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A well-known result of W. Ray asserts that if C is an unbounded convex subset 
of a Hilbert space, then there is a nonexpansive mapping T : C → C that has no 
fixed point. In this paper we establish some common fixed point properties for a 
semitopological semigroup S of nonexpansive mappings acting on a closed convex 
subset C of a Hilbert space, assuming that there is a point c ∈ C with a bounded 
orbit and assuming that certain subspace of Cb(S) has a left invariant mean. Left 
invariant mean (or amenability) is an important notion in harmonic analysis of 
semigroups and groups introduced by von Neumann in 1929 [28] and formalized by 
Day in 1957 [5]. In our investigation we use the notion of common attractive points 
introduced recently by S. Atsushiba and W. Takahashi.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let E be a Banach space and C be a nonempty bounded closed convex subset of E. The set C is said 
to have the fixed point property (abbreviated as fpp) if every nonexpansive mapping T : C → C has a fixed 
point, where T being nonexpansive means ‖T (x) − T (y)‖ ≤ ‖x − y‖ for all x, y ∈ C. The space E is said to 
have the fpp if every bounded closed convex set of E has the fpp.

A result of Browder [4] asserts that if a Banach space E is uniformly convex, then E has the fpp. As 
shown by Aspach [1] (see also [9, Example 11.2]), there is a weakly compact convex subset of L1[0, 1] on 
which an isometry does not have a fixed point. It is also well-known that a weak* compact convex subset 
of �1(Z) has the fpp. However, �1(Z) does not have the fpp for bounded closed convex sets [9]. In a recent 
remarkable paper of Lin [25], it was shown that �1(Z) can be renormed to have the fpp. This answers in 
negative a long-standing open question of whether every Banach space with the fpp is necessarily reflexive. 
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It was proved by B. Maurey in [26] that every nonempty weakly compact convex subset of the sequence 
space c0 has the fpp for nonexpansive mappings. In the beautiful paper [7], T.D. Benavides proved that for 
every unbounded subset C in c0 there is a nonexpansive mapping T on C which is fixed point free.

Let S be a semitopological semigroup, that is, a semigroup with a Hausdorff topology such that for each 
t ∈ S, the mappings s �→ t · s and s �→ s · t from S into S are continuous. Let C be a subset of a Banach 
space E. We say that S = {Ts : s ∈ S} is a representation of S on C if for each s ∈ S, Ts is a mapping from 
C into C and Tst(x) = Ts(Ttx) (s, t ∈ S, x ∈ C). Sometimes we simply use sx to denote Ts(x) if there is no 
confusion in the context. The representation is called separately or, respectively, jointly continuous if the 
mapping (s, x) �→ Ts(x) from S × C to C is separately or jointly continuous. We say that a representation 
S is nonexpansive if ‖Tsx −Tsy‖ ≤ ‖x − y‖ for all s ∈ S and all x, y ∈ C. A point x ∈ C is called a common 
fixed point for (the representation of) S if Ts(x) = x for all s ∈ S (see [21] for more details). The set of all 
common fixed points for S in C is called the fixed point set of S (in C) and is denoted by F (S).

Let S be a jointly continuous representation of S on a closed convex subset C of a Hilbert space H. 
Then, as is well-known, F (S) is a closed and convex subset of C if it is not empty [6]. However, F (S) may 
be empty for a continuous representation of S on an unbounded convex set C of a Hilbert space even if S
is a commutative semigroup with a single generator [32].

In the recent paper [2], which was motivated by [33], Atsushiba and Takahashi introduced the concept 
of common attractive points for a nonexpansive representation S of a semigroup S on a set C in a Hilbert 
space H (precise definition may be seen in Section 2). They showed that F (S) �= ∅ for commutative S if there 
is a common attractive point for S [2, Lemma 3.1]. They showed further that for commutative semigroups S, 
if {Tsc, s ∈ S} is bounded for some c ∈ C ⊂ H, then the set AC(S) of all attractive points of S is not empty. 
As a consequence, F (S) �= ∅ [2, Theorem 4.1]. We note that the assumption that {Tsc, s ∈ S} is bounded for 
some c ∈ C ⊂ H cannot be dropped even when S is commutative. Indeed, by the classical result of W. Ray 
in [32] as mentioned above, for every unbounded convex subset C of a Hilbert space there is a nonexpansive 
mapping T0: C → C without a fixed point in C. In particular, the representation {Tn(c) : n ∈ N} of (N, +)
does not have a common fixed point in C. An investigation continuing that of [2] may be seen in [34].

As one of the main results in this paper, we show that the result mentioned above of Atsushiba’s and 
Takahashi remains true when S is a continuous representation of a left amenable semitopological semi-
group S, where S being left amenable means that Cb(S) of bounded continuous complex-valued functions 
on S has a left invariant mean. It also remains true when S is separable and left reversible if the repre-
sentation is weakly equicontinuous. Here a semitopological semigroup S is left reversible if any two closed 
right ideals of S have non-void intersection, that is, sS ∩ tS �= ∅ for any s, t ∈ S, where, for a subset A of a 
topological space, A denotes the closure of A. This is the case when S is normal or Cb(S) has a left invariant 
mean [15]. Likewise, S is right reversible if any two closed left ideals of S have non-void intersection, that 
is, Ss ∩ St �= ∅ for any s, t ∈ S. Left invariant mean (or amenability) is an important notion in harmonic 
analysis of semigroups and groups introduced by von Neumann in 1929 [28] and formalized by Day in 1957 
[5].

The paper is organized as follows: In Section 3 we study the relation between the common attractive 
point and the common fixed point for a semigroup of nonexpansive mappings on a closed convex subset C
of a strictly convex space. In Section 4 we establish our main results concerning common fixed points on a 
closed convex subset of a Hilbert space. In Section 5 we extend some of our results in Section 4 to the class of 
generalized hybrid mappings introduced recently in [17]. In Section 6 we post some related open problems.

2. Preliminaries and notations

Topologies considered in this paper will be all Hausdorff. Banach spaces are all assumed to be over the 
complex numbers C. If E is a Banach space (resp. a dual Banach space), the weak topology (resp. weak* 
topology) of E will be denoted by wk (resp. wk*).
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Let S = {Ts : s ∈ S} be a representation of a semigroup S on a convex subset C of a Banach 
space E. The representation is called affine if C is convex and each Ts (s ∈ S) is an affine mapping, that is, 
Ts(ax + by) = aTsx + bTsy for all constants a, b ≥ 0 with a + b = 1, s ∈ S and x, y ∈ C. A point a ∈ E is 
an attractive point of S if ‖a − Tsx‖ ≤ ‖a − x‖ for all x ∈ C. The set of all attractive points of S for C is 
denoted by AC(S).

Given a semitopological semigroup S, let �∞(S) be the C∗-algebra of bounded complex-valued functions 
on S with the supremum norm and pointwise multiplication. For each s ∈ S and f ∈ �∞, denote by �sf
and rsf the left and right translates of f by s respectively, that is, (�sf)(t) = f(st) and (rsf)(t) = f(ts)
(t ∈ S). Let X be a closed subspace of �∞(S) containing the constant functions and being invariant under 
left translations. Then a linear functional m ∈ X∗ is called a mean if ‖m‖ = m(1) = 1; m is called a 
left invariant mean, denoted by LIM, if m(�sf) = m(f) for all s ∈ S, f ∈ X. Let Cb(S) be the space 
of all bounded continuous complex-valued functions on S. Then Cb(S) certainly is a closed subalgebra of 
�∞(S) containing the constant functions and being invariant under translations. Let LUC(S) be the space 
of left uniformly continuous functions on S, that is, all f ∈ Cb(S) such that the mappings s �→ �s(f)
from S into Cb(S) are continuous. Then LUC (S) is a C∗-subalgebra of Cb(S) invariant under translations 
and contains the constant functions. When S is a topological group, then LUC (S) is precisely the space 
of bounded right uniformly continuous functions on S as defined in [12]. The semigroup S is called left 
amenable (respectively extremely left amenable) if LUC (S) has a LIM (respectively a multiplicative LIM). 
Left amenable semitopological semigroups include all commutative semigroups, all compact groups and all 
solvable groups. But the free group (or semigroup) on two generators is not left amenable. The theory 
concerning amenability of semigroups may be found in monographs [29] and [31].

Let AP(S) be the space of all f ∈ Cb(S) such that LO(f) = {�sf : s ∈ S} is relatively compact in 
the norm topology of Cb(S), and let WAP(S) be the space of all f ∈ Cb(S) such that LO(f) is relatively 
compact in the weak topology of Cb(S). Functions in AP(S) (respectively WAP(S)) are called almost 
periodic (respectively weakly almost periodic) functions. AP(S) and WAP(S) are closed C∗-subalgebras of 
Cb(S) invariant under translations and contains the constant functions. In general, the following inclusions 
hold:

AP(S) ⊆ LUC (S) ⊆ Cb(S) and AP(S) ⊆ WAP(S) ⊆ Cb(S).

If S is a discrete semigroup then

AP(S) ⊆ WAP(S) ⊆ LUC (S) = Cb(S) = �∞(S).

If S is a compact semitopological semigroup then

AP(S) = LUC (S) ⊆ WAP(S) = Cb(S).

If S is a compact topological semigroup, that is, the multiplication is jointly continuous, then

AP(S) = WAP(S) = LUC (S) = Cb(S).

All inclusions asserted in the above diagrams may be proper (see [3] for details).
Suppose that C is a subset of a Banach space E and that S = {Ts : s ∈ S} is a representation 

of S on C. Let c ∈ C be such that {Tsc : s ∈ S} is bounded. Then each f ∈ E∗ defines an element 
fc ∈ �∞(S) for which fc(s) = 〈Tsc, f〉 for s ∈ S. If s �→ Tsc: S → C is continuous when C is equipped 
with the weak topology of E, then fc ∈ Cb(S); if the action of S on C is weakly jointly continuous and 
{Tsc : s ∈ S} is weakly relatively compact, then fc ∈ LUC (S). If the action of S on C is weakly separately 
continuous and weakly equicontinuous continuous and {Tsc : s ∈ S} is weakly relatively compact, then 
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fc ∈ AP(S) [18, Lemma 3.1]. Finally, if the action of S on C is weakly separately continuous and weakly 
quasi-equicontinuous and {Tsc : s ∈ S} is weakly precompact, then fc ∈ WAP(S) [22, Lemma 3.2]. Here 
we recall that a representation S = {Ts : s ∈ S} on a Hausdorff space X is quasi-equicontinuous if S p, 
the closure of S in the product space XX , consists of only continuous mappings. In other words, the 
representation is quasi-equicontinuous if for any net (si) ⊂ S, whenever Tsi(x) → T (x) for each x ∈ X, T is 
a continuous mapping from X into X.

Now let X be a closed subspace of �∞(S) containing the constant functions. Let S = {Ts : s ∈ S} be 
a representation of S on C as above. Suppose that c ∈ C such that {Tsc : s ∈ S} is bounded, and suppose 
that fc ∈ X for each f ∈ E∗. For any mean μ ∈ X∗ on X we may define Tμc ∈ E∗∗ by

〈Tμc, f〉 = μ(fc).

Tμc is clearly well-defined. If {Tsc : s ∈ S} is precompact, then Tμc is weak* continuous. So Tμc ∈ E in this 
case.

3. Attractive points and common fixed point properties

Recall that a Banach space E is strictly convex if ‖x+y
2 ‖ < 1 whenever x, y ∈ E, ‖x‖ = ‖y‖ = 1

and x �= y. It is readily seen that for any distinct elements x, y1, y2 from a strictly convex space with 
‖x − y1‖ = ‖x − y2‖ = d we have ‖x − y1+y2

2 ‖ < d. E is uniformly convex if for each 0 < ε ≤ 2 there exists 
δ > 0 such that ‖x+y

2 ‖ < 1 − δ whenever x, y ∈ E, ‖x‖ = ‖y‖ = 1 and ‖x − y‖ ≥ ε. It is known that if E is 
uniformly convex then it is strictly convex and reflexive. Typical examples of a uniformly convex space are 
Lp-spaces (p > 1).

Now suppose E is a strictly convex and reflexive Banach space. Let C �= ∅ be a convex subset of E. For 
any x ∈ E there is a unique u ∈ C, the norm closure of C, such that ‖u − x‖ ≤ ‖c − x‖ for all c ∈ C. In 
fact, this is trivial if c ∈ C; if c /∈ C, let

Cx = {y ∈ C : ‖x− y‖ ≤ ‖x− c‖ for all c ∈ C}.

Then Cx �= ∅ since Cx = ∩α>dCx(α), where d = inf{‖x −c‖ : c ∈ C} and Cx(α) = {c ∈ C : ‖x −c‖ ≤ α}. The 
set Cx(α) is a closed convex bounded subset of E and hence it is weakly compact since E is reflexive. Finite 
intersection property implies that Cx is a non-empty weakly compact convex subset of E. Let y1, y2 ∈ Cx. 
Then y1+y2

2 ∈ Cx and hence ‖x − y1+y2
2 ‖ = ‖x − y1‖ = ‖x − y2‖ = d. By the strict convexity of E this 

implies y1 = y2. Therefore, Cx is a singleton. So the element u ∈ Cx is the only element of C that satisfies 
‖u − x‖ ≤ ‖c − x‖ for all c ∈ C. We call this u the metric projection of x in C and denote it by PC(x). If E
is a Hilbert space then PC(x) may also be characterized as the unique element u ∈ C satisfying

Re〈x− u |u− c〉 ≥ 0 c ∈ C. (3.1)

Lemma 3.1. Suppose that E is a strictly convex and reflexive Banach space. Let C �= ∅ be a closed convex 
subset of E and S be a representation of a semigroup S on C. If AC(S) �= ∅, then F (S) �= ∅.

Proof. Take a ∈ AC(S). Let u = PC(a). Since a is attractive,

‖a− Ttu‖ ≤ ‖a− u‖ ≤ ‖a− c‖

for all c ∈ C (t ∈ S). Thus Ttu = PC(a) = u for all t ∈ S, which means u ∈ F (S). �
Remark 3.2. If E is a general Banach space, the proof of Lemma 3.1 still works as long as PC(a) is uniquely 
defined.



JID:YJMAA AID:19741 /FLA Doctopic: Functional Analysis [m3L; v1.159; Prn:24/08/2015; 15:45] P.5 (1-16)
A.T.-M. Lau, Y. Zhang / J. Math. Anal. Appl. ••• (••••) •••–••• 5
Remark 3.3. The converse of Lemma 3.1 cannot be true in general. Namely, even F (S) �= ∅, it still can happen 
that AC(S) = ∅. For example, let E = �p (p ≥ 1), C = {x ∈ E : x = (xi)∞i=1, x1 ≥ 0}. Consider T ((xi)) =
(x1, x1, x2, x3, · · · ). Then T is a nonexpansive mapping on C, and T has fixed point 0̂ = (0, 0, 0, · · · ). But 
T has no attractive point for C. As a consequence, the representation {Tn = Tn : n ∈ N} of (N, +) has a 
common fixed point in C but has no attractive points for C.

However, we have a weaker relation between the existence of a fixed point and the existence of an 
attractive point for nonexpansive representations of a semigroup as follows.

Proposition 3.4. Let E be a reflexive, strictly convex Banach space and C a closed convex subset of E. 
Suppose that S is a representation of a semigroup S on C as nonexpansive self mappings. Then the following 
statements are equivalent

(1) There is a closed, S-invariant convex subset C0 of C such that AC0(S) �= ∅;
(2) S has a common fixed point in C.

Proof. Assume (1) holds. Apply Lemma 3.1 for C0. We then see that (2) is true.
Suppose (2) holds. We consider C0 = F (S). Then C0 is closed and S-invariant. The convexity of C0

follows from [9, Lemma 3.4]. As C0 is the fixed point set of S, it is obvious that all elements of E are 
attractive points for C0. So (1) holds. �

We now consider more general representations.
Let E be a Banach space and C ⊂ E. We call a mapping T : C → C asymptotically nonexpansive if for 

all x, y ∈ C the following inequality holds.

lim sup
n→∞

‖Tnx− Tny‖ ≤ ‖x− y‖.

We note that the notion was defined by K. Goebel and W.A. Kirk [8] in a slightly different way, where they 
called T asymptotically nonexpansive if there was a sequence (kn) of real numbers such that kn → 1 and

‖Tnx− Tny‖ ≤ kn‖x− y‖ (x, y ∈ C).

Our definition of asymptotic nonexpansiveness is more general than the above Goebel and Kirk’s version 
of the notion. For example, the mapping T : [0, 1] → [0, 1] defined by T (x) =

√
x for x �= 0 and T (0) = 1 is 

asymptotically nonexpansive in our definition but not in their definition. It is also different from the notion 
introduced in [14]. Our asymptotically nonexpansive mappings could be discontinuous.

Suppose S = {Ts : s ∈ S} is a representation of a semigroup S on a set C in a Banach space E. We call 
an element a ∈ E an asymptotically attractive point of S for C if

lim sup
n→∞

‖a− (Tt)n(x)‖ ≤ ‖a− x‖

for all x ∈ C and all t ∈ S. We denote the set of all asymptotically attractive points of S for C by AAC(S).
Certainly, any attractive point is asymptotically attractive and any nonexpansive mapping is asymptot-

ically nonexpansive.

Proposition 3.5. Let E be a reflexive, strictly convex Banach space and C a closed convex subset of E. 
Suppose that S is a representation of the semigroup S on C as weakly continuous and norm asymptotically 
nonexpansive self mappings. Then the following statements are equivalent
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(1) There is a closed, S-invariant convex subset C0 of C such that AC0(S) �= ∅;
(2) There is a closed, S-invariant convex subset C0 of C such that AAC0(S) �= ∅;
(3) S has a common fixed point in C.

Proof. The implication of (1)⇒(2) is trivial. We show (2)⇒(3) and (3)⇒(1).
Suppose that (2) holds. Without generality we may assume AAC(S) �= ∅. Take a ∈ AAC(S) and let 

u = PC(a). Fix t ∈ S. Let v be a weak cluster point of {(Tt)nu)}. Then v ∈ C since as a closed and convex 
set C is weakly closed. We may assume

v = wk- lim
k

(Tt)nku.

Then

‖a− v‖ ≤ lim sup
k

‖a− (Tt)nku‖ ≤ lim sup
n→∞

‖a− (Tt)nu‖.

Since a is an asymptotically attractive point, the above shows ‖a − v‖ ≤ ‖a − u‖. By the definition of u we 
derive

v = u = PC(a).

This is true for every weak cluster point v of {(Tt)nu)}. But {(Tt)nu)} is bounded and hence is a subset of 
a weakly compact set in C (note E is reflexive). We then conclude

wk- lim(Tt)nu = u.

Using weak–weak continuity of Tt, we finally have

Tt(u) = wk- lim
n

(Tt)n+1(u) = wk- lim(Tt)nu = u.

The above is true for every t ∈ S. Therefore u ∈ F (S) and hence (3) is true.
Now assume (3). We prove (1) holds. We consider C0 = F (S). This is clearly a nonempty closed 

S-invariant subset of C, and AAC0(S) = E. To complete the proof we only need to show that C0 is 
convex. To this end it suffices to show 1

2 (x + y) ∈ C0 whenever x, y ∈ C0.
Let x, y ∈ C0. We may assume

d = ‖x− y‖ > 0.

Denote z = 1
2 (x + y) and let t ∈ S. Suppose that z̃ is a weak cluster point of {(Tt)nz} and assume

z̃ = wk- lim
k

(Tt)nk(z).

Then

‖z̃ − x‖ ≤ lim sup ‖(Tt)n(z) − x‖ = lim sup ‖(Tt)n(z) − (Tt)n(x)‖.

Since the representation of S on C is asymptotically nonexpansive, the above leads to ‖z̃−x‖ ≤ ‖z−x‖ = 1
2d. 

Similarly, ‖z̃ − y‖ ≤ 1
2d. So

d = ‖x− y‖ ≤ ‖z̃ − x‖ + ‖z̃ − y‖ ≤ d.
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Thus

‖z̃ − x‖ = ‖z̃ − y‖ = 1
2d.

Let c = 1
2 (z + z̃). Then

‖c− x‖ ≤ 1
2(‖z − x‖ + ‖z̃ − x‖) = 1

2d, and similarly ‖c− y‖ ≤ 1
2d.

These show that ‖c − x‖ = ‖c − y‖ = d
2 . If z̃ �= z, by the strict convexity of E

‖c− x‖ = ‖1
2(z + z̃) − x‖ <

d

2

since ‖z−x‖ = ‖z̃−x‖ = d
2 . This contradiction asserts that z̃ = z. So we have shown that any weak cluster 

point of {(Tt)n(z)} is equal to z. Hence

wk- lim
n→∞

(Tt)n(z) = z.

By the weak continuity of Tt we end up with Ttz = z for each t ∈ S, or z ∈ F (S) = C0. Therefore C0 is 
convex. The proof is complete. �

Let C be any nonempty subset of a Banach space E and S be a representation of S on C. We are 
interested in when AC(S) �= ∅. For this purpose it is reasonable to assume that {Tsx : s ∈ S} is bounded 
for all x ∈ C, since otherwise AC(S) must be empty. If the representation is nonexpansive, then it is readily 
seen that {Tsx : s ∈ S} is bounded for all x ∈ C if there is a point c ∈ C such that {Tsc : s ∈ S} is bounded. 
When E is reflexive this condition implies further that {Tsx : s ∈ S} is weakly precompact in E for each 
x ∈ C.

4. Nonexpansive mappings on Hilbert spaces

Let H be a Hilbert space over C. The inner product of x, y ∈ H is denoted by 〈x | y〉. The following are 
elementary properties of a Hilbert space.

Re〈x + y |x− y〉 = ‖x‖2 − ‖y‖2 (x, y ∈ H); (4.1)

‖λx + (1 − λ)y‖2 = λ‖x‖2 + (1 − λ)‖y‖2 − λ(1 − λ)‖x− y‖2 (4.2)

for x, y ∈ H, λ ∈ R.
For a semigroup representation in a Hilbert space the following holds.

Lemma 4.1. Let C be a nonempty subset of a Hilbert space H and S be a representation of S on C as 
nonexpansive self mappings. Suppose that {Tsc : s ∈ S} is bounded for some c ∈ C. Let X be a closed 
subspace of �∞(S) containing the constant functions and being invariant under left translations. If X has a 
left invariant mean μ and if yc ∈ X for each y ∈ H, where

yc(s) = 〈Tsc | y〉 s ∈ S,

then Tμc ∈ A(S) and so A(S) �= ∅.
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Proof. From the discussion in the end of Section 2, a = Tμc ∈ H is well-defined. We show ‖a −Ttx‖ ≤ ‖a −x‖
for all x ∈ C. In fact, using identity (4.1) we have

‖a− Ttx‖2 − ‖a− x‖2 = Re〈2a− Ttx− x |x− Ttx〉

= Reμs(〈2Tsc− Ttx− x |x− Ttx〉)

= μs(Re〈2Tsc− Ttx− x |x− Ttx〉)

= μs(‖Tsc− Ttx‖2 − ‖Tsc− x‖2)

= μs(‖Ttsc− Ttx‖2) − μs(‖Tsc− x‖2)

≤ μs(‖Tsc− x‖2) − μs(‖Tsc− x‖2) = 0.

Note that the last inequality holds because μ is left invariant. Therefore ‖a −Ttx‖2 ≤ ‖a −x‖2 for all t ∈ S, 
and hence a ∈ A(S). �

In particular, let S be a semitopological semigroup, then for X being �∞(S), Cb(S), LUC (S), AP(S) or 
WAP(S) we derive the following result.

Corollary 4.2. Let C be a nonempty subset of a Hilbert space H and S be a representation of a semitopological 
semigroup S on C as nonexpansive self mappings. Suppose that {Tsc : s ∈ S} is bounded for some c ∈ C. 
Then A(S) �= ∅ if any of the following conditions holds.

(1) Cb(S) has a left invariant mean and the mapping s �→ Tsc is continuous from S into (C, wk);
(2) S is left amenable and the action of S on C is weakly jointly continuous;
(3) AP(S) has a left invariant mean and the action of S on C is weakly separately continuous and weakly 

equicontinuous continuous;
(4) WAP(S) has a left invariant mean and the action of S on C is weakly separately continuous and weakly 

quasi-equicontinuous.

Proof. By Lemma 4.1 it suffices to verify that for X being Cb(S), LUC (S), AP(S) or WAP(S) under the 
corresponding condition of (1)–(4), we have yc ∈ X for all y ∈ H. This is clear for case (1). In other cases 
we may assume C = {Tsc : s ∈ S}wk

, the closure of {Tsc : s ∈ S} in the weak topology of H. Then C is 
compact in the weak topology of H. In case (2), LUC(S) has a left invariant mean. Routine computation 
shows that yc ∈ LUC (S) if the representation of S on C is weakly jointly continuous. In case (3) yc ∈ AP(S)
is due to [18, Lemma 3.1]. In case (4) yc ∈ WAP(S) is due to [22, Lemma 3.2]. �

Combining Lemma 3.1 and Corollary 4.2, we obtain a common fixed point theorem for an acting on an 
unbounded convex set of a Hilbert space.

Theorem 4.3. Let C be a nonempty closed convex subset of a Hilbert space H and S be a representation of S
on C as nonexpansive self mappings. Suppose that {Tsc : s ∈ S} is bounded for some c ∈ C. Then F (S) �= ∅
if any of the conditions (1)–(4) in Lemma 4.2 holds.

It is well known that if a semitopological semigroup S is left reversible then AP(S) has a left invariant 
mean [18]. For a discrete semigroup S the left reversibility also implies that WAP(S) has a left invariant 
mean [16,22]. We are interested in whether yc ∈ AP(S) or ∈ WAP(S) for y ∈ H and c ∈ C if S is a left 
reversible semitopological semigroup acting on a set C of a Hilbert space H. For an affine representation 
we have the following.
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Proposition 4.4. Let C be a nonempty convex subset of a Hilbert space H and S be a representation of a 
semitopological semigroup S on C as nonexpansive affine self mappings such that the mapping s �→ Tsx

from S into (C, wk) is continuous for each x ∈ C. Suppose that {Tsc : s ∈ S} is bounded for some c ∈ C. If 
WAP(S) has a left invariant mean μ, then F (S) �= ∅.

Proof. By Lemma 3.1 and Lemma 4.1 we only need to show yc ∈ WAP(S) for all y ∈ H. For this purpose we 
may assume C = cowk({Tsc : s ∈ S}), which is weakly compact (note that a norm continuous affine mapping 
is always weakly continuous). We shall show that the representation of S on C is quasi-equicontinuous when 
C is equipped with the weak topology of H.

Suppose that (si) ⊂ S is a net satisfying Tsi(x) wk→T (x) for each x ∈ C. We show T is weak–weak 

continuous. If this were not true, then there would be a net (xj) ⊂ C such that xj
wk→x but T (xj) 

wk
�T (x). 

Then there would exist z ∈ H, ε > 0 and a subnet of (xj), still denoted by (xj), such that ‖z‖ = 1 and

Re[〈T (xj) − T (x) | z〉] > ε

for all j. By Mazur’s Theorem, there is a net (xλ) ⊂ co(xj) such that xλ → x in norm. We certainly still 
have

Re[〈T (xλ) − T (x) | z〉] > ε

for all λ. On the other hand

〈T (xj) − T (x) | z〉 = lim
i
〈Tsi(xj) − Tsi(x) | z〉.

By the nonexpansiveness of Tsi we would have

‖T (xj) − T (x)‖ ≤ ‖xj − x‖ → 0.

This contradiction shows that T is weak–weak continuous. Thus the representation of S on C is weakly 
quasi-equicontinuous. So yc ∈ WAP(S) for all y ∈ H from [22, Lemma 3.2]. The proof is complete. �
Corollary 4.5. If S is a discrete left reversible semigroup, then, a nonexpansive affine representation of S
on a convex set C of a Hilbert space has a common fixed point if {Tsc : s ∈ S} is bounded for some c ∈ C.

We now consider when yc ∈ AP(S) assuming S is left reversible.

Lemma 4.6. (See [23, Lemma 3.4].) Let S be a left reversible semitopological semigroup and S = {Ts : s ∈ S}
a representation of S as jointly continuous self mappings on a compact Hausdorff space K. Then there is a 
nonempty compact subset B of K such that Ts(B) = B for all s ∈ S.

Lemma 4.7. Let S be a separable semitopological semigroup that acts on a weakly compact subset K of a 
Banach space E as weakly separately continuous and norm nonexpansive mappings. Suppose that F is a 
minimal nonempty weakly compact S-invariant subset of K satisfying sF = F for all s ∈ S. Then F is 
norm compact.

Proof. This follows from the same proof of [22, Lemma 3.3], where the convex assumption for K was not 
used in the argument and so is removable. �
Theorem 4.8. Let S be a left reversible and separable semitopological semigroup, and let S = {Ts : s ∈ S} be 
a representation of S on a weakly closed subset C of a Hilbert space H as norm nonexpansive and weakly 
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jointly continuous self mappings. If there is c ∈ C such that {Tsc : s ∈ S} is bounded, then AC(S) �= ∅. In 
particular, F (S) �= ∅.

Proof. Since S is left reversible, by Lemma 4.6 and Zorn’s Lemma there is a minimal weakly compact 
S-invariant subset F of {Tsc : s ∈ S}w ⊂ C such that Ts(F ) = F for all s ∈ S. From Lemma 4.7 F is 
actually norm compact. Then it follows from [18, Lemma 3.1] the function yc is in AP(S) for c ∈ F and 
y ∈ H. On the other hand AP(S) has a left invariant mean if S is left invariant. Therefore, by Lemma 4.1
AC(S) �= ∅. Then applying Lemma 3.1 we have F (S) �= ∅. �
Lemma 4.9. Let C be a nonempty subset of a Hilbert space H and S be a representation of S on C. If 
AC(S) �= ∅ then AC(S) is closed and convex.

Proof. From the definition it is evident that AC(S) is closed. Let a, b ∈ AC(S) and 0 ≤ λ ≤ 1. Then for 
c ∈ C and t ∈ S

‖λa + (1 − λ)b− Ttc‖2 = λ‖a− Ttc‖2 + (1 − λ)‖b− Ttc‖2 − λ(1 − λ)‖a− b‖2

≤ λ‖a− c‖2 + (1 − λ)‖b− c‖2 − λ(1 − λ)‖a− b‖2

= ‖λa + (1 − λ)b− c‖2.

Therefore λa + (1 − λ)b ∈ AC(S). �
Suppose that S is right reversible, i.e. Sa ∩ Sb �= ∅. We may define a partial order on S by letting a ≤ b

if Sa∪ {a} ⊇ Sb∪ {b}. Let T be a mapping from S into a topological space X. We say {T (s)} converges to 
y ∈ X if the limit lims T (s) = y holds when s increases in this order.

Lemma 4.10. Let C and D be non-empty sets in a Hilbert space H with D closed and convex. Let S be a 
right reversible semitopological semigroup and S = {Ts : s ∈ S} a representation of S on C. Suppose that x
is a point in C such that the mapping s �→ Tsx is continuous from S into C and

‖Ttsx− z‖ ≤ ‖Tsx− z‖ (z ∈ D, s, t ∈ S).

Then {P (Tsx)} converges strongly to some z0 ∈ D, where P : H → D is the metric projection.

Proof. We first notice that by the definition of P

‖y − P (y)‖ ≤ ‖y − z‖ (y ∈ H, z ∈ D).

If a, b ∈ S, a ≥ b, then either a = b or there is a net (si) ⊂ S such that a = limi sib. In the latter case,

‖Tax− z‖ = lim
i

‖Tsibx− z‖ ≤ ‖Tbx− z‖ (z ∈ D)

by the assumption. In particular, ‖Tax − P (Tbx)‖ ≤ ‖Tbx − P (Tbx)‖ and hence

‖Tax− P (Tax)‖ ≤ ‖Tbx− P (Tbx)‖ (a ≥ b).

So the numerical net {‖Tsx − P (Tsx)‖} is decreasing as s increases. Thus the limit lims ‖Tsx − P (Tsx)‖
exists.

On the other hand, for y ∈ H and z ∈ D

‖y − z‖2 = ‖y − P (y)‖2 + ‖P (y) − z‖2 + 2Re〈y − P (y) |P (y) − z〉.
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Using (3.1) we immediately get

‖P (y) − z‖2 ≤ ‖y − z‖2 − ‖P (y) − y‖2 (y ∈ H, z ∈ D.)

Therefore,

‖P (Tax) − P (Tbx)‖2 ≤ ‖Tax− P (Tbx)‖2 − ‖P (Tax) − Tax‖2

≤ ‖Tbx− P (Tbx)‖2 − ‖Tax− P (Tax)‖2.

This shows that {P (Tsx)} is a Cauchy net in H. It then converges to some z0 ∈ D. �
We note that Lemma 4.10 was proved in [19, Proposition 2.4] for the case D = F (S) when the represen-

tation is nonexpansive.
We now use Lemma 4.10 to prove an ergodic theorem for representations of a semitopological semigroup 

in a Hilbert space.

Theorem 4.11. Let C be a nonempty closed subset of a Hilbert space H, let S = {Ts : s ∈ S} be a 
representation of a right reversible semitopological semigroup S on C as separately continuous nonexpansive 
mappings, and let X be the left invariant subspace of �∞(S) in any of the cases listed below. Suppose that X
has a LIM μ and suppose that Sc = {Tsc : s ∈ S} is bounded for some c ∈ C. Then AC(S) is a nonempty 
closed convex subset of H, Tμx ∈ AC(S) for all x ∈ C. In particular, F (S) �= ∅. If in addition μ is also a 
RIM on X, then limt PAC(S)(Ttx) = Tμx.

(1) X = Cb(S) and the mapping s �→ Tsc is continuous from S into (C, wk);
(2) X = LUC (S), and the action of S on C is weakly jointly continuous;
(3) X = AP(S) and the action of S on C is weakly equicontinuous continuous;
(4) X = WAP(S) and the action of S on C is weakly quasi-equicontinuous;
(5) S is left reversible and separable and the action of S on C is weakly equicontinuous continuous (for this 

case μ is taken to be a LIM for AP(S)).

Proof. First, by the assumption the mapping s �→ Tsx is continuous in norm, hence is also continuous in 
the weak topology for C. So in the cases (3) and (4) the action of S on C is automatically weakly separately 
continuous. From Lemma 4.2 Theorem 4.8 and Lemma 4.9, we know that, in each case listed, AC(S) is 
nonempty and is closed convex. In particular, F (S) �= ∅. We also note that from the nonexpansiveness of 
the representation, Sx is bounded for all x ∈ C.

We now show that the limit limt PAC(S)(Ttx) = Tμx holds if μ is an invariant mean on X.
By Lemma 4.10 with D = AC(S), limt PAC(S)(Ttx) exists. Assume the limit is u ∈ AC(S). By the 

property of PAC(S) we have

Re
[
〈Ttx− PAC(S)(Ttx) |PAC(S)(Ttx) − y〉

]
≥ 0 (t ∈ S, y ∈ AC(S)).

This leads to

Re
[
〈Ttx− PAC(S)(Ttx) | y − u〉

]
≤ Re

[
〈Ttx− PAC(S)(Ttx) |PAC(S)(Ttx) − u〉

]
.

Since {Tsx : s ∈ S} is bounded, it is evident that {PAC(S)(Tsx) : s ∈ S} is bounded too. We assume

‖Tsx‖ + ‖PAC(S)(Tsx)‖ ≤ M.



JID:YJMAA AID:19741 /FLA Doctopic: Functional Analysis [m3L; v1.159; Prn:24/08/2015; 15:45] P.12 (1-16)
12 A.T.-M. Lau, Y. Zhang / J. Math. Anal. Appl. ••• (••••) •••–•••
Then

Re
[
〈Ttx− PAC(S)(Ttx) | y − u〉

]
≤ M‖PAC(S)(Ttx) − u‖ (t ∈ S, y ∈ AC(S)).

Apply μ on both sides. We have

Re
[
μs

(
〈Tstx− PAC(S)(Tstx) | y − u〉

)]
≤ Mμs

(
‖PAC(S)(Tstx) − u‖

)

for t ∈ S and y ∈ AC(S). By the right invariance of μ we get

Re
[
μs

(
〈Tμx− PAC(S)(Tstx) | y − u〉

)]
≤ Mμs

(
‖PAC(S)(Tstx) − u‖

)

for t ∈ S and y ∈ AC(S). Since limt PAC(S)(Tstx) converges to u uniformly in s by the definition of the 
order on S, we finally get

Re [〈Tμx− u | y − u〉] ≤ 0 (y ∈ AC(S)).

In particular this is true for y = Tμx. Thus we derive ‖Tμx − u‖2 ≤ 0 or Tμx = u. �
Remark 4.12. A special case of our Theorem 4.11 for a discrete commutative semigroup representation was 
obtained in [2] (see Theorem 4.1 there).

Remark 4.13. We indicate here several important cases regarding the existence of a LIM.

(1) When S is discrete semigroup, the following implication diagram is known (see [22]).

S left amenable
⇓ �⇑

S left reversible
⇓ �⇑

WAP(S) has LIM
⇓ �⇑

AP(S) has LIM

(2) If G is a topological group, then WAP(G) always has a left invariant mean by the Ryll-Nardzewskii 
fixed point theorem.

(3) If G is a locally compact group, then Cb(G) has a LIM if and only if G is left amenable.

It is well known that X has a left (right, or two-sided) invariant mean if and only if there is a net (μα)
of means on X such that μα − �∗sμα → 0 (resp. μα − r∗sμα → 0, or both limits hold) in the weak* topology 
of X∗ for all s ∈ S. Moreover, if (μα) is such a net then a subnet of it will converge weak* to a left (resp. 
right, or two-sided) invariant mean μ. On the other hand, if μα

wk*→ μ then Tμα
x wk→Tμx.

Corollary 4.14. Under the condition of Theorem 4.11 if (μα) is a net of means on X such that

μα − �∗sμα
wk*→ 0 and μα − r∗sμα

wk*→ 0 (s ∈ S),

then for each x ∈ C, {Tμα
(x)} converges weakly to

ux := lim
t

PAC(S)(Ttx) ∈ AC(S).

Moreover, if μα → μ in norm, then (Tμα
x) also converges to ux in norm.
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Proof. First assume μα
wk*→ μ. Then μ is an invariant mean on X. Since Tμx = ux = limt PAC(S)(Ttx) for 

x ∈ C from Theorem 4.11, and since Tμα
x wk→Tμx, we conclude immediately that {Tμα

x} converges weakly 
to ux for all x ∈ C.

In general, the above shows that for every weak* convergent subnet (μβ) of (μα)

Tμβ
x

wk→ux = lim
t

PAC(S)(Ttx).

This implies Tμα
x wk→ux.

Moreover, if μα → μ in norm, then (Tμα
x) also converges to ux in norm. In fact,

‖Tμα
x− Tμx‖ = sup

f∈H1

|(μα − μ)(〈Tsx | f〉| ≤ M‖μα − μ‖

where M > 0 is a constant satisfying ‖Tsx‖ ≤ M for all s ∈ S. We have

‖Tμα
x− ux‖ = ‖Tμα

x− Tμx‖ α→ 0.

The proof is complete. �
Corollary 4.15. Let S be a reversible discrete semigroup (i.e. S be both left and right reversible). If S = {Ts :
s ∈ S} is a representation of S on a nonempty closed subset C of a Hilbert space H such that the action of 
S on C is weakly quasi-continuous, then F (S) �= ∅.

Proof. This follows from Theorem 3.11 and a result of R. Hsu in [16], where he showed that when S is left 
reversible and discrete, then WAP(S) has a LIM. �
5. Generalized hybrid mappings in Hilbert spaces

In this section we aim to extend the results in the previous section to semigroups of mappings generated 
by so called generalized hybrid mappings. Let E be a Banach space and C ⊂ E. We call a mapping T : 
C → C a generalized hybrid mapping [17] if there are numbers α, β ∈ R such that

α‖Tx− Ty‖2 + (1 − α)‖x− Ty‖2 ≤ β‖Tx− y‖2 + (1 − β)‖x− y‖2,

for all x, y ∈ C.
When (α, β) = (1, 0), this indeed defines a nonexpansive mapping. However, in general the composite of 

two generalized hybrid mappings is usually no long generalized hybrid. Also a generalized hybrid mapping 
may be discontinuous.

Lemma 5.1. Let C be a nonempty subset of a Hilbert space H and S = {Ts : s ∈ S} be a representation of S
on C. Suppose that S is generated by a subset Λ and Ts is a generalized hybrid mapping on C for each s ∈ Λ
and suppose that {Tsc : s ∈ S} is bounded for some c ∈ C. Let X be a closed subspace of �∞(S) containing 
the constant functions and being invariant under left translations. If X has a left invariant mean μ and if 
yc ∈ X for each y ∈ H, where

yc(s) = 〈Tsc | y〉 s ∈ S,

then Tμc ∈ A(S) and so F (S) �= ∅.
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Proof. Still from the discussion in the end of Section 2, a = Tμc ∈ H is well-defined. Following the proof of 
Lemma 4.1 we have

‖a− Ttx‖2 − ‖a− x‖2 = μs(‖Tsc− Ttx‖2 − ‖Tsc− x‖2)

= μs(‖Tsc− Ttx‖2) − μs‖Tsc− x‖2) (t ∈ S, x ∈ C).

Now let t ∈ Λ. We have

μs(‖Tsc− Ttx‖2) = μs(α‖Tsc− Ttx‖2) + (1 − α)‖Tsc− Ttx‖2)

= μs(α‖Ttsc− Ttx‖2) + (1 − α)‖Tsc− Ttx‖2)

≤ μs(β‖Ttsc− x‖2) + (1 − β)‖Tsc− x‖2)

= μs(β‖Tsc− x‖2) + (1 − β)‖Tsc− x‖2)

= μs(‖Tsc− x‖2) (x ∈ C)

for some α, β ∈ R. Thus ‖a −Ttx‖2 −‖a −x‖2 ≤ 0 for t ∈ Λ and x ∈ C. Since Λ generates S, the inequality 
still holds for all t ∈ S. Therefore, a = Tμc is an attractive point of S for C. �

With the above lemma we may establish analogues of Theorems 4.3 and 4.11 for semigroups generated 
by generalized hybrid mappings with the same proofs.

Theorem 5.2. Let C be a nonempty subset of a Hilbert space H and S be a representation of a semitopological 
semigroup S on C. Suppose that S is generated by a subset Λ and Ts is a generalized hybrid mapping on C
for each s ∈ Λ, and suppose that {Tsc : s ∈ S} is bounded for some c ∈ C. Then F (S) �= ∅ if any of the 
following conditions holds.

(1) Cb(S) has a left invariant mean and the mapping s �→ Tsc is continuous from S into (C, wk);
(2) S is left amenable and the action of S on C is weakly jointly continuous;
(3) AP(S) has a left invariant mean and the action of S on C is weakly separately continuous and weakly 

equicontinuous continuous;
(4) WAP(S) has a left invariant mean and the action of S on C is weakly separately continuous and weakly 

quasi-equicontinuous.

Lemma 5.3. Let C be a nonempty closed subset of a Hilbert space H, let S = {Ts : s ∈ S} be a representation 
of a right reversible semitopological semigroup S on C such that the mapping s �→ Tsx is continuous from 
S into C with the norm topology for each x ∈ C. Suppose that S is generated by a subset Λ and Ts is a 
generalized hybrid mapping on C for each s ∈ Λ, and suppose that {Tsc : s ∈ S} is bounded for some c ∈ C. 
Let X be the left invariant subspace of �∞(S) in any of the cases listed below such that X has a two-sided 
invariant mean μ. Then AC(S) is a nonempty closed convex subset of H, Tμx ∈ AC(S) for all x ∈ C and 
limt PAC(S)(Ttx) = Tμx.

(1) X = Cb(S) and the mapping s �→ Tsc is continuous from S into (C, wk);
(2) X = LUC (S), and the action of S on C is weakly jointly continuous;
(3) X = AP(S) and the action of S on C is weakly equicontinuous continuous;
(4) X = WAP(S) and the action of S on C is weakly quasi-equicontinuous.

Proof. Due to Theorem 5.2 AC(S) �= ∅. This in turn implies that {Tsx : s ∈ S} is bounded for each x ∈ C. 
Then using the argument for the proof of Theorem 4.11 we get the result. �
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Applying Lemma 3.1 we then obtain a fixed point theorem for generalized hybrid mappings in Hilbert 
spaces as follows.

Theorem 5.4. Suppose that the condition of Lemma 5.3 holds with C being convex. Then there is a common 
fixed point for S in C.

6. Some remarks and open problems

A semitopological semigroup S is extremely left amenable if LUC (S) has a multiplicative left invariant 
mean. If S is a locally compact group, then S is extremely left amenable only when S is a singleton [11]. 
However, a non-trivial topological group which is not locally compact can be extremely left amenable. 
In fact, let S be the group of unitary operators on an infinite dimensional Hilbert space with the strong 
operator topology, then S is extremely left amenable [13]; In [24, Theorem 3.2] the authors showed that an 
F -algebra A is left amenable if and only if the semigroup of normal positive functions of norm 1 on A∗ is 
extremely left amenable. For more examples we refer to [30,20].

Problem 1. Suppose that S is extremely left amenable and C is a weakly closed subset of a Banach space E, 
and suppose that S is a weakly continuous and norm nonexpansive representation of S on C such that 
Sc = {Tsc : s ∈ S} is relatively weakly compact for some c ∈ C. Does C contain a fixed point for S?

We know that the answer is “yes” when S is discrete. Indeed, in this case, for each finite subset σ of S
there is sσ ∈ S such that ssσ = sσ for all s ∈ σ by a theorem of Granirer’s [10] (see also [23, Theorem 4.2]
for a short proof). Consider the net {sσc}. By the relative weak compactness of Sc, there is z ∈ Sc

wk ⊂ C

such that (replaced by a subnet if necessary) wk-limσ sσc = z. Then, as readily checked, Tsz = z for all 
s ∈ S by the weak continuity of the S action on C.

More generally, the answer to Problem 1 is still affirmative (even without the norm nonexpansiveness 
assumption) if the representation is jointly continuous when C is equipped with the weak topology of E. 
This is indeed a consequence of [27, Theorem 1] or [23, Theorem 5.4(a)].

Problem 2. Let C be a nonempty closed convex subset of the sequence space c0 and S be a representation 
of a commutative semigroup S as nonexpansive mappings on C. Suppose that {Tsc : s ∈ S} is relatively 
weakly compact for some c ∈ C. Is F (S) �= ∅?

One may not drop the weak compactness condition on the orbit of c. T.D. Benavides has shown that for 
any unbounded subset C of c0 there is an nonexpansive mapping T on C such that C has no fixed point 
for T [7]. In fact, even C is bounded, without weak compactness of an orbit the answer to Problem 2 will still 
be negative. For example, on the unit ball of c0 define T ((xi)) = (1, x1, x2, · · · ). Then T is nonexpansive, 
and obviously T has no fixed point in the unit ball.

Problem 3. Does Lemma 3.1 still hold when E is merely a strictly convex Banach space?

Problem 4. In any of the cases studied in Theorems 4.3, 4.4, 4.8 or 4.11, does the converse hold?

The authors are grateful to the referee for drawing their attention to the article [33].
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