is a UM point (see Proposition 2.2 in [7]), it follows that ‖w‖E > ‖x∗‖E . 
Hence, by (7) and Corollary 4.7 in [1], for sufficiently large n ∈ N, we obtain

‖xn‖E ≥ ‖yn‖E ≥
∥∥∥∥x∗ + 1

2n0
χBn

∥∥∥∥
E

≥
∥∥∥∥x∗ + 1

2n0
χ[t0,t0+m(Bn)]

∥∥∥∥
E

≥ ‖w‖E >
∥∥x∗∥∥

E
,

which contradicts the assumption ‖xn‖E → ‖x‖E . Therefore x∗ = z∗. We claim that x∗
n → x∗ in measure. 

Since x∗(∞) = 0, for any ε > 0 there exists tε > 0 such that

x∗(t) < ε/2 for all t � tε and x∗
n(tε) → x∗(tε).

Furthermore, since x∗
n and x∗ are decreasing functions, there is Nε ∈ N such that∣∣x∗

n(t) − x∗(t)
∣∣ < ε
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for all n � Nε and t � tε. Consequently, for every ε > 0,

m
(
t ∈ [tε,∞) :

∣∣x∗
n(t) − x∗(t)

∣∣ > ε
)
→ 0.

Since x∗
n → x∗ pointwisely, x∗

n converges to x∗ locally in measure and

m
(
t ∈ [0, tε] :

∣∣x∗
n(t) − x∗(t)

∣∣ > ε
)
→ 0.

Therefore x∗
n converges to x∗ in measure.

By the assumption and Theorem 3.3, we conclude that x∗ is an Hg point. Therefore, ‖x∗
n − x∗‖ → 0. 

Now, following the proof of Theorem 3.2 in [5], the implications (iii) ⇒ (ii), we conclude that xn → x in 
measure. Finally, since x is an Hg point, we obtain ‖xn − x‖ → 0.

c) ⇒ b). It follows immediately from Theorem 2.2 (ii) in [7].
c) ⇒ a). Assume x ∈ Ea, x is a ULUM point. By the implication c) ⇒ b), x is also an Hg-point. Without 

loss of generality, we may assume that ‖x‖E = 1. Take {xn} ⊂ E+ such that ‖xn‖E → 1 and xn → x

locally in measure (see Lemma 3.1). By Lemma 3.9, passing to a subsequence if necessary, there exists a 
sequence (An) of measurable subsets of finite measure such that χAn

→ χsupp x locally in measure,

‖xnχAn
− x‖E → 0 and ‖xχ[0,∞)\An

‖E → 0. (8)

Hence, by the symmetry of E, xnχAn
→ x in measure. Set yn = xnχ[0,∞)\An

.
We claim that yn → 0 in measure. If this is not so, there exists ε > 0 and measurable subsets Cn ⊂

[0, ∞)\An (n = 1, 2, . . .) such that m(Cn) = ε and ynχCn
≥ εχCn

for any n ∈ N. Define a sequence (zn) by 
the following formula

zn = |xn|χAn
+ |x− xn|χAn

+ |x|χ[0,∞)\An
+ εχCn

for any n ∈ N. Since |x|χAn
≤ |xn|χAn

+ |x − xn|χAn
for every n ∈ N, we have

0 ≤ |x| ≤ |xn|χAn
+ |x− xn|χAn

+ |x|χ[0,∞)\An
+ εχCn

= zn

for each n ∈ N. Moreover,

‖xnχAn
‖E ≤ ‖zn‖E ≤

∥∥|xn| + |x− xn|χAn
+ |x|χ[0,∞)\An

∥∥
E

≤ ‖xn‖E + ‖x− xnχAn
‖E + 2‖xχ[0,∞)\An

‖E → 1.

Thus ‖zn‖E → 1. Consequently, ‖zn − |x|‖E → 0, because x = |x| is a ULUM point. Therefore, by (8),

0 < ε‖χ[0,ε)‖E = ε‖χCn
‖E =

∥∥zn − |xn|χAn
− |x− xn|χAn

− |x|χ[0,∞)\An

∥∥
E

=
∥∥(zn − |x|

)
+ |x| − |xn|χAn

− |x− xn|χAn
− |x|χ[0,∞)\An

∥∥
E

≤
∥∥zn − |x|

∥∥
E

+
∥∥(|x| − |xn|

)
χAn

∥∥
E

+
∥∥(x− xn)χAn

∥∥
E

≤
∥∥zn − |x|

∥∥
E

+ 2
∥∥(x− xn)χAn

∥∥
E
→ 0,

whence ε‖χ[0,ε)‖E = 0, a contradiction. Thus yn → 0 in measure as we claimed.
Therefore xn = xnχAn

+ yn → x in measure. Since also ‖xn‖E → ‖x‖E , by the fact that x is an Hg

point, we conclude that ‖xn − x‖E → 0. Consequently, x is an Hl-point in the space E. �
Corollary 3.11. Let E be a symmetric Banach function space on [0, α), where α = 1 or α = ∞. An element 
x ∈ E is an Hl point if and only if x∗ is an Hl point in E.
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Proof. The case α = 1 follows from Corollary 3.6, because Hl point is a point of order continuity. Let 
α = ∞. The necessity follows from Lemma 3.4.

The sufficiency. By the assumption and Theorem 3.10 we conclude that x∗ ∈ Ea, x∗ is a UM point and 
x∗ is an Hg point. Now, Proposition 2.2, Lemma 2.6 from [7] and Theorem 3.5 imply that x ∈ Ea, x is a
UM -point and x is an Hg point. Again, Theorem 3.10 yields that x is an Hl point. �

Now, we take into account the special case of symmetric space.

Proposition 3.12. An element x is an Hl-point in the space (L1 + L∞)([0, ∞)) if and only if x∗(1−) = 0.

Proof. The necessity. Assume that x∗(1−) = a > 0. By the assumption x∗(∞) = 0, we find t1 > 1 with 
x∗(t) < a/2 for t ≥ t1. Set

xn = x∗χ[0,∞) + a/2χ[t1+n−1,t1+n].

Then

‖xn‖L1+L∞ =
1∫

0

x∗
n(t)dt =

1∫
0

x∗(t)dt = ‖x‖L1+L∞

for all n ≥ 1. Furthermore, xn → x∗ locally in measure. On the other hand, ‖xn − x∗‖L1+L∞ ≥ a/4 for n
large enough. By Lemma 3.4, both x∗ and x cannot be Hl points.

The sufficiency. Suppose x∗(1−) = 0. Then it is easy to conclude that x ∈ Ea. Moreover, by Theorem 3.1 
in [10], x is an Hg point. In view of Theorem 3.10, it is enough to show that x is a UM point. Let x ≤ y, 
x 	= y. Since x∗(∞) = 0, the conditions x ≤ y with x 	= y imply that x∗ ≤ y∗ with x∗ 	= y∗ (see Lemma 3.2 
in [18]). There is t0 < 1 such that x∗(t0) < y∗(t0), because x∗(1−) = 0. Thus ‖x‖E < ‖y‖E . �
Remark 3.13. Recall that each point x ∈ L1 +L∞ is an Hg point (see [10]). Consider now the space L1∩L∞

on [0, α) with α = 1 or α = ∞ and ‖x‖L1∩L∞ := max(‖x‖L1 , ‖x‖L∞). Clearly, (L1 ∩ L∞)a = {0}, whence 
this space has no Hl points. It is easy to notice that also it has no Hg points. Indeed, let x ∈ L1 ∩ L∞

with x 	= 0. We find δ > 0 such that m(A) > 0, where A = {t : |x(t)| ≥ δ}. Take a sequence (An) ⊂ A

with 0 < m(An) ↓ 0. Set xn = xχ[0,α)\An
. Then xn → x globally in measure. Since xn ↑ x, by the 

Fatou property, ‖xn‖L1∩L∞ → ‖x‖L1∩L∞ . On the other hand, ‖xn − x‖L1∩L∞ ≥ δ. Thus x is not an Hg

point.

Remark 3.14. Recall that each Hl-point of E is a point of order continuity of E (see the proof of Lemma 5 
in [16]). Observe that the reverse implication is not satisfied. Indeed, it is enough to consider the space 
L1 + L∞ on [0, ∞) and an element x with x∗(1−) > 0 and x∗(∞) = 0. By Proposition 3.12, x is not an Hl

point. Moreover, x is a point of order continuity because x∗(∞) = 0.

By Theorem 3.10, we also get

Corollary 3.15. Let E be a symmetric Banach function space on [0, ∞). Then the following conditions are 
equivalent:

(i) E has the Kadec–Klee property with respect to local convergence in measure;
(ii) E has the Kadec–Klee property with respect to global convergence in measure, E is order continuous 

and strictly monotone;
(iii) E is order continuous and upper locally uniformly monotone.
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It is worth to mention that the above result has been also obtained in [5, Theorem 3.2]. Note also that 
the uniform Kadec–Klee with respect to local convergence in measure is equivalent to uniform monotonicity 
in the symmetric space over [0, ∞) (see Theorem 3 in [36]).

For any global property P the symbol E ∈ (P ∗) denotes that E has property P only for elements in 
the cone of nonnegative and nonincreasing functions in E. Clearly, if E ∈ (P ), then E ∈ (P ∗). The natural 
question of the converse implication has been considered in [4] for rotundity properties. Applying Lemma 3.4
and Corollary 3.6 for Kadec–Klee properties, we obtain

Corollary 3.16. Let E be a symmetric Banach function space on [0, α], where α = 1 or α = ∞. Then:

(i) E ∈ (Hl) if and only if E ∈ (Hl)∗.
(ii) Suppose E ∈ (OC ). Then E ∈ (Hg) if and only if E ∈ (Hg)∗.

4. Lorentz spaces Γp,w and Λp,w

Given 0 < p < ∞ and a nonnegative weight function w ∈ L0, the Lorentz space Γp,w is a subspace of L0

such that

‖x‖Γp,w
:=

( α∫
0

(
x∗∗)p(t)w(t)dt

)1/p

< ∞.

In order to get Γp,w 	= {0}, we need to assume that w is from class Dp that is

W (s) :=
s∫

0

w(t)dt < ∞ and Wp(s) := sp
α∫

s

t−pw(t)dt < ∞

for all 0 < s ≤ 1 if α = 1 and for all 0 < s < ∞ otherwise. It is well known that (Γp,w, ‖ · ‖Γp,w
) is an r.i. 

quasi-Banach function space with the Fatou property. Notice that

φΓp,w
(s) =

(
W (s) + Wp(s)

)1/p
for any 0 < s ≤ 1 if α = 1 and for all 0 < s < ∞ if α = ∞. It was proved [19] that in the case α = ∞ the 
space Γp,w has order continuous norm if and only if 

∫∞
0 w(t)dt = ∞.

The spaces Γp,w were introduced by A.P. Calderón in [3] in an analogous way as the classical Lorentz 
spaces

Λp,w =
{
x ∈ L0 : ‖x‖Λp,w

=
( α∫

0

(
x∗(t)

)p
w(t)dt

)1/p

< ∞
}
,

where p ≥ 1 and the weight function w is nonnegative and nonincreasing (see [32]). The spaces Λp,w are 
p-convexification of the Lorentz space Λ1,w. The space Γp,w is an interpolation space between L1 and L∞

yielded by the Lions–Peetre K-method [1,29]. Obviously, Γp,w ⊂ Λp,w. The reverse inclusion Λp,w ⊂ Γp,w

holds iff w ∈ Bp (cf. [19]). Moreover, the spaces Γp,w and Λp,w are also related by Sawyer’s result (Theorem 1 
in [34]; see also [35]), which states that the Köthe dual of Λp,w, for 1 < p < ∞ and 

∫∞
0 w(t)dt = ∞, coincides 

with the space Γp′,w̃, where 1/p + 1/p′ = 1 and w̃(t) = (t/
∫ t

0 w(s)ds)p′
w(t).

It is easy to observe that if α = 1, then by the Lebesgue dominated convergence theorem, Γp,w is order 
continuous. For more details about the properties of Γp,w the reader is referred to [7,19].
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Theorem 4.1. The Lorentz space Γp,w(0, α) has the Kadec–Klee property with respect to global convergence 
in measure, i.e. each point x in Lorentz space Γp,w(0, α) is an Hg point.

Proof. Note that, for α = 1 and α = ∞ with W (∞) = ∞, we have Γp,w ∈ (OC ) (see [6,19]). Since OC does 
not imply property Hg in general (see Example 2.8 from [5]), this case also should be proved directly.

Let x, xn ∈ Γp,w for any n ∈ N, ‖xn‖Γp,w
→ ‖x‖Γp,w

and xn → x globally in measure.
Case I. Let W (α) < ∞. Define yn = xn − x,

An =
{
s :

∣∣yn(s)
∣∣ > 1

n

}
and εn = dyn

(1/n) = m(An)

for any n ∈ N. Since yn → 0 in measure, passing to a subsequence if necessary, we may assume that εn → 0. 
Denote un = ynχAn

and vn = ynχAc
n

= yn − un for all n ∈ N. Notice that

‖vn‖Γp,w
=

( ∞∫
0

(ynχAc
n
)∗∗pw

)1/p

≤ 1
n
W (∞)1/p → 0. (9)

Since u∗
n = u∗

nχ[0,εn] for any n ∈ N, by Theorem II.3.1 in [29, p. 82], we get

(x + un)∗∗(t) ≥ 1
t

t∫
0

(
x∗ − u∗

n

)∗ ≥ 1
t

t∫
0

∣∣x∗ − u∗
n

∣∣
≥ 1

t

t∫
0

(
u∗
n − x∗)χ[0,εn] + 1

t

t∫
0

(
x∗ − u∗

n

)
χ(εn,∞)

= u∗∗
n (t) + x∗∗(t) − 21

t

t∫
0

x∗χ[0,εn].

Consequently, by the triangle inequality (x + un)∗∗ ≤ x∗∗ + u∗∗
n , it follows that

0 ≤ x∗∗(t) + u∗∗
n (t) − (x + un)∗∗(t) ≤ 2

t

t∫
0

x∗χ[0,εn] (10)

for any n ∈ N. Moreover,

‖yn‖Γp,w
≤ ‖un‖Γp,w

+ ‖vn‖Γp,w
≤ ‖yn‖Γp,w

+ ‖vn‖Γp,w
(11)

for any p ≥ 1 and any n ∈ N. In case when 0 < p < 1, the subadditivity of the power function up yields

‖un‖pΓp,w
≤ ‖yn‖pΓp,w

≤
∞∫
0

(
u∗∗
n + v∗∗n

)p
w

≤
∞∫
0

(
u∗∗p
n + v∗∗pn

)
w = ‖un‖pΓp,w

+ ‖vn‖pΓp,w
(12)

for any n ∈ N. Therefore, by (9), (10) and (11), we obtain
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‖yn‖Γp,w
= ‖un‖Γp,w

+ o(1) for p ≥ 1,

‖yn‖pΓp,w
= ‖un‖pΓp,w

+ o(1) for 0 < p < 1. (13)

Since εn → 0, it is obvious that

1
t

t∫
0

x∗χ[0,εn] → 0

for any t > 0. Consequently, the Lebesgue dominated convergence theorem implies

∥∥x∗χ[0,εn]
∥∥
Γp,w

→ 0. (14)

We divide the proof in two subcases.
(Subcase 1). Let p ≥ 1. Then, by condition (9), we have

‖x + yn‖Γp,w
≤ ‖x + un‖Γp,w

+ ‖vn‖Γp,w
≤ ‖x + un‖Γp,w

+ 1
n
W (∞)1/p

≤ ‖x + yn‖Γp,w
+ 2

n
W (∞)1/p (15)

for any n ∈ N. Applying condition (10), by superadditivity of the power function up for p ≥ 1, we obtain

∞∫
0

(
(x + un)∗∗(t) + 2

t

t∫
0

x∗χ[0,εn]

)p

w(t)dt ≥
∞∫
0

(
x∗∗(t) + u∗∗

n (t)
)p
w(t)dt

≥
∞∫
0

(
x∗∗)p(t)w(t)dt +

∞∫
0

(
u∗∗
n

)p(t)w(t)dt

= ‖x‖pΓp,w
+ ‖un‖pΓp,w

for any n ∈ N. Now, by Minkowski’s inequality, we get

‖x‖pΓp,w
+ ‖un‖pΓp,w

≤
∞∫
0

(
(x + un)∗∗(t) + 2

t

t∫
0

x∗χ[0,εn]

)p

w(t)dt

≤
(
‖x + un‖Γp,w

+ 2
∥∥x∗χ[0,εn]

∥∥
Γp,w

)p
for all n ∈ N, whence, by (15),

‖un‖pΓp,w
≤

(
‖x + un‖Γp,w

+ 2
∥∥x∗χ[0,εn]

∥∥
Γp,w

)p − ‖x‖pΓp,w

≤
(
‖x + yn‖Γp,w

+ 2
∥∥x∗χ[0,εn]

∥∥
Γp,w

+ 1
n
W (∞)1/p

)p

− ‖x‖pΓp,w

=
(
‖xn‖Γp,w

+ 2
∥∥x∗χ[0,εn]

∥∥
Γp,w

+ 1
n
W (∞)1/p

)p

− ‖x‖pΓp,w

for each n ∈ N. Consequently, by conditions (13), (14) and assumptions that ‖xn‖Γp,w
→ ‖x‖Γp,w

and 
W (∞) < ∞, it follows that
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‖yn‖Γp,w
= ‖xn − x‖Γp,w

→ 0,

which finishes the proof of the case when p ≥ 1.
(Subcase 2). Let 0 < p < 1. Since v∗n ≤ 1

n , by Theorem II.3.1 in [29, p. 82], we get

(x + yn)∗∗(t) ≥ 1
t

t∫
0

(
(x + un)∗ − v∗n

)∗ ≥ 1
t

t∫
0

(x + un)∗ − 1
t

t∫
0

v∗n

≥ (x + un)∗∗(t) − 1
n

for all n ∈ N and t > 0. According to (10), we have

∞∫
0

(
x∗∗(t) + u∗∗

n (t)
)p
w(t)dt ≤

∞∫
0

(
(x + un)∗∗(t) + 2

t

t∫
0

x∗χ[0,εn]

)p

w(t)dt

≤ ‖x + un‖pΓp,w
+

∥∥2x∗χ[0,εn]
∥∥p
Γp,w

for all n ∈ N. Hence, by subadditivity of maximal and power functions, we get

‖xn‖pΓp,w
+ W (∞)

np
+
∥∥2x∗χ[0,εn]

∥∥p
Γp,w

= ‖x + yn‖pΓp,w
+ W (∞)

np
+
∥∥2x∗χ[0,εn]

∥∥p
Γp,w

≥
∞∫
0

(
(x + yn)∗∗ + 1

n

)p

w +
∥∥2x∗χ[0,εn]

∥∥p
Γp,w

≥ ‖x + un‖pΓp,w
+

∥∥2x∗χ[0,εn]
∥∥p
Γp,w

≥
∞∫
0

(
x∗∗ + u∗∗

n

)p
w ≥ ‖x‖pΓp,w

for any n ∈ N. Therefore, by condition (14) and assumptions ‖xn‖Γp,w
→ ‖x‖Γp,w

and W (∞) < ∞, we 
conclude

∞∫
0

(
x∗∗ + u∗∗

n

)p
w →

∞∫
0

(
x∗∗)pw. (16)

Clearly, x∗∗ + u∗∗
n ≥ x∗∗ for each n ∈ N. Let λ > 0. Define

Bn =
{
s :

(
x∗∗(s) + u∗∗

n (s)
)p
w(s) −

(
x∗∗)p(s)w(s) > λ

}
for any n ∈ N. Observe that for every n ∈ N,

∞∫
0

((
x∗∗ + u∗∗

n

)p
w −

(
x∗∗)pw) ≥ ∫

Bn

((
x∗∗ + u∗∗

n

)p
w −

(
x∗∗)pw) ≥ λm(Bn).

Consequently, by condition (16), we get m(Bn) → 0. Hence (x∗∗ + u∗∗
n )pw − (x∗∗)pw converges to zero 

globally in measure. By Lemma 3.9 in [22], it follows that

u∗∗
n w1/p =

(
x∗∗ + u∗∗

n

)
w1/p − x∗∗w1/p → 0
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globally in measure. Passing to a subsequence if necessary, we conclude that u∗∗
n w1/p → 0. Since (u∗∗

n )pw ≤
(u∗∗

n +x∗∗)pw, applying condition (16) and generalized Lebesgue dominated convergence theorem (see [33]), 
we get

∞∫
0

(
u∗∗
n

)p
w → 0.

Finally, according to condition (13), we obtain ‖yn‖Γp,w
= ‖x − xn‖Γp,w

→ 0, which completes the proof of 
Case I.

Case II. Let α = ∞ and W (∞) = ∞.
Denote yn = xn−x for every n ∈ N. Then (yn) converges to zero globally in measure. Let 0 < δ < β < ∞. 

Applying Theorem II.3.1 in [29], we get

(x + yn)∗∗(t) ≥ 1
t

t∫
0

(
x∗ − y∗n

)∗ ≥ 1
t

t∫
0

∣∣x∗ − y∗n
∣∣

≥ 1
t

δ∫
0

(
y∗n − x∗)χ(0,t) + 1

t

β∫
δ

(
x∗ − y∗n

)
χ(0,t) + 1

t

α∫
β

(
y∗n − x∗)χ(0,t)

= x∗∗(t) + y∗∗n (t) − 2
t

t∫
0

(
x∗χ[0,δ)∪(β,α) + y∗nχ[δ,β]

)
for any t ∈ (0, ∞). Therefore, by the triangle inequality for the maximal function, we have

0 ≤ x∗∗(t) + y∗∗n (t) − (x + yn)∗∗(t) ≤ 2
t

t∫
0

(
x∗χ[0,δ)∪(β,α) + y∗nχ[δ,β]

)
(17)

for any t ∈ (0, ∞). Clearly, for any 0 < p < ∞ there exists M > 0 such that

α∫
0

(
1
t

t∫
0

x∗χ[0,δ)∪(β,α) + y∗nχ[δ,β]

)p

w(t)dt ≤ M
(∥∥x∗χ[0,δ)∪(β,α)

∥∥p
Γp,w

+
∥∥y∗nχ[δ,β]

∥∥p
Γp,w

)
. (18)

By the assumption W (∞) = ∞, Γp,w is order continuous. Thus, for any ε > 0 there exist δε, βε ∈ (0, ∞)
such that δε < βε and ∥∥x∗χ[0,δε)∪(βε,α)

∥∥p
Γp,w

≤ ε

2M .

Since yn → 0 globally in measure, it follows that (y∗n) converges to zero at each t ∈ (0, ∞) (see [29]). In 
consequence, there exists η > 0 such that

y∗nχ[δε,βε] ≤ y∗n(δε)χ[δε,βε] ≤ ηχ[δε,βε]

for all n ∈ N. By order continuity of Γp,w, there is Nε ∈ N such that∥∥y∗nχ[δε,βε]
∥∥p <

ε

2M

for any n ≥ Nε. Hence, by condition (18), for any ε > 0 there exist 0 < δε < βε < ∞ and Nε ∈ N such that
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α∫
0

(
1
t

t∫
0

x∗χ[0,δε)∪(βε,α) + y∗nχ[δε,βε]

)p

w(t)dt < ε (19)

for any n ≥ Nε. Consider two subcases.
(Subcase 1). Let p ≥ 1. By condition (17) and the superadditivity of power function up, we have

α∫
0

(
(x + yn)∗∗(t) + 2

t

t∫
0

x∗χ[0,δε)∪(βε,α) + 2
t

t∫
0

y∗nχ[δε,βε]

)p

w(t)dt

≥
α∫

0

(
x∗∗(t) + y∗∗n (t)

)p
w(t)dt ≥ ‖x‖pΓp,w

+ ‖yn‖pΓp,w
(20)

for all n ∈ N. It is easy to observe that

‖x + yn‖Γp,w
≤

( α∫
0

(
(x + yn)∗∗(t) + 1

t

t∫
0

x∗χ[0,δε)∪(βε,α) + y∗nχ[δε,βε]

)p

w(t)dt
)1/p

≤ ‖x + yn‖Γp,w
+

( α∫
0

(
1
t

t∫
0

x∗χ[0,δε)∪(βε,α) + y∗nχ[δε,βε]

)p

w(t)dt
)1/p

for any n ∈ N. Since xn = x + yn, by condition (19), we conclude

0 ≤
α∫

0

(
(x + yn)∗∗(t) + 1

t

t∫
0

x∗χ[0,δε)∪(βε,α) + y∗nχ[δε,βε]

)p

w(t)dt− ‖xn‖pΓp,w
< ε

for any n ≥ Nε. Finally, in view of ‖xn‖Γp,w
→ ‖x‖Γp,w

and condition (20), it follows that

‖xn − x‖Γp,w
= ‖yn‖Γp,w

< ε

for any n ≥ Nε, which finishes the proof of Subcase 1.
(Subcase 2). Let 0 < p < 1. By the subadditivity of map up, we get

0 ≤
(
x∗∗ + y∗∗n

)p − (x + yn)∗∗p ≤
(
x∗∗ + y∗∗n − (x + yn)∗∗

)p
for any n ∈ N. Consequently, by (17), we obtain

0 ≤
α∫

0

((
x∗∗(t) + y∗∗n (t)

)p − (x + yn)∗∗p(t)
)
w(t)dt

≤
α∫

0

(
2
t

t∫
0

x∗χ[0,δε)∪(βε,α) + y∗nχ[δε,βε]

)p

w(t)dt

for any n ∈ N. Now, according to the assumptions ‖xn‖pΓp,w
→ ‖x‖pΓp,w

, xn = x + yn and condition (19), we 
have

0 ≤
α∫ (
x∗∗(t) + y∗∗n (t)

)p
w(t)dt− ‖x‖pΓp,w

< ε (21)

0
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for all n ≥ Nε. Finally, by reverse Minkowski inequality for 0 < p < 1, we get( α∫
0

(
x∗∗(t) + y∗∗n (t)

)p
w(t)dt

)1/p

≥ ‖x‖Γp,w
+ ‖yn‖Γp,w

.

Hence, by condition (21), the proof is completed. �
Recall that each point x ∈ Λp,w[0, ∞) with α = 1 or α = ∞ is an Hg point (Corollary 3.21 in [22]).
By Theorem 3.2, Proposition 3.1 from [7], Corollary 3.21 from [22], Theorem 3.10 and Theorem 4.1, we 

get immediately

Corollary 4.2. Let p ≥ 1, E = Γp,w[0, ∞) or E = Λp,w[0, ∞) and x ∈ E. Then x is an Hl point if and only 
if

(i) x∗(∞) = 0 whenever 
∫∞
0 w < ∞;

(ii) m{s ∈ [0, ∞) : x(s) < x∗(γ)} = 0;
(iii) x∗(γ) = x∗(γ−), where γ = inf{s ∈ [0, ∞) : m(supp(w) ∩ (s, ∞)) = 0} under the convention inf ∅ = ∞

and x∗(γ−) = limt→γ− x∗(t).

Applying Corollary 3.15, Theorem 4.1 from present paper, Corollary 4.6 from [7], Corollary 4.4 from [12]
and Lemma 3.2 from [21], we conclude the following global characterization.

Corollary 4.3. Let p ≥ 1, E = Γp,w[0, ∞) or E = Λp,w[0, ∞). Then the following conditions are equiva-
lent:

(i) E has Kadec–Klee property for local convergence in measure;
(ii) E is upper locally uniformly monotone;
(iii) E is strictly monotone;
(iv)

∫∞
0 w(t)dt = ∞.

The above result for the space Λ1,w[0, ∞) has been also showed in [11, Corollary 1].

Remark 4.4. Now we show that Corollary 4.3 does not hold in the case when α = 1 (for the space Λ1,w[0, ∞)
see [11]). More precisely, we claim that the Kadec–Klee property for local convergence in measure does not 
imply the strict monotonicity of Lorentz spaces Γp,w[0, 1) and Λp,w[0, 1). Assume γ < 1 and m(supp(w) ∩
(γ, 1)) = 0. Then, by Theorem 2.2 in [6] and Corollary 4.5, we conclude that Γp,w[0, 1) is not strictly 
monotone, but it has the Kadec–Klee property for local convergence in measure. Similarly, Λ1,w[0, 1) with 
nonincreasing weight function w vanishing on (γ, 1) has the Kadec–Klee property for local convergence in 
measure (see Corollary 1.3 in [5]), although it is not strictly monotone (see Theorem 3.1 in [21]).

The coincidence of local and global convergences in measure on [0, 1) leads immediately to the following 
result.

Corollary 4.5. Let p ≥ 1. Then the Lorentz space Γp,w[0, 1) has Kadec–Klee property for local convergence 
in measure.

Recall that a symmetric space E is said to be strictly K-monotone (SKM for short) if for any x, y ∈ E

such that x ≺ y and x∗ 	= y∗ we have ‖x‖E < ‖y‖E . A symmetric space E is called locally uniformly strictly
K-monotone if for any x, xn ∈ E such that x ≺ xn and ‖xn‖E → ‖x‖E we have ‖x∗

n − x∗‖E → 0 (see [5]).
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Notice that W (u) =
∫ u

0 w is strictly increasing if and only if for any (a, b) ∈ [0, α) we have m((a, b) ∩
supp(w)) > 0 (see [8]). For the definition of Kadec–Klee property (with respect to L1 ∩L∞) we refer to [5].

Theorem 4.6. Let 1 ≤ p < ∞ and W (∞) = ∞, whenever α = ∞. Then the following statements are 
equivalent:

(i) W (u) is strictly increasing;
(ii) The norm ‖ · ‖Γp,w

is strictly K-monotone;
(iii) The norm ‖ · ‖Γp,w

is locally uniformly strictly K-monotone;
(iv) Γp,w has the Kadec–Klee property with respect to L1 ∩ L∞;
(v) Γp,w has the Kadec–Klee property.

Proof. Since Γp,w is order continuous symmetric space, L1 ∩ L∞ ⊂ Γ ′
p,w = Γ ∗

p,w [1,29]. Consequently, the 
implication (v) ⇒ (iv) is true. Further, by Theorem 2.7 in [5], it follows that (iv) ⇒ (iii). Clearly, (iii) ⇒ (ii). 
Immediately, by Theorem 2.10 in [8], we get (i) ⇔ (ii).

Now, we show the implication (ii) ⇒ (v). Assume that the norm on Γp,w is strictly K-monotone. Let 
x, xn ∈ Γp,w for n ∈ N, (xn) be weakly convergent to x and ‖xn‖Γp,w

→ ‖x‖Γp,w
. Since Γp,w is order 

continuous, we have Γ ′
p,w = Γ ∗

p,w [31]. Moreover, L1 ∩ L∞ ⊂ (Γp,w)′ (see [1,29]), by Lemma 2.6 in [5], we 
conclude that x∗

n converges to x∗ globally in measure. Applying Theorem 4.1, we have∥∥x∗
n − x∗∥∥

Γp,w
→ 0. (22)

By order continuity of Γp,w on [0, α) and Theorem 1.5 from [5], there exists an equivalent symmetric 
norm ‖ · ‖0 on Γp,w such that (Γp,w, ‖ · ‖0) has the Kadec–Klee property for weak convergence with respect 
to L1∩L∞. Hence, by condition (22), we get ‖xn‖0 → ‖x‖0 as n → ∞. Furthermore, by the weak convergence 
of xn to x with respect to L1∩L∞ and by the Kadec–Klee property with respect to L1∩L∞ of (Γp,w, ‖ · ‖0), 
we conclude ‖xn − x‖0 → 0. This implies that ‖xn − x‖Γp,w

→ 0, which completes the proof. �
5. Application to local best dominated approximation problems

Suppose E is a Banach lattice (see [31]) and K ⊂ E is a sublattice, that is K is closed with respect to finite 
suprema and infima (K does not need to be a linear subspace). The order interval [u, v] is a typical example 
of a sublattice. The notation f � K for f ∈ E means that f � g for any g ∈ K. Given the system f � K set

PK(f) =
{
u ∈ K : ‖u− f‖E = inf

w∈K
‖w − f‖E

}
.

We say that the best dominated approximation problem is solvable (unique) whenever PK(f) 	= ∅ (PK(f) is 
a singleton).

Analogously we may consider such problems for f � K. It is known that:

(i) For all closed sublattices K and all f � K (f � K) the best dominated approximation problem is 
solvable if and only if E ∈ (OC ) (see Proposition 3.3 in [30]).

(ii) For all sublattices K and all f � K (f � K) the set PK(f) is at most a singleton if and only if 
E ∈ (SM ) (see Proposition 3.1 in [30]).

For more facts concerning these problems we refer also to [7].
Recall that the reflexivity and rotundity play an analogous important role in the best approximation 

problems in Banach spaces. The local version of (i) [(ii)] from above has been proved in [7] showing the 
role of points of order continuity [points of upper monotonicity], respectively.
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On the other hand, the order continuity and property Hg are not comparable in general. First, to show 
that the property OC does not imply property Hg, it is enough to consider Example 2.8 from [5] with the 
additional conditions φ1(0+) = φ2(0+) = 0 and φ1(∞) = φ2(∞) = ∞. Second, taking E = Γp,w[0, ∞)
with 

∫∞
0 w < ∞ we get E ∈ (Hg) and E /∈ (OC ) (see Theorem 4.1 and [19]). However, it appears that 

property Hg is in some sense “a weaker version” of OC (see Lemma 3.2 in [22]). The following lemma also 
shows this phenomenon.

Lemma 5.1. Let E be a Banach function space with the semi-Fatou property and let K ≥ 0 be a closed 
sublattice of E with infz∈K{z} ∈ K and x ∈ E, x ≤ K. If v − x is Hg point of E for some v ∈ K, then 
PK(x) 	= ∅.

Proof. Case 1. First suppose that there is y ∈ K with y∗(∞) = 0. Let (hn) ⊂ K be a minimizing sequence, 
i.e.

d = inf
h∈K

‖x− h‖E = lim
n→∞

‖x− hn‖E . (23)

Without loss of generality we may assume that hn ≤ v, because otherwise it is enough to replace hn by 
hn ∧ v. Since K is a sublattice, we have un =

∧n
k=1 hk ∈ K. Moreover, for any n ∈ N, 0 ≤ un − x ≤ hn − x, 

whence d ≤ ‖un−x‖E ≤ ‖hn−x‖E for each n ∈ N. Therefore, in view of condition (23), (un) is a minimizing 
sequence. Setting u =

∧∞
k=1 uk, we have x ≤ u ≤ u1, whence u ∈ E and 0 ≤ un − u ↓ 0 pointwisely. In view 

of the fact that y∗(∞) = 0, we are able to consider only the case u∗
n(∞) = 0 for each n ∈ N. Indeed, by the 

assumption that K is a sublattice of E it follows that y ∧ un ∈ K and

d ≤ ‖y ∧ un − x‖E ≤ ‖un − x‖E

for any n ∈ N. Thus (y ∧ un)n∈N is a minimizing sequence and (y ∧ un)∗(∞) = 0 for every n ∈ N. We claim 
that un → u globally in measure. Let ε > 0. Since u∗(∞) = 0, there is tε > 0 such that

(u1 − u)∗(tε) ≤ ε.

We have 0 ≤ un − u ≤ u1 − u, whence

m
({

t :
∣∣un(t) − u(t)

∣∣ > ε
})

= m
({

t : (un − u)∗(t) > ε
})

= m
({

t ∈ [0, tε) : (un − u)∗(t) > ε
})

.

Since 0 ≤ un − u ↓ 0 pointwisely, by property 12o in [29], we conclude that (un − u)∗ → 0 pointwisely. So, 
passing to a subsequence if necessary, we get

m
({

t ∈ [0, tε) : (un − u)∗(t) > ε
})

→ 0,

which proves the claim. Clearly,

v + (un − u) − x → v − x ∈ E (24)

globally in measure. Moreover, 0 ≤ v − un + u− x ≤ v − x, because v ≥ un. Consequently, by the semi-
Fatou property of E, we get ∥∥v − (un − u) − x

∥∥
E
↑ ‖v − x‖E .

Hence, since v − x is an Hg point, by condition (24), it follows that

‖un − u‖E → 0.
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Finally, by the assumption that K is closed, we get u ∈ K and

d ≤ ‖u− x‖E ≤ ‖un − x‖E → d,

which implies u ∈ PK(x).
Case 2. Suppose y∗(∞) > 0 for all y ∈ K. Set w = infz∈K{z} ∈ K. Letting K ′ = K − w∗(∞) and 

x′ = x − w∗(∞) and applying Case 1 we find z′ = z − w∗(∞) ∈ K ′ for some z ∈ K such that

‖x− z‖E =
∥∥x′ − z′

∥∥
E

= dist
(
x′,K ′) = dist(x,K). �

Remark 5.2. The opposite implication in Lemma 5.1 is not true in general. Consider the Marcinkiewicz 
function spaces Mφ and M (∗)

φ given by

M
(∗)
φ =

{
x : ‖x‖Mφ

= sup
t>0

{
φ(t)x∗(t)

}
< ∞

}
,

Mφ =
{
x : ‖x‖M∗

φ
= sup

t>0

{
φ(t)x∗∗(t)

}
< ∞

}
,

where φ(t) =
√
t (see [25] for more information). Note that Mφ = M

(∗)
φ in this case (see [20,25]). Define 

x =
∑∞

i=1(
√
i−

√
i− 1 )χ[i−1,i). Then x = x∗ and x∗(∞) = 0. Notice that

‖x‖
M

(∗)
φ

= sup
t>0

{
x∗(t)φ(t)

}
= sup

t>0

{
√
t

∞∑
i=1

(
√
i−

√
i− 1 )χ[i−1,i)(t)

}

= sup
i∈N

{√
i(
√
i−

√
i− 1 )

}
= sup

i∈N

{ √
i√

i +
√
i− 1

}
= sup

i∈N

{
1

1 +
√

1 − 1
i

}
= 1,

whence x ∈ Mφ. Define a sequence (xn) by xn = xχ[0,n) =
∑n

i=1(
√
i −

√
i− 1 )χ[i−1,1) for any n ∈ N. 

Clearly, x∗
n = xn and xn converges to x globally in measure. Indeed, since 

√
n−

√
n− 1 → 0, we get

0 ≤ x− xn =
∞∑

i=n+1
(
√
i−

√
i− 1 )χ[i−1,i) → 0 globally in measure.

Moreover, by the Fatou property, ‖xn‖Mφ
↑ ‖x‖Mφ

. On the other hand,

‖x− xn‖Mφ
≥ ‖x− xn‖M(∗)

φ
= sup

t>0

{
√
t

∞∑
i=n+1

(
√
i−

√
i− 1 )χ[i−1,i)(t)

}

= sup
i∈N, i>n

{√
i(
√
i−

√
i− 1 )

}
= sup

i∈N, i>n

{
1

1 +
√

1 − 1
i

}

= 1

1 +
√

1 − 1
n+1

≥ 1
2 ,

for any n ∈ N. Thus x is not an Hg point. Let K = {nx}∞n=2. Certainly, PK(x) 	= ∅ and v − x is not an Hg

point of E for any v ∈ K.

Lemma 5.3. Let E be a Banach function space and let K be a closed sublattice of E and x ∈ E, x ≤ K. If 
v − x is Hl point of E for some v ∈ K, then PK(x) 	= ∅.
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Proof. Take elements hn, un and u as in the proof of Lemma 5.1. Since we need only to show that un

converges to u locally in measure, we may apply some parts of the proof of the previous lemma. �
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