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In this short paper we study the Sobolev function property of the Rayleigh’s quotient
δ(q) = inf

u∈E1,p(U)

‖u‖p
∇

‖u‖p
q,∂U

as a function of q ∈ [1, p∗] for p∗ = p(N−1)
N−p

when p ∈ (1, N), 
as well as the asymptotic behavior of positive solutions with minimal energy of the 
following problem

−Δpu = 0 in U, subject to |∇u|p−2 ∂u

∂ν
= λ |u|q−2 u on ∂U

to the first p-harmonic Steklov eigenpair on an exterior region U � RN when N ≥ 3.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The study of harmonic Steklov eigenvalue problems on bounded regions has a long history, yet even nowadays 
it is still an active research field for both theoretical and applied reasons (see, for example, Kuznetsov et al. 
[17,18]). Only quite recently, this problem on exterior regions, say, exterior to the unit ball in dimension 3, 
was treated by Auchmuty and Han [5,6,14]. Notice that, as shown in Section 8 of [5], this problem is closely 
related to the classical exterior Laplace’s spherical harmonics. See also Chapter 5 in Axler et al. [7]. A more 
physical description of this subject may be found in Section 12.6 of Arfken and Weber [4].

In this paper, we consider the asymptotic behavior of positive solutions of

⎧⎪⎨⎪⎩
−Δpu := −div

(
|∇u|p−2 ∇u

)
= 0 in U,

subject to |∇u|p−2 ∂u
∂ν = λ |u|q−2

u on ∂U

(1.1)
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of minimal energy, when q → p, to the first p-harmonic Steklov eigenpair (δ1, s1)

−Δp s1 = 0 in U and |∇s1|p−2 ∂s1
∂ν

= δ1 s
p−1
1 on ∂U. (1.2)

Besides, we also study the absolute continuity of the best Sobolev trace constant.
Here, U is a nonempty, open, connected subset of RN with N ≥ 3 whose complement RN \U is nonempty 

and compact. Without loss of generality, assume 0 /∈ U and denote the boundary of U by ∂U . Also, we take 
p ∈ (1, N), q ∈ [1, p∗] with p∗ := p(N−1)

N−p and λ ∈ (0,∞) a positive constant, and consider problems (1.1)
and (1.2) in the weak sense.

Our general assumption on U is the following condition.

Condition B. U � RN is an exterior region with 0 /∈ U when N ≥ 3, and ∂U is the union of finitely many 
disjoint, closed, Lipschitz surfaces with the total surface area 1.

From now on, we use σ and dσ to represent Hausdorff (N − 1)-dimensional measure and integration with 
respect to this measure. Given 1 ≤ p, q ≤ ∞, Lp (U) and Lq (∂U, dσ) denote the usual spaces of extended, 
real-valued, Lebesgue measurable functions on U and ∂U , with their standard norms written as ‖u‖p,U and 
‖u‖q,∂U , respectively.

One notices here, under condition (B), δ1 > 0 is simple and isolated, and s1 > 0 is bounded on U such 
that s1 → 0 as |x| → ∞ (see [14, Section 3 and Appendix B]). In particular, when U = RN \B1 with B1 the 

unit, open ball in RN , centered at the origin, then δ1 =
(

N−p
p−1

)p−1
and s1 = 1

|x|
N−p
p−1

so that one has δ1 = 1

and s1 = 1
|x| for N = 3 and p = 2.

We consider weak solutions to problems (1.1)–(1.2) in the space E1,p (U) of functions where u ∈ Lp∗ (U)
and |∇u| ∈ Lp (U) for p∗ := pN

N−p and the weak gradient ∇u = (D1u,D2u, . . . ,DNu) of u. Recall (see [6, 
Section 3] and [14, Sections 2–3]) when p ∈ (1, N) and under condition (B), E1,p (U) is a real Banach space 
with respect to the gradient Lp-norm

‖u‖∇ :=

⎛⎝∫
U

|∇u|p dx

⎞⎠
1
p

. (1.3)

Moreover, the family C1 (U) =
{
ψ : ψ = ϕ|U for some ϕ ∈ C1

c

(
RN

)}
of functions is dense in E1,p (U) with 

respect to the norm (1.3), and E1,p (U) is continuously embedded into the space Lq (∂U, dσ). That is, for 
a constant C1 > 0 depending on p, q, N, U , one has

‖u‖q,∂U ≤ C1 ‖u‖∇ for all u ∈ E1,p (U) . (1.4)

Here, 1 ≤ q ≤ p∗ and when q < p∗, then this embedding is compact as well.
Now, in view of (1.4), we can define, for every q ∈ [1, p∗], δ(q) := inf

u∈E1,p(U)

‖u‖p
∇

‖u‖p
q,∂U

∈ (0,∞) via standard

Rayleigh’s quotient (write ‖u‖p
∇

‖u‖p
q,∂U

:= +∞ if u ≡ 0 on ∂U). When q = p, then δ1 = δ(p). On the other hand, 
define the energy functional J : E1,p (U) → R by

J (u) := 1
p

∫
|∇u|p dx − λ

q

∫ (
u+)q dσ. (1.5)
U ∂U
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One easily observes that positive weak solutions to (1.1) are critical points of J . Denote by uλ,q ∈ E1,p (U)
positive solutions to (1.1) of minimal energy. Then, our main results are as follows.1

Theorem 1.1. Assume that p ∈ (1, N) and condition (B) holds. Then, δ(q) : [1, p∗] → (0,∞) is an absolutely 
continuous function and thus one has δ(q) ∈ W 1,1 ([1, p∗]).

Theorem 1.2. When p ∈ (1, N), condition (B) holds and uλ,q(> 0) ∈ E1,p (U) are weak solutions to (1.1) of 
minimal energy, then, for some constants c1 ≥ c2 > 0, we have⎧⎪⎪⎪⎨⎪⎪⎪⎩

lim
q→p−

(
λ
δ1

) p
q−p ‖uλ,q‖p∇ = c1,

lim
q→p+

(
λ
δ1

) p
q−p ‖uλ,q‖p∇ = c2.

(1.6)

One may be reminded here we only assume Lipschitz regularity on ∂U .
We remark problems like this were initially considered on bounded regions by Huang [16], and his results 

were substantially extended recently by Anello et al. [1–3] and Ercole [10–12]. Theorems 1.1 and 1.2 here 
correspond to Theorems 2.1 and 2.2 of [16]. Finally, it is worth to mention that our assumption σ (∂U) = 1
is not essential, but it simplifies the proofs later and can be attained through the probability measure dσ

σ(∂U) .

2. Proof of the main results

In this section, we will carry out the detailed proofs of our main results which in turn depend on several 
lemmas. We start with the following elementary observation.

Lemma 2.1. When u ∈ E1,p (U) ∩ L∞ (∂U, dσ) satisfies u �≡ 0 on ∂U , then

‖u‖s2,∂U
‖u‖s1,∂U

= exp

⎛⎝ s2∫
s1

K(t, u)
t2

dt

⎞⎠ ≥ 1. (2.1)

Here, s1, s2 ∈ [1, p∗] with s1 ≤ s2 and K(t, u) := ‖u‖−t
t,∂U

∫
∂U

|u|t ln |u|t dσ − ln ‖u‖tt,∂U ≥ 0.

The boundedness hypothesis is used to guarantee that 
∫
∂U

|u|t ln |u|t dσ ≤ ‖u‖tt,∂U ln ‖u‖t∞,∂U and thus 
the finiteness of K(t, u), which will be made clearer from the other results below.

Proof. First, note x lnx is convex when x ≥ 0 (if we define 0 ln 0 := 0). Therefore, one has, using Jensen’s
inequality, ‖u‖tt,∂U ln ‖u‖tt,∂U ≤

∫
∂U

|u|t ln |u|t dσ so that K(t, u) ≥ 0.
Next, for ln ‖u‖t,∂U (viewed as a function of t), take derivative to see

d

dt

(
ln ‖u‖t,∂U

)
= d

dt

⎡⎣1
t

ln

⎛⎝ ∫
∂U

|u|t dσ

⎞⎠⎤⎦

= − 1
t2

ln ‖u‖tt,∂U + 1
t

∫
∂U

(
|u|t ln |u|

)
dσ

‖u‖tt,∂U
= K(t, u)

t2
.

Taking integral of the above equality from s1 to s2 readily yields (2.1). �
1 See also Remarks 2.5 and 2.6 at the end of this paper.
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The next results2 are of independent interest and extend [15, Theorem 0.1], which are proved by similar 
strategies of Cuesta and Leadi [9, Appendix A], and Ercole [10, Lemma 5].

Proposition 2.2. Suppose that p ∈ (1, N) and condition (B) holds. Then, every weak solution u ∈ E1,p (U)
of (1.1) associated with q ∈ [1, p∗) and λ > 0 satisfies ‖u‖∞,U + ‖u‖∞,∂U ≤ C2. Here, C2 > 0 is a constant 
that depends on p, q, N, U , λ > 0 and ‖u‖p∗,∂U

.

Proof. As common practice, write u+ = max {u, 0} ≥ 0 and u− = max {−u, 0} ≥ 0. Below, we only consider 
u+ and define as usual the truncation uM := u+χ{u+≤M} of u+.

Define φ := ukp+1
M for some (temporarily) fixed k, M ≥ 0. Notice 0 ≤ φ ≤ Mkp(u+) so that φ ∈ E1,p (U). 

Using the week form of (1.1), described as below

∫
U

|∇u|p−2 ∇u · ∇v dx − λ

∫
∂U

|u|q−2
u v dσ = 0 for all v ∈ E1,p (U) , (2.2)

and substituting v = φ into (2.2), together with (1.4), it follows that

⎧⎨⎩
∫
∂U

(
uk+1
M

)p∗
dσ

⎫⎬⎭
p
p∗

≤ 1
δ(p∗)

∫
U

∣∣∇ (
uk+1
M

)∣∣p dx

= 1
δ(p∗)

(k + 1)p

kp + 1

∫
U

|∇u|p−2 ∇u · ∇φ dx = λ

δ(p∗)
(k + 1)p

kp + 1

∫
∂U

ukp+q
M dσ.

Letting M → ∞ leads to

⎧⎨⎩
∫
∂U

(
u+)p∗(k+1)

dσ

⎫⎬⎭
1

p∗(k+1)

≤

⎧⎨⎩ λ

δ(p∗)
(k + 1)p

kp + 1

∫
∂U

(
u+)kp+q

dσ

⎫⎬⎭
1

p(k+1)

,

that is, ‖u+‖p∗(k+1),∂U can actually be controlled by 
(
‖u+‖kp+q,∂U

) kp+q
kp+p , provided one has the a priori fact 

u+ ∈ Lkp+q (∂U, dσ) which is true when k = k0 = 0. Thus, we write kl := p∗(kl−1+1)−q
p =

[(
p∗
p

)l

− 1
]

p∗−q
p∗−p

inductively and conclude that u+ ∈ Lp∗(kl+1) (∂U, dσ) for all integers l ≥ 1. Since kl → ∞ when l → ∞, we 
certainly have u+ ∈ Lr (∂U, dσ) for each r ∈ [1,∞).

Next, we introduce a sequence 
{
q0 := p∗, qn+1 := p∗

(
qn
sp + p−1

p

)}∞

n=0
of real numbers, with a fixed con-

stant s satisfying 1 < s < p∗
p . One notices that, for p′ := p

p−1 ,

qn = pn+1
∗

(sp)n
+

(
p∗
sp

)n−1 1
p′

+ pn−1
∗

(sp)n−2
1
p′

+ · · · + p2
∗

sp

1
p′

+ p∗
p′

= pn+1
∗

(sp)n
+

(
p∗
sp

)n−1
p− 1
p

+
[(

p∗
sp

)n−1

− 1
]
sp∗ (p− 1)
p∗ − sp

. (2.3)

2 When q = 1, we always consider positive solutions to (1.1) that is sufficient for our purpose.
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Define φ̃ := u
qn
s

M ∈ E1,p (U) and substitute v = φ̃ into (2.2) to deduce

⎧⎨⎩
∫
∂U

(
u

qn
sp + p−1

p

M

)p∗

dσ

⎫⎬⎭
p
p∗

≤ 1
δ(p∗)

∫
U

∣∣∣∣∇(
u

qn
sp + p−1

p

M

)∣∣∣∣p dx

= 1
δ(p∗)

(qn+1/p∗)p

qn/s

∫
U

|∇u|p−2 ∇u · ∇φ̃ dx = λ

δ(p∗)
(qn+1/p∗)p

qn/s

∫
∂U

uq−1 φ̃ dσ.

Hölder’s inequality says 
∫
∂U

uq−1φ̃ dσ ≤ ‖uM‖q−1
s′(q−1),∂U ‖uM‖

qn
s

qn,∂U
, so that one has

∥∥u+∥∥qn+1

qn+1,∂U
≤

{
λ

δ(p∗)
s

pp∗

∥∥u+∥∥q−1
s′(q−1),∂U

} p∗
p
{
qpn+1
qn

} p∗
p ∥∥u+∥∥ p∗qn

sp

qn,∂U

after letting M → ∞ with s′ := s
s−1 . One recalls here ‖u+‖s′(q−1),∂U can be controlled by ‖u‖p∗,∂U

(as well 
as p, q, N, U and λ > 0) as the discussion of the first part indicated.

Now, for ρn := ln ‖u+‖qnqn,∂U and �n := ln
(

λ
δ(p∗)

s
pp
∗
‖u+‖q−1

s′(q−1),∂U
qpn+1
qn

)
,

ρn+1 ≤ p∗
p

�n + p∗
sp

ρn ≤ · · · ≤ p∗
p

n∑
j=0

(
p∗
sp

)n−j

�j +
(
p∗
sp

)n+1

ρ0

follows easily. By virtue of (2.3), we have p∗
p

n∑
j=0

(
p∗
sp

)n−j

�j ≤ C ′
2

(
p∗
sp

)n+1
for a constant C ′

2 > 0 depending 

on p, q, N, U , λ > 0 and ‖u‖p∗,∂U
, since s is fixed. As a matter of fact,

p∗
p

ln
(

λ

δ(p∗)
s

pp∗

∥∥u+∥∥q−1
s′(q−1),∂U

) n∑
j=0

(
p∗
sp

)j

≤ C3

(
p∗
sp

)n+1

holds trivially, and by the identity 
n∑

j=0
jan−j = an+1−a(n+1)+n

(a−1)2 for a �= 1, we get

p∗
p

n∑
j=0

{(
p∗
sp

)n−j

ln
(
qpj+1

qj

)}
≤ p∗

n∑
j=0

{(
p∗
sp

)n−j

ln qj+1

}

≤ C ′
3 ln

(
p∗
sp

) n∑
j=0

(j + 1)
(
p∗
sp

)n−j

≤ C ′′
3

(
p∗
sp

)n+1

,

where C3, C ′
3, C

′′
3 > 0 are constants depending on the same parameters as C ′

2.
Thus, one has ρn ≤ (ρ0 + C ′

2)
(

p∗
sp

)n

and noticing qn ≥ pn+1
∗

(sp)n , it leads to

∥∥u+∥∥
∞,∂U

= lim
n→∞

∥∥u+∥∥
qn,∂U

≤ sup
n

{
exp

(
ρn
qn

)}
≤ exp

(
ρ0 + C ′

2
p∗

)
< ∞.

So, u+ ∈ L∞ (∂U, dσ), and similarly u− ∈ L∞ (∂U, dσ) and u = u+ − u− ∈ L∞ (∂U, dσ) will follow. Via 
the maximum principle, we have u ∈ L∞ (U) and the desired estimate. �
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Proposition 2.3. When u ∈ E1,p (U) is a weak solution of (1.1) associated with q ∈ [1, p∗) and λ > 0, then, 
for every τ ≥ 1, one has the following estimate

τ

2

(
δ(p∗)
λ

)N−1
p−1

(
1
N

) pN−1
p−1

β (N, τ)
{
‖u‖

(p−q)(N−1)
p−1 +τ

∞,U + ‖u‖
(p−q)(N−1)

p−1 +τ

∞,∂U

}
≤ ‖u‖ττ,∂U . (2.4)

Here, β (N, τ) =
∫ 1
0 (1 − θ)N−1

θ τ−1 dθ > 0 denotes the Euler beta function at (N, τ).

Proof. Given u ∈ E1,p (U) and k ≥ 0, one recalls (u− k)+ := max {u− k, 0} ∈ E1,p (U) as observed in [14, 
Appendix B]. Now, set ϑk := (u− k)+ ∈ E1,p (U) for a weak solution u of (1.1), and use this ϑk as a test 
function in (2.2). Accordingly, we see∫

Ak

|∇u|p dx = λ

∫
Bk

uq−1 ϑk dσ. (2.5)

Here, Ak := {x ∈ U : u(x) > k} and Bk := Ak ∩ ∂U = supp (ϑk) ∩ ∂U .
Next, take some 0 < k < ‖u‖∞,∂U , and use (1.4) and (2.5) to derive

⎧⎨⎩
∫
Bk

(u− k) dσ

⎫⎬⎭
p(N−1)
pN−1

≤
{

λ

δ(p∗)
‖u‖q−1

∞,∂U

(
‖u‖∞,∂U − k

)} N−1
pN−1

σ (Bk) , (2.6)

where we used 
∫
Ak

|∇u|p dx =
∫
U
|∇ϑk|p dx and 

∫
Bk

(u − k) dσ =
∫
∂U

ϑk dσ. Notice the derivation of (2.6) is 
standard and follows from the same argument as [10, (20)–(22)].

Set f(k) :=
∫
Bk

(u − k) dσ. Using the standard result about the level sets of measurable function and its 
integral (see Lieb and Loss [19, Section 1.5]), we have

f(k) =
∞∫
0

σ ({z ∈ Bk : u(z) − k > t}) dt =
∞∫
k

σ ({z ∈ Bk : u(z) > t}) dt

so that f ′(k) = −σ (Bk), from which together with (2.6) we can deduce

{
λ

δ(p∗)
‖u‖q−1

∞,∂U

(
‖u‖∞,∂U − k

)}− N−1
pN−1

≤ −{f(k)}−
p(N−1)
pN−1 f ′(k).

Take integral of the above inequality with respect to k, from k to ‖u‖∞,∂U , to see

{
λ

δ(p∗)
‖u‖q−1

∞,∂U

}−N−1
p−1

(
1
N

) pN−1
p−1 (

‖u‖∞,∂U − k
)N

≤ f(k).

Now, define B̃k := {z ∈ ∂U : u(z) > k}. Then, the density of C1 (U) in E1,p (U) and Lemma 2 of Faraci, 
Iannizzotto and Varga [13] imply Bk ⊆ B̃k,3 so that we have

{
λ

δ(p∗)
‖u‖q−1

∞,∂U

}−N−1
p−1

(
1
N

) pN−1
p−1 (

‖u‖∞,∂U − k
)N−1

≤ σ
(
B̃k

)
3 Should Bk = B̃k for all k ≥ 0, the proof of [14, Appendix B] could be simplified substantially.
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for 0 ≤ f(k) ≤
(
‖u‖∞,∂U − k

)
σ (Bk). Multiply both sides of the above estimate by τkτ−1, with any τ ≥ 1, 

and take integral with respect to k from 0 to α := ‖u‖∞,∂U to derive

{
λ

δ(p∗)
‖u‖q−1

∞,∂U

}−N−1
p−1

(
1
N

) pN−1
p−1

τ

α∫
0

(
‖u‖∞,∂U − k

)N−1
kτ−1 dk

≤ τ

α∫
0

σ ({z ∈ ∂U : u(z) > k}) kτ−1 dk =
∫
∂U

(
u+)τ dσ ≤ ‖u‖ττ,∂U

by virtue of the layer cake representation theorem (see [19, Section 1.13]). Finally, substitute k := θ ‖u‖∞,∂U

into the term 
∫ α

0

(
‖u‖∞,∂U − k

)N−1
kτ−1 dk to deduce

‖u‖N+τ−1
∞,∂U

1∫
0

(1 − θ)N−1
θ τ−1 dθ = ‖u‖N+τ−1

∞,∂U β (N, τ) ,

which yields (2.4) immediately in combination with the maximum principle. �
Notice that (1.1) always has a solution for each λ > 0 when q ∈ [1, p) via Ekeland’s variational principle or 

when q ∈ (p, p∗) via the mountain pass theorem, in view of the compact embedding E1,p (U) ↪→ Lq (∂U, dσ)
as described in the introduction. On the other hand, because σ (∂U) = 1, a simple application of Hölder’s
inequality says

‖u‖1,∂U ≤ ‖u‖s1,∂U ≤ ‖u‖s2,∂U ≤ ‖u‖p∗,∂U

(
≤ ‖u‖∞,∂U

)
(2.7)

for all u ∈ E1,p (U) whenever 1 ≤ s1 ≤ s2 ≤ p∗ or 1 ≤ s1 ≤ s2 ≤ ∞.
Below, we prove Theorem 1.1. Before to proceed to that, we remark the homogeneity of Rayleigh’s quotient

implies δ(q) is scale invariant. Standard variational method provides the existence of a minimizer ωq > 0 for 
q ∈ [1, p∗), satisfying ‖ωq‖q,∂U = 1. Clearly when q = p, we recover δ(p) = δ1 and ωp = s1

‖s1‖p,∂U
. Next, from 

(2.1) and the definition of δ(q), one sees δ(q) : [1, p∗] → (0,∞) is decreasing. In fact, when 1 ≤ s1 < s2 ≤ p∗, 
we have

δ(s1) =
‖ωs1‖

p
∇

‖ωs1‖
p
s2,∂U

exp

⎛⎝p

s2∫
s1

K(t, ωs1)
t2

dt

⎞⎠ ≥ ‖ωs1‖
p
∇

‖ωs1‖
p
s2,∂U

≥ δ(s2).

Proof of Theorem 1.1. We first observe the continuity of δ(q) : (1, p∗] → (0,∞) by proving lim
s→q−

δ(s) = δ(q)
for any q ∈ (1, p∗), as δ(q) is decreasing. As a matter of fact, (2.1) yields

δ(q) ≤ δ(s) ≤ ‖ωq‖p∇
‖ωq‖ps,∂U

= δ(q) exp

⎛⎝p

q∫
s

K(t, ωq)
t2

dt

⎞⎠ . (2.8)

As for K(t, ωq) ≥ 0, we have, in view of (2.7), the following upper bound

‖ωq‖−t
t,∂U

∫
∂U

ωt
q lnωt

q dσ − ln ‖ωq‖tt,∂U ≤ t

[
ln
(
‖ωq‖∞,∂U

‖ωq‖1,∂U

)]
, (2.9)

which along with (2.8) yields δ(q) ≤ δ(s) ≤ δ(q) 
(
q
)ln( ∥∥ωq

∥∥
∞,∂U∥∥ωq
∥∥
1,∂U

)p

→ δ(q) as s → q−.
s
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Next, we consider the situation where q = p∗. Like what has been remarked in [10, p. 426], the solvability 
of (1.1) is subtle and δ(p∗) may actually have no minimizer ωp∗ . [I believe the answer is no in general without 
any mean curvature hypothesis on ∂U .] Take ψ ∈ C1 (U) to deduce K(t, ψ) ≤ t 

[
ln
(‖ψ‖∞,∂U

‖ψ‖1,∂U

)]
in the same 

way as of (2.9). Therefore, one can observe

δ(p∗) ≤ lim inf
s→p−

∗

δ(s) ≤ lim sup
s→p−

∗

δ(s) ≤ lim sup
s→p−

∗

inf
ψ∈C1

(
U
) ‖ψ‖p∇
‖ψ‖pp∗,∂U

(p∗
s

)ln
( ‖ψ‖∞,∂U

‖ψ‖1,∂U

)p

= δ(p∗)

and δ(q) is continuous at p∗. Here, we used the density of C1 (U) in E1,p (U) and the upper semi-continuity 

of the function inf
ψ∈C1

(
U
) ‖ψ‖p

∇
‖ψ‖p

p∗,∂U

(
p∗
s

)ln( ‖ψ‖∞,∂U
‖ψ‖1,∂U

)p

about s ∈ [1, p∗].

In addition, we show δ(q) is Lipschitz continuous when q ∈ [1, p∗ − ε] for each ε > 0. Take again, without 
loss of generality, s < q in [1, p∗ − ε]. From (2.8), we get

0 ≤ δ(s) − δ(q) ≤ δ(q)

⎡⎣exp

⎛⎝p

q∫
s

K(t, ωq)
t2

dt

⎞⎠− 1

⎤⎦ . (2.10)

When 1 < q ≤ p, we let τ = 1 in (2.4) and see, as β (N, 1) = 1
N and δ(q) ≤ δ(1),

‖ωq‖∞,∂U

‖ωq‖1,∂U
≤ N

pN+p−2
p−1

(
δ(1)
δ(p∗)

)N−1
p−1 1

‖ωq‖
(p−q)(N−1)

p−1
∞,∂U

,

which combined with (2.7) and the condition ‖ωq‖q,∂U = 1 gives an upper bound of ‖ωq‖∞,∂U

‖ωq‖1,∂U
, independent 

of q. When p < q ≤ p∗ − ε, then we let τ = q in (2.4) and have

‖ωq‖
(q−p)(N−1)

p−1
∞,∂U ≤

{
N

pN−1
p−1

qβ (N, q)

(
δ(1)
δ(p∗)

)N−1
p−1

} (q−p)(N−1)
(p∗−q)(N−p)

,

since pN − p − qN + pq = (p∗ − q) (N − p) and ‖ωq‖q,∂U = 1. Take supremum of the right hand side with 

respect to q to give an upper bound of ‖ωq‖∞,∂U

‖ωq‖1,∂U
about ε > 0.

Finally, we come back to (2.10) and observe exp
(
p
∫ q

s
K(t,ωq)

t2 dt
)
≤
(
q
s

)K(ε), with K(ε) > 0 a constant 
depending only on p, N, U and ε > 0. Hence, we have

0 ≤ δ(s) − δ(q)
q − s

≤ δ(1)
[(

q
s

)K(ε) − 1
q
s − 1

]
≤ L(ε)

in view of lim
x→1

xK(ε)−1
x−1 = K(ε). Here, L(ε) > 0 depends on ε, p, N, U . Since δ(q) is decreasing (therefore of 

bounded variation), continuous on [1, p∗] and Lipschitz continuous on [1, p∗ − ε], it is absolutely continuous 
on [1, p∗] because δ′(q) can only have a singularity concentrated at p∗ that is smoothed out by the continuity 
of δ(q) there. This finishes our proof. �

Below, we shall give the proof of Theorem 1.2. Notice, given q ∈ [1, p∗) \ {p} and λ > 0, each positive 

solution of (1.1) can be found as a critical point of J , defined by (1.5), in E1,p (U); in fact, 
(

λ
δ(q)

) 1
p−q

ωq > 0
(with ‖ωq‖ = 1) is such a solution, since we have
q,∂U
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∫
U

|∇ωq|p−2 ∇ωq · ∇v dx = δ(q)
∫
∂U

ωq−1
q v dσ for all v ∈ E1,p (U) .

This implies that the existence of a weak solution to (1.1) associated with one (given) λ > 0 will ensure the 
existence of a family of weak solutions associated with every λ > 0. One may be reminded that Theorem 2.1 
in [16] is a simple consequence of Theorem 8 in [10].

We are interested in the positive solutions to problem (1.1) of minimal energy (in some sense). Notice 
when 1 ≤ q < p, J is convex. So, J admits of a global minimizer uλ,q(> 0) ∈ E1,p (U), as J (u) ≥ J (u+), 
with J (uλ,q) < 0 and J ′(uλ,q) = 0, corresponding to (λ, q). That is, uλ,q belongs to the associated Nehari 
manifold N of J in E1,p (U) defined as

N :=
{
u ∈ E1,p (U) : u �≡ 0 and ‖u‖p∇ = λ

∥∥u+∥∥q
q,∂U

}
.

Necessarily, uλ,q is also a minimizer of J in N and we have J (u) = L(u) :=
(

1
p − 1

q

)
‖u‖p∇ on N , so that 

J (uλ,q) = L(uλ,q) = inf
u∈N

L(u) and ‖uλ,q‖∇ ≤ λ
1

p−q δ(q)
q

p(q−p) .
When p < q < p∗, the situation is delicate and like in [2], we define

A :=
{
u ∈ E1,p (U) : u �≡ 0 and ‖u‖p∇ ≤ λ

∥∥u+∥∥q
q,∂U

}
.

Then, ‖u‖∇ ≥ λ
1

p−q δ(q)
q

p(q−p) > 0 in A and sup
u∈A

L(u) = ∞. To guarantee the admissibility of a minimizer 

uλ,q of L in A , we only need to see A is sequentially weakly closed in E1,p (U). In fact, let {un : n ≥ 1} be 
a sequence in A convergent weakly to u0 ∈ E1,p (U). Then, via a subsequence, un → u0 in Lq (∂U, dσ), and 

u+
0 > 0 as ‖u+

n ‖q,∂U ≥
(

δ(q)
λ

) 1
q−p

> 0. The lower semi-continuity of norms says ‖u0‖p∇ ≤ lim inf
n→∞

‖un‖p∇ ≤
λ 
∥∥u+

0
∥∥q
q,∂U

. So, u0 ∈ A .
We now follow [2, Lemma 2] to make the following observations.

Lemma 2.4. Assume q ∈ [1, p∗)\{p}, λ > 0 and u0 ∈ A is such that L(u0) = inf
u∈A

{L(u)}. Then, u0 satisfies 

these conditions: (a) u0 ∈ N , (b) J (u0) = inf
u∈N

{J (u)}, (c) J ′(u0) = 0 and (d) ‖u0‖p∇ = λ
p

p−q δ(q)
q

q−p . 
Here, λ > 0 is assumed to be any number.

Proof. When 1 ≤ q < p, then u0 is the global minimizer uλ,q of J in view of

L(uλ,q) = inf
N

L = inf
E1,p(U)

J ≤ inf
A

J ≤ inf
A

L ≤ inf
N

L,

since J ≤ L on A and N � A . So, conditions (a)–(c) are automatically satisfied.
When p < q < p∗, then condition (a) follows easily. Actually, if u0 /∈ N , u0 must be an interior point 

of A , as (1 + t)u0 ∈ A for all t ≥ −ε with 0 ≤ ε ≤ 1 −
(‖u‖p

∇+λ‖u‖q
q,∂U

2λ‖u‖q
q,∂U

) 1
q−p

. Then, L′(u0) = 0 and hence 

u0 ≡ 0, a contradiction. Condition (b) is due to J = L on N . Condition (c) is a simple consequence of
Lagrange multiplier theorem (on η). In fact,

J ′(u0)(v) = η

⎧⎨⎩p

∫
U

|∇u0|p−2 ∇u0 · ∇v dx− λ q

∫
∂U

(
u+

0
)q−1

v dσ

⎫⎬⎭
holds for all v ∈ E1,p (U). As u0 ∈ N is a minimizer of J on N , J ′(u0)(u0) = 0. Thus, after substituting 
v = u0, the above equation becomes η (p− q) ‖u0‖p = 0, so that η = 0.
∇
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Finally, we prove the last condition (d). Notice that

N =

⎧⎨⎩
(

‖u‖p∇
λ ‖u+‖qq,∂U

) 1
q−p

u for each u(�≡ 0) ∈ E1,p (U)

⎫⎬⎭ .

When 1 ≤ q < p, seeing L(u0) = inf
u∈N

(
1
p − 1

q

)
‖u‖p∇, one has

‖u0‖p∇ = sup
u∈N

‖u‖p∇ = sup
u∈E1,p(U)

∥∥∥∥∥∥
(

‖u‖p∇
λ ‖u+‖qq,∂U

) 1
q−p

u

∥∥∥∥∥∥
p

∇

= λ
p

p−q

{
inf

u∈E1,p(U)

‖u‖p∇
‖u+‖pq,∂U

} q
q−p

= λ
p

p−q δ(q)
q

q−p . (2.11)

When p < q < p∗, then ‖u0‖p∇ = inf
u∈N

‖u‖p∇ and thus (2.11) follows similarly. �
From now on, any such a function u0 > 0 is said to be of minimal energy and denoted by uλ,q. Note that, 

using ‖ωq‖p∇ = δ(q), one as a matter of fact has 
∥∥∥∥( λ

δ(q)

) 1
p−q

ωq

∥∥∥∥p
∇

= λ
p

p−q δ(q)
q

q−p .

Proof of Theorem 1.2. A simple calculation leads to

(
λ

δ1

) p
q−p

‖uλ,q‖p∇ = δ1

(
δ(q)
δ1

) q
q−p

,

from which it follows that, recalling δ(p) = δ1,

lim
q→p−

(
λ

δ1

) p
q−p

‖uλ,q‖p∇ = δ1 lim
q→p−

(
δ(q)
δ1

) q
q−p

= δ1 exp

⎧⎨⎩
(

lim
q→p−

q

δ1

)⎡⎣ lim
q→p−

ln
(

δ(q)
δ1

)
δ(q)
δ1

− 1

⎤⎦( lim
q→p−

δ(q) − δ1
q − p

)⎫⎬⎭ . (2.12)

An exactly the same analysis derives this limit estimate (2.12) when q → p+.
Notice that lim

x→1
ln x
x−1 = 1. Define I(s, u) :=

∫
∂U

|u|s ln |u| dσ and, for ‖ωq‖ps,∂U (viewed as a function of s), 
take derivative and evaluate at s = q ∈ [1, p∗) to observe

d

ds

(
‖ωq‖ps,∂U

) ∣∣∣∣
s=q

= d

ds

⎧⎨⎩exp

⎡⎣p

s
ln

⎛⎝∫
∂U

ωs
q dσ

⎞⎠⎤⎦⎫⎬⎭
∣∣∣∣∣
s=q

= ‖ωq‖pq,∂U

{
−p

q
ln ‖ωq‖q,∂U + p

q

∫
∂U

(
ωq
q lnωq

)
dσ

‖ωq‖qq,∂U

}
= p

q
I(q, ωq)

since ‖ωq‖q,∂U = 1.
On the other hand, by definition, we know δ(s) ≤ ‖ωq‖p

∇
‖ωq‖p

s,∂U
= δ(q)

‖ωq‖p
s,∂U

for all s ∈ [1, p∗]. As a consequence, 
one has
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δ′−(q) = lim
s→q−

δ(s) − δ(q)
s− q

≥ lim inf
s→q−

δ(s)
1 − ‖ωq‖ps,∂U

s− q

= − δ(q)
{

d

ds

(
‖ωq‖ps,∂U

) ∣∣∣∣
s=q

}
= − δ(q) p

q
I(q, ωq).

In an analogous manner, one can deduce

δ′+(q) = lim
s→q+

δ(s) − δ(q)
s− q

≤ lim sup
s→q+

δ(s)
1 − ‖ωq‖ps,∂U

s− q
= − δ(q) p

q
I(q, ωq).

Here, the monotonicity and Lipschitz continuity of δ(q) were applied to ensure the existence (and finiteness) 
of δ′±(q).

The preceding discussions combined with (2.12) lead to

lim
q→p−

(
λ

δ1

) p
q−p

‖uλ,q‖p∇ = δ1 exp
{

p

δ1
δ′−(p)

}

≥ δ1 exp
{

p

δ1
δ′+(p)

}
= lim

q→p+

(
λ

δ1

) p
q−p

‖uλ,q‖p∇ .

Define c1 := δ1e
p
δ1

δ′−(p) and c2 := δ1e
p
δ1

δ′+(p) to finish our proof of Theorem 1.2. �
When 1 ≤ q < p, then one has 

(
λ

δ(q)

) 1
p−q

ωq > 0 is the only solution to (1.1) of minimal energy, since the 
uniqueness property holds in this situation that can be proved very similarly, if not identical, to the analysis 
of Lindqvist [20] and the argument in [16, Lemma 2.2]4 (some other proofs are available and the interested 
reader may find Belloni and Kawohl [8] helpful where more references are provided). When p < q < p∗, this 
property is however far from clear and actually may depend on the geometry of the domain involved.

Remark 2.5. Concerning Theorem 1.1, it is easy to observe that after a parallel application of the analyses 
in [1, pp. 2062–2063] and [2, pp. 134–135], the results (in particular, Proposition 5) of [12, Section 2] can be 
adapted to our setting, and hence δ(q) is continuously differentiable on [1, p] as lim

q→p−
δ′(q) exists. The key is 

to guarantee ωqn → ωq in E1,p (U) when qn → q, which does not depend on any regularity result about ωq

but depends only on the uniqueness of ωq in the range 1 ≤ q ≤ p. Also, more can be said about the regularity 
of δ(q) near p∗, like Theorem 12 of [12, Section 3], under an extra hypothesis lim sup

q→p−
∗

(p∗ − q) ‖ωq‖γ∞,∂U < ∞

for some γ > 0.

Remark 2.6. Concerning Theorem 1.2, one has c1 = c2 provided δ(q) is differentiable around p. To describe 
the differentiability of δ(q) around p, the proofs of [11] cannot be adapted here, because they depend heavily 
on the C1,α-regularity of ωq. This is an open question in our setting.
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