
J. Math. Anal. Appl. 444 (2016) 957–979
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Regularity results for a class of obstacle problems with 

nonstandard growth

Jihoon Ok
School of Mathematics, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 May 2016
Available online 7 July 2016
Submitted by B. Kaltenbacher

Keywords:
Nonstandard growth
Obstacle problem
Hölder continuity
Variable exponent

We consider the obstacle problem related to the following energy with nonstandard 
growth

ˆ

Ω

|Du|p(x) log(e + |Du|) dx.

We investigate the regularity properties of solutions to the obstacle problems along 
with a suitable assumptions on the variable exponent p(·) and the obstacle.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we study the regularity theory for solutions to a certain obstacle problem with nonstandard 
growth. Let Ω be a bounded open set in Rn (n ≥ 2), p(·) : Ω → [γ1, γ2] with 1 < γ1 ≤ γ2 < ∞ be a continuous 
function, and the functions Φ : Ω × [0, ∞) → [0, ∞) and ∂Φ : Ω × R

n → R
n be denoted by

Φ(x, t) := |t|p(x) log(e + t) and ∂Φ(x, ξ) := Dξ(Φ(x, |ξ|)), (1.1)

where Dξ is the gradient with respect to the ξ-variable. For a function ψ : Ω → [−∞, ∞] called the obstacle, 
we define a functions space by

KΦ
ψ(Ω) :=

{
f ∈ W 1,Φ(Ω) : f ≥ ψ a.e. in Ω

}
.

Here, W 1,Φ(Ω) is a Sobolev space related to the function Φ, for which we will introduce in the next section. 
In this setting, we say a function u ∈ KΦ

ψ(Ω) is a solution to the obstacle problem of KΦ
ψ(Ω) if it satisfies
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ˆ

Ω

∂Φ(x,Du) ·D(ϕ− u) dx ≥ 0

for all ϕ ∈ KΦ
ψ(Ω) with ϕ − u having a compact support in Ω, which is equivalent to that

ˆ

Ω

∂Φ(x,Du) ·Dϕdx ≥ 0 (1.2)

for all ϕ ∈ W 1,Φ(Ω) with a compact support and ϕ ≥ ψ − u a.e. in Ω. Under the above setting, we will 
prove the following regularity properties for solutions to the obstacle problem of Φ.

Theorem 1.1. Suppose the variable exponent p(·) is log-Hölder continuous, that is, p(·) satisfies

L := sup
0<r< 1

2

ω(r) log
(

1
r

)
< ∞, (1.3)

where ω(·) : [0, ∞) → [0, ∞) is the modulus of continuity of p(·), and the obstacle ψ is Hölder continuous. 
Let u ∈ KΦ

ψ(Ω) be a solution to the obstacle problem of KΦ
ψ(Ω). Then u is Hölder continuous.

Theorem 1.2. Suppose the variable exponent p(·) and the gradient of the obstacle ψ are Hölder continuous. 
Let u ∈ KΦ

ψ(Ω) be a solution to the obstacle problem of KΦ
ψ(Ω). Then Du is Hölder continuous.

The Obstacle problems are strongly related to many physical phenomena hence the study of those prob-
lems is one of main topics in the fields of the calculus of variation and the partial differential equation, see for 
instance the monograph [31]. Essentially, they are linked to the minimizing problems of energy functionals 
(for example)

ˆ

Ω

F(x,Du) dx (1.4)

in convex admissible sets constrained by obstacle functions. Here, the density function F : Ω × R
n → R

satisfies a suitable convexity condition. Indeed, from a basic computation, see for instance [29], we see that 
for g ∈ W 1,Φ(Ω) with ψ ≤ g on ∂Ω, the minimizer of the following energy functional

u ∈ {w ∈ KΦ
ψ(Ω) : w = g on ∂Ω} �→

ˆ

Ω

Φ(x, |Du|) dx (1.5)

is the solution to the obstacle problem of KΦ
ψ(Ω) with u = g on ∂Ω.

The regularity theory for the elliptic obstacle problems with standard growth, i.e., F(x, ξ) ≈ |ξ|p with 
1 < p < ∞ in (1.4), is now well understood, for which we refer to classical works [36,7,6] and related 
references, and its parabolic counterpart has been recently developed, see for instance [4,39,23].

A first relevant extension of such results to the setting of non-uniformly elliptic operators has been 
obtained in the setting of functionals with p(x)-growth, i.e., F(x, ξ) ≈ |ξ|p(x). Regularity problems for 
minimizers of this functional have been intensively studied in last twenty years; see for instance [1,11] and 
related references. In particular, for the obstacle problems we refer to [17–20,29,5], where sharp regularity 
is obtained starting from the techniques developed in the unconstrained case.

Over the recent years, interest in so-called non-autonomous functionals with non-standard growth con-
ditions, has been rapidly increasing. In this situation the functionals with p(x)-growth are a particular 
case. These are indeed functionals as in (1.4) having an energy density F with both ellipticity or growth 
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properties strongly that are determined by the occurrence of x-variable. They can be framed in the general 
class of functionals with (p, q)-growth functionals, as defined by Marcellini in [34,35] (see for instance also 
[32,33]) in the sense that they globally satisfy

|ξ|p � F(x, ξ) � |ξ|q .

Several significant examples for non-autonomous functionals have been introduced by Zhikov [40] in 
the context of Lavrentiev’s phenomenon. These include the already reviewed class of functionals with 
p(x)-growth. Another example, whose phenomenology is also strictly related to the class of problems we are 
considering here, is the so-called class of double phase functionals;

F(x, ξ) ≈ |ξ|p + a(x)|ξ|q,

where 1 < p < q and 0 ≤ a(·) ≤ Λ, with a borderline situation given by F(x, ξ) ≈ |ξ|p + a(x)|ξ|p log(e + |ξ|). 
For recent regularity results in this case, see [2,3,8–10,12,21].

Here we focus on non-autonomous functionals having an energy (1.4) with

F(x, ξ) = Φ(x, |ξ|) = |ξ|p(x) log(e + |ξ|).

One of the main points making this functional interesting is that it combines features of both Orlicz-type 
settings, like for instance F(x, ξ) = |ξ|p log(e + |ξ|), and of functionals with a variable growth exponents, i.e., 
F(x, ξ) = |ξ|p(x). Functionals have been first considered [24], and then studied by the author of the paper 
[37,38]; related classes are studied in [22]. Furthermore, we would like mention that Harjulehto, Hästö and 
Klén have studied generalized Orlicz spaces and related PDEs which cover the functionals referred above, 
see [27,28,30].

We point out that the results on the non-autonomous functionals mentioned above consider the mini-
mizers of energy functionals or the solutions to relevant PDEs. In our knowledge, the current paper is the 
first one considering the obstacle problems related to the non-autonomous functionals except the function-
als with p(x)-growth. Therefore, the ideas in this paper can be applicable to the other obstacle problems 
related to the non-autonomous functionals. The conditions on the variable exponent p(·) and the obstacle 
ψ in Theorem 1.1 and Theorem 1.2 are natural since those conditions have been naturally proposed for the 
obstacle problems of the function with p(x)-growth, see [17,19,20,29].

Finally, we would like to mention the methods of proofs of our results; Theorem 1.1 and Theorem 1.2. To 
prove Theorem 1.1, we will derive the supremum bound of the solution u by showing a certain Caccioppoli 
type estimate, and a weak Harnack type estimate which is in fact strongly link to supersolutions to an 
equation related to the function Φ, see Remark 3.5. From these two results we prove the Hölder continuity 
in the same argument as in [36]. Note that in this procedure we do not use any perturbation argument. 
As for Theorem 1.2, we will derive comparison estimates for the gradient of solutions between the obstacle 
problem of Φ and an equations with solutions whose gradients are Hölder continuous. To do that, we will 
first obtain the higher integrability of the gradient of solutions the obstacle problem of Φ and then consider 
a perturbation argument, that finds its roots in the methods introduced in [1,11] for the case of functionals 
with p(x)-growth, but facing here additional difficulties due to the more general growth and ellipticity 
conditions.

The rest of the paper is organized as follow. In the next section, Section 2, we will introduce notations 
and basic properties of density functions with Orlicz type growth. In Section 3, we will prove Theorem 1.1. 
In the final section, Section 4, we will prove Theorem 1.2.
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2. Preliminaries

2.1. Notations

We shall introduce basic notations. For y ∈ R
n and r > 0, Br = Br(y) is a ball in Rn centered y with 

radius r. For a real valued function f , we define f+ := max{f, 0} and f− := max{−f, 0}. Furthermore, for 
f ∈ L1

loc(Rn) and a bounded open set U in Rn, (f)U is denoted by the integral average of f in U such that 
(f)U = −́

U
f dx = 1

|U |
´
U
f dx. From now on, the variable exponent p(·) : Ω → [γ1, γ2] with 1 < γ1 ≤ γ2 < ∞

is at least uniformly continuous and we define Ω(·) : [0, ∞) → [0, ∞) by the modulus of continuity of p(·), 
that is, ω(0) = 0 and ω is concave and satisfies

|p(x) − p(y)| ≤ ω(|x− y|) for all x, y ∈ Ω.

For 1 < p < ∞, we define a function Φp : [0, ∞) → [0, ∞) by Φp(t) := tp log(e + t). Then, recalling the 
function Φ(x, t) denoted in (1.1), we see that Φ(x, t) = Φp(x)(t). For these functions, one can define the 
Orlicz space LΦp(Ω) (resp. LΦ(Ω)) by the set of all measurable functions f : Ω → R satisfying

ˆ

Ω

Φp(|f(x)|) dx < ∞

⎛
⎝resp.

ˆ

Ω

Φ(x, |f(x)|) dx < ∞

⎞
⎠ ,

and the Orlicz–Sobolev spaces W 1,Φp(Ω) (resp. W 1,Φ(Ω)) by the set of all f ∈ W 1,1(Ω) with f, |Df | ∈ LΦp(Ω)
(resp. f, |Df | ∈ LΦ(Ω)) and W 1,Φp

0 (Ω) (resp. W 1,Φ
0 (Ω)) by the closure of the set of all functions in W 1,Φp(Ω)

(resp. W 1,Φ(Ω)) with a compact support in Ω.
We further define ∂Φp : Rn → R

n by the gradient of Φp(| · |) such that

∂Φp(ξ) := Dξ(Φp(|ξ|)) = Φ′
p(|ξ|)

ξ

|ξ| =
(
p|ξ|p−1 log(e + |ξ|) + |ξ|p

e + |ξ|

)
ξ

|ξ| .

Then from (1.1) we see that

∂Φ(x, ξ) = ∂Φp(x)(ξ) = Φ′
p(x)(|ξ|)

ξ

|ξ| .

2.2. Basic properties for Φp and ∂Φp

Let us first introduce the conjugate of Φp. Define Φ∗
p : [0, ∞) → [0, ∞) by

Φ∗
p(s) := sup

t≥0
(st− Φp(t)).

From this definition we see that

st ≤ Φ∗
p(s) + Φp(t) for all s, t > 0. (2.1)

We first state several properties of Φp.

Proposition 2.1. Let 1 < p < ∞, t, s > 0 and θ > 1 and 0 < δ < 1.

(1) Φp(θt) ≤ θp+1Φp(t) and Φp(δt) ≤ δpΦp(t).
(2) Φ∗

p(θs) ≤ θ
p

p−1 Φ∗
p(s) and Φ∗

p(δs) ≤ δ
p+1
p Φ∗

p(s).



J. Ok / J. Math. Anal. Appl. 444 (2016) 957–979 961
(3) Φp(t + s) ≤ 1
2 (Φp(2t) + Φp(2s)) ≤ 2p(Φp(t) + Φp(s)).

(4) (Young’s inequality) For any κ ∈ (0, 1], we have

st ≤ Φp(κ
1
p t) + Φ∗

p(κ
− 1

p s) ≤ κΦp(t) + κ− 1
p−1 Φ∗

p(s) (2.2)

and

st ≤ Φ∗
p(κ

p−1
p s) + Φp(κ− p−1

p t) ≤ κΦ∗
p(s) + κ− p2−1

p Φp(t). (2.3)

Proof. The inequalities in (1) can be obtained directly from the definition of Φ. In addition, the inequalities 
in (3) come from the convexity of Φ along with the first inequality in (1). We then prove the inequalities 
in (2). By using the second inequality in (1) we have

Φ∗
p(θs) = sup

t≥0
(θst− Φp(t)) ≤ sup

t≥0

(
θst− θ

p
p−1 Φp(θ−

1
p−1 t)

)
= θ

p
p−1 Φ∗

p(s).

Similarly, by using the first inequality in (1),

Φ∗
p(δs) = sup

t≥0
(δst− Φp(t)) ≤ sup

t≥0
(δst− δ

p+1
p Φp(δ−

1
p t)) = δ

p+1
p Φ∗

p(s).

Finally, the inequalities in (4) directly follow from (1) and (2). �
The following proposition states some properties related to ∂Φp.

Proposition 2.2. Let 1 < p < ∞ and ξ, ξ1, ξ2 ∈ R
n.

(1) We have

∂Φp(ξ) · ξ ≥ pΦp(ξ). (2.4)

(2) There exists c = c(p) > 0 such that

Φ∗
p(|∂Φp(ξ)|) ≤ Φ∗

p

(
(p + 1)Φp(|ξ|)|ξ|−1) ≤ cΦ(x, |ξ|). (2.5)

(3) If p ≥ 2, then we have

Φp(|ξ1 − ξ2|) ≤ c(∂Φ(x, ξ1) − ∂Φ(x, ξ2)) · (ξ1 − ξ2),

for some c(p) > 0. If 1 < p < 2, then we have for any κ ∈ (0, 1),

Φp(|ξ1 − ξ2|) ≤ cκ(Φp(|ξ1|) + Φp(x, |ξ2|)) + cκ− 2−p
p (∂Φ(ξ1) − ∂Φp(ξ2)) · (ξ1 − ξ2)

for some c = c(p) > 0. In particular, if 1 < γ1 ≤ p ≤ γ2 and γ1 ≤ 2, we have for any κ ∈ (0, 1),

Φp(|ξ1 − ξ2|) ≤ cκ(Φp(|ξ1|) + Φp(|ξ2|))

+ cκ− 2−γ1
γ1 (∂Φp(ξ1) − ∂Φp(ξ2)) · (ξ1 − ξ2) (2.6)

for some c = c(γ1, γ2) > 0.
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(4) If p ≥ 2, we have

|∂Φp(ξ1) − ∂Φp(ξ2)| ≤ c(|ξ1| + |ξ2|)p−2|ξ1 − ξ2| log(e + |ξ1| + |ξ2|). (2.7)

If 1 < p < 2, we have

|∂Φp(ξ1) − ∂Φp(ξ2)| ≤ c|ξ1 − ξ2|p−1 log(e + |ξ1| + |ξ2|). (2.8)

Proof. The inequality (2.4) in (1) directly comes from the definition of ∂Φ. Since |∂Φp(ξ)| = |Φ′(|ξ|)| ≤
(p + 1)Φp(|ξ|)/|ξ|, applying [15, Lemma 2.6.11], we obtain (2.5) in (2). For the proof of (3) we refer to [37, 
Lemma 4.1]. Now we prove the inequalities in (4). From the definition of ∂Φp, we have

∂Φp(ξ1) − ∂Φp(ξ2) =
1ˆ

0

d

dt
∂Φp(tξ1 + (1 − t)ξ2) dx

≤ c|ξ1 − ξ2|
1ˆ

0

|tξ1 + (1 − t)ξ2|p−2 log(e + |tξ1 + (1 − t)ξ2|) dt

≤ c|ξ1 − ξ2| log(e + |ξ1| + |ξ2|)
1ˆ

0

|tξ1 + (1 − t)ξ2|p−2 dt.

If p ≥ 2, then we see |tξ1 + (1 − t)ξ2|p−2 ≤ (|ξ1| + |ξ2|)p−2 and hence obtain (2.7). On the other hand, if 
1 < p < 2, by using the same argument in the proof of [13, Lemma 4.4], we see that

1ˆ

0

|tξ1 + (1 − t)ξ2|p−2 dt ≤ c|ξ1 − ξ2|p−2,

which yields (2.8). �
Remark 2.3. The all constants c in the previous proposition are stable with respect to p. That is, if 1 <
γ1 ≤ p ≤ γ2 < ∞, then we can find the constants c > 0 depending on γ1 and γ2 instead of p.

3. Hölder continuity

We prove Theorem 1.1. Hence we suppose that the variable exponent p(·) satisfies (1.3) and the obstacle 
ψ is in Cβ(Ω) for some β ∈ (0, 1), i.e.,

|ψ(x) − ψ(y)| ≤ [ψ]β |x− y|β for all x, y ∈ Ω,

for some [ψ]β > 0. We start with recalling supremum bounds and the weak Harnack estimates related to 
the function Φ that have been obtained in [38].

Lemma 3.1. (Corollary 3.3 and Remark 3.4 in [38]) Let f ∈ W 1,Φ(B4r). There exist sufficiently small 
δ1, δ2 ∈ (0, 1/4) depending on n, γ1, γ2 such that if B4r ⊂ Ω,

r ≤ δ1

⎛
⎝ˆ

[Φ(x, |f |) + 1] dx + 1

⎞
⎠

−1

≤ 1
4 and ω(8r) ≤ δ2
Ω
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and
ˆ

Bρ′

Φ(x, |D(f − k)+|) dx ≤ c1

ˆ

Bρ

Φ
(
x,

(f − k)+
ρ− ρ′

)
dx (3.1)

for any k ≥ 0 and concentric balls Bρ′ ⊂ Bρ ⊂ B4r with 0 < ρ′ < ρ < 4r and for some c1 > 0, then we have 
for s > 0,

sup
Br

f+ ≤ c(s)

⎧⎪⎨
⎪⎩
⎛
⎝ −

ˆ

B2r

fs
+ dx

⎞
⎠

1
s

+ r

⎫⎪⎬
⎪⎭

for some c(s) > 0 depending on n, γ1, γ2, L, c1, s.

Lemma 3.2. (Theorem 5.3 and Remark 5.4 in [38]) Let f ∈ W 1,Φ(Ω) be nonnegative. There exist sufficiently 
small δ3, δ4 ∈ (0, 1/4) and s0 = s0(n, γ1, γ2, L, c3) > 0 such that if B2r ⊂ Ω,

r ≤ δ3

⎛
⎝ˆ

Ω

[Φ(x, |f |) + 1] dx + 1

⎞
⎠

−1

≤ 1
4 , ω(4r) ≤ δ4,

( supBr
f

r

)ω(2r)

≤ c2

for some c2 > 0, and

ˆ

Bρ′

Φ(x, |D(f − k)−|) dx ≤ c3

ˆ

Bρ

Φ
(
x,

(f − k)−
ρ− ρ′

)
dx

for any k ∈ R and concentric balls Bρ′ ⊂ Bρ ⊂ Br with 0 < ρ′ < ρ < r and for some c3 > 0, then we have

⎛
⎜⎝ −

ˆ

Br/2

fs0 dx

⎞
⎟⎠

1
s0

≤ c

(
inf
Br

f + r

)

for some c = c(n, γ1, γ2, L, c2, c3) > 0.

Now, we derive the estimates for the upper and lower bounds of the solutions to the obstacle problem of 
KΦ

ψ(Ω).

Proposition 3.3. Let u ∈ KΦ
ψ(Ω) be a solution to the obstacle problem of KΦ

ψ(Ω) and δ1, δ2 ∈ (0, 1/4) be given 
in Lemma 3.1. Suppose that B4r ⊂ Ω and

r ≤ δ1

⎛
⎝ˆ

Ω

[Φ (x, |u− l|) + 1] dx + 1

⎞
⎠

−1

≤ 1
4 and ω(8r) ≤ δ2 (3.2)

for some l ≥ ψ := supB ψ. Then, for any s ∈ (0, ∞) we have

4r
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sup
Br

(u− l)+ ≤ c4(s)

⎧⎪⎨
⎪⎩
⎛
⎝ −

ˆ

B2r

(u− l)s+ dx

⎞
⎠

1
s

+ r

⎫⎪⎬
⎪⎭

for some c4(s) ≥ 1 depending on n, γ1, γ2, L, s.

Proof. We claim that f = u − l satisfies (3.1). Then, in view of the Lemma 3.1, we have the conclusion. Set 
v = (u − l)+ and consider any ball Bρ in B4r. Let k ≥ 0, q := γ2 + 1 and η ∈ C∞

0 (Bρ) be a cut off function 
such that 0 ≤ η ≤ 1, η ≡ 1 in Bρ′ and |Dη| ≤ c(n)/(ρ − ρ′). We note from the second inequality in (2) of 
Proposition 2.1 that Φ∗(x, ηq−1t) ≤ ηqΦ∗(x, t) for x ∈ Ω and t ≥ 0. Then since (v−k)+ = (u −l−k)+ ≤ u −ψ, 
one can take ϕ = −ηq(v − k)+ as a test function in (1.2) and so

ˆ

Al+k,ρ

[∂Φ(x, |Du|) ·Du] ηq dx + q

ˆ

Bρ

[∂Φ(x, |Du|) ·Dη] ηq−1(v − k)+ dx ≤ 0,

where Al+k,ρ := {x ∈ Bρ : u(x) > l + k}. Therefore, by (2.4) and (2.5) we have

ˆ

Al+k,ρ

Φ(x, |Du|)ηq dx

≤ κ

ˆ

Al+k,ρ

Φ∗(x, |∂Φ(x, |Du|)|ηq−1) dx + cκ

ˆ

Bρ

Φ(x, ηq−1|Dη|(v − k)+) dx

≤ κc

ˆ

Al+k,ρ

Φ(x, |Du|)ηq dx + c(κ)
ˆ

Bρ

Φ
(
x,

(v − k)+
ρ− ρ′

)
dx, (3.3)

for any κ ∈ (0, 1). Consequently, by taking κ sufficiently small, we have (3.1) with (f − k)± replaced by 
(v − k)+ = (u − l − k)+ and c1 depending on n, γ1, γ2. �
Proposition 3.4. Let u ∈ KΦ

ψ(Ω) be a solution to the obstacle problem of KΦ
ψ(Ω). Then we have for any k ∈ R

and concentric balls Bρ′ ⊂ Bρ ⊂ Ω with 0 < ρ′ < ρ,

ˆ

Bρ′

Φ(x, |D(u− k)−|) dx ≤ c

ˆ

Bρ

Φ
(
x,

(u− k)−
ρ− ρ′

)
dx (3.4)

for some c = c(n, γ1, γ2) > 0. Moreover, if

r ≤ δ1

⎛
⎝ˆ

Ω

[Φ(x, |u|) + 1] dx + 1

⎞
⎠

−1

≤ 1
4 ,

then for any s > 0 we have

sup
Br

u− ≤ c5(s)

⎧⎪⎨
⎪⎩
⎛
⎝ −

ˆ

B2r

us
− dx

⎞
⎠

1
s

+ r

⎫⎪⎬
⎪⎭ (3.5)

for some c5(s) > 0 depending on n, γ1, γ2, L, s.
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Proof. Fix any concentric balls Bρ′ ⊂ Bρ, 0 < ρ′ < ρ in Ω. Let k ∈ R, q := γ2 + 1 and η ∈ C∞
0 (Bρ) be a 

cut off function such that 0 ≤ η ≤ 1, η ≡ 1 in Bρ′ and |Dη| ≤ c(n)/(ρ − ρ′). Since ηq(u − k)− ≥ 0 ≥ ψ − u, 
we take ϕ = ηq(u − k)− as a test function in (1.2) in order to get

−
ˆ

A−
k,ρ

[∂Φ(x, |Du|) ·Du] ηq dx + q

ˆ

Bρ

[∂Φ(x, |Du|) ·Dη] ηq−1(u− k)− dx ≥ 0,

where A−
k,ρ := {x ∈ Bρ : u(x) < k}. In the same way as in (3.3), we have

ˆ

A−
k,ρ

Φ(x, |Du|)ηq dx

≤ κc

ˆ

A−
k,ρ

Φ(x, |Du|)ηq dx + c(κ)
ˆ

Bρ

Φ
(
x,

(u− k)−
ρ− ρ′

)
dx

for any κ ∈ (0, 1). Therefore, by taking κ sufficiently small, we have (3.4).
In addition, since (u − k)− = (−u + k)+, we see from (3.4) that the inequality (3.1) with f = −u holds 

for any k ≥ 0. Therefore, by Lemma 3.1, we have (3.5). �
Remark 3.5. We say u ∈ W 1,Φ(Ω) is a (weak) supersolution to

−div (∂Φ(x,Du)) = 0, (3.6)

that is, it satisfies
ˆ

Ω

∂Φ(x,Du) ·Dϕdx ≥ 0

for all ϕ ∈ C∞
0 (Ω) with ϕ ≥ 0. Note that, from the definition of solution to the obstacle problem (1.2), the 

solution to the obstacle problem KΦ
ψ(Ω) is also a supersolution to (3.6). Moreover, we see from the poof of 

the previous proposition that if u is a supersolution to (3.6), we also have the estimate (3.4).

We are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Since ψ is Hölder continuous, there exists β ∈ (0, 1) and [ψ]β > 0 such that

|ψ(x) − ψ(y)| ≤ [ψ]β |x− y|β for all x, y ∈ Ω.

We first observe from the previous two lemmas that the solution u ∈ KΦ
ψ(Ω) to the obstacle problem of 

KΦ
ψ(Ω) is locally bounded. Let Ω′ ⊂⊂ Ω. Then we know ‖u‖L∞(Ω′) < ∞. Fix any ball B16r0 in Ω′, where 

r0 > 0 satisfies

r0 ≤ min{δ1, δ3}

⎛
⎝ˆ

Ω

[
Φ
(
x, |u| + ‖u‖L∞(Ω′) + ‖ψ‖L∞(Ω′)

)
+ 1

]
dx + 1

⎞
⎠

−1

(3.7)

and

ω(2r0) ≤ min{δ3, δ4}, (3.8)

where δ1 and δ3 are given in Lemma 3.1 and Lemma 3.2, and
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ω(2r0) ≤ 1.

For r ∈ (0, r0], set

u(r) := sup
Br

u, u(r) := inf
Br

u, ψ(r) := sup
Br

ψ, ψ(r) := inf
Br

ψ.

Then, if ψ(r) ≤ u(r), applying Proposition 3.3 with r replaced by r/4 and l = u(r), we have for any s > 0,

u(r/4) − u(r) = sup
Br/4

(u− u(r)) ≤ c4(s)

⎧⎪⎪⎨
⎪⎪⎩
⎛
⎜⎝ −

ˆ

Br/2

(u− u(r))s dx

⎞
⎟⎠

1
s

+ r

⎫⎪⎪⎬
⎪⎪⎭ .

Note that the assumptions in (3.2) with r replaced by r/4 and l = u(r) are satisfied by (3.7) and (3.8). On 
the other hand, if u(r) ≤ ψ(r), again applying Proposition 3.3 with r replaced by r/4 and l = ψ(r), we have

u(r/4) − ψ(r) = sup
Br/4

(u− ψ(r)) ≤ c4(s)

⎧⎪⎪⎨
⎪⎪⎩
⎛
⎜⎝ −

ˆ

Br/2

(u− ψ(r))s+ dx

⎞
⎟⎠

1
s

+ r

⎫⎪⎪⎬
⎪⎪⎭

≤ c4(s)

⎧⎪⎪⎨
⎪⎪⎩
⎛
⎜⎝ −

ˆ

Br/2

(u− u(r))s0 dx

⎞
⎟⎠

1
s0

+ r

⎫⎪⎪⎬
⎪⎪⎭ .

Note that the assumptions in (3.2) with r replaced by r/4 and l = ψ(r) are satisfied by (3.7) and (3.8). 
From this estimate together with the Hölder continuity of ψ and the fact u ≥ ψ, we have

u(r/4) − u(r) ≤ u(r/4) − ψ(r) ≤ u(r/4) − ψ(r) + [ψ]βrβ

≤ c4(s)

⎧⎪⎪⎨
⎪⎪⎩
⎛
⎜⎝ −

ˆ

Br/2

(u− u(r))s0 dx

⎞
⎟⎠

1
s0

+ r

⎫⎪⎪⎬
⎪⎪⎭+ [ψ]βrβ .

Consequently, we obtain

u(r/4) − u(r) ≤ c4(s)

⎧⎪⎪⎨
⎪⎪⎩
⎛
⎜⎝ −

ˆ

Br/2

(u− u(r))s0 dx

⎞
⎟⎠

1
s0

+ r

⎫⎪⎪⎬
⎪⎪⎭+ [ψ]βrβ . (3.9)

Now we consider the function u − u(r). Since u − u(r) is a nonnegative solution to the obstacle problem of 
KΦ

ψ−u(ρ)(Br/2), in view of Proposition 3.4, we have (3.4) with u replaced by u − u(r). Moreover, applying 

Proposition 3.3 with l = ψ(4r) and s = 1 again, we have

sup
Br

(u− u(r)) ≤ sup
Br

(u− ψ(4r))+ + ψ(4r) − ψ(r)

≤ c −
ˆ

B2r

(u− ψ(4r))+ dx + [ψ]βrβ

≤ c

rn

ˆ [
Φ
(
x, |u| + ‖ψ‖L∞(Ω′)

)
+ 1

]
dx + [ψ]βrβ ,
Ω
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which together with (1.3) implies

( supBr
(u− u(r))
r

)ω(2r)

≤ c(2r)−(n+1)ω(2r) + c[ψ]ω(2r)
β ≤ c2

for some c2 = c2(n, γ1, γ2, L, [ψ]β) > 0. Therefore, by Lemma 3.2 we have

⎛
⎜⎝ −

ˆ

Br/2

(u− u(r))s0 dx

⎞
⎟⎠

1
s0

≤ c (u(r/4) − u(r) + r) , (3.10)

where s0 > 0 depends on n, γ1, γ2, [ψ]β .
Combining (3.9) with s = s0 and (3.10), we have

u(r/4) − u(r) ≤ C1 (u(r/4) − u(r)) + D1r
β ,

for some C1, D1 ≥ 1 depending on n, γ1, γ2, L, [ψ]β . Therefore, if (C1 + 1)(u(r/4) − u(r)) ≤ u(r) − u(r), 
we have

u(r/4) − u(r/4) ≤ u(r/4) − u(r) ≤ C1

C1 + 1(u(r) − u(r)) + D1r
β .

On the other hand, if (C1 + 1)(u(r/4) − u(r)) > u(r) − u(r), we have

u(r/4) − u(r/4) ≤ u(r/4) − u(r) − (u(r/4) − u(r))

≤ u(r/4) − u(r) − 1
C1 + 1(u(r) − u(r))

≤ C1

C1 + 1(u(r) − u(r)).

Finally, we have

u(r/4) − u(r/4) ≤ C1

C1 + 1(u(r) − u(r)) + D1r
β ,

for all r ∈ (0, r0], which implies the Hölder continuity of u, see for instance [26, Lemma 7.3]. �
4. Hölder continuity for the gradient

In this section, we prove Theorem 1.2. For the variable exponent p(·) and the obstacle ψ we shall assume 
that there exists β ∈ (0, 1) such that

|p(x) − p(y)| ≤ [p(·)]β |x− y|β and |Dψ(x) −Dψ(y)| ≤ [Dψ]β |x− y|β (4.1)

for some [p(·)]β , [Dψ]β > 0. From now on, without loss of generality, we assume that

1 < γ1 < 2 < γ2 < ∞.

We also define

M :=
ˆ

Ω

[Φ(x, |Du|) + Φ(x, |Dψ|) + 1] dx + 1.
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4.1. Higher integrability

Let us first recall the result of Sobolev–Poincaré type inequality for Φp which can be found in [14, 
Theorem 7] with ϕ = Φp and ω ≡ 1.

Lemma 4.1. Let 1 < γ1 ≤ p ≤ γ2 < ∞. Then there exists τ0 = τ0(n, γ1, γ2) ∈ (0, 1) such that for f ∈
W 1,Φp(Br) with r > 0, we have

−
ˆ

Br

Φp

(
|f − (f)Br

|
r

)
≤ c

⎛
⎝ −

ˆ

Br

Φp(|Df |)τ0 dx

⎞
⎠

1
τ0

for some c = c(n, γ1, γ2) > 0.

Now we prove the higher integrability of Du.

Theorem 4.2. Suppose p(·) and ψ satisfy (4.1). There exists σ0 = σ0(n, γ1, γ2) ∈ (0, 1) such that if u ∈ KΦ
ψ(Ω)

is a solution to the obstacle problem of KΦ
ψ(Ω) and B2r ⊂ Ω with r > 0 satisfying

r ≤ min
{(

β

8[p(·)]β

) 2
β

,
1
M

}
and ω(4r) ≤ min

{
γ1(1 − τ0)

2 , 1
}
, (4.2)

then Φ(·, |Du|) ∈ L1+σ0(Br). Moreover, for any σ ∈ (0, σ0] we have

−
ˆ

Br

Φ(x, |Du|)1+σ dx ≤ c

⎛
⎝ −

ˆ

B2r

Φ(x, |Du|) dx

⎞
⎠

1+σ

+ c −
ˆ

B2r

Φ(x, |Dψ|)1+σ dx + c (4.3)

for some c(n, γ1, γ2) > 0.

Proof. Fix B2r ⊂ Ω with r > 0 satisfying (4.2) and set p2 := supB2r
p(·) and p1 := infB2r p(·). Let 

η ∈ C∞
0 (B2r) satisfy 0 ≤ η ≤ 1, η ≡ 1 in Br and |Dη| ≤ c(n)r−1. Since ψ− (ψ)B2r − u + (u)B2r ≥ ψ− u we 

see that ϕ := ηq(ψ − (ψ)B2r − u + (u)B2r) ≥ ψ − u, where q = γ2 + 1. With this ϕ we have from (1.2) that
ˆ

B2r

[∂Φ(x,Du) ·Du]ηq dx ≤
ˆ

B2r

[∂Φ(x,Du) ·Dψ]ηq dx

+ q

ˆ

B2r

[∂Φ(x,Du) ·Dη]ηq−1(ψ − (ψ)B2r − u + (u)B2r) dx

Then, in the same way to estimate (3.3), we have

−
ˆ

Br

Φ(x, |Du|) dx ≤ c −
ˆ

B2r

Φ
(
x,

|u− (u)B2r|
r

)
dx

+ c

ˆ
Φ
(
x,

|ψ − (ψ)B2r|
r

)
dx + c −

ˆ
Φ(x, |Dψ|) dx.
B2r B2r
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Then, in view of Lemma 4.1 and Hölder’s inequality with the fact

p1

p2
≥ 1 − ω(4r)

γ1
≥ τ0 + 1

2 > τ0,

we have

−
ˆ

B2r

Φ
(
x,

|u− (u)B2r |
r

)
dx ≤ −

ˆ

B2r

Φp2

(
|u− (u)B2r |

r

)
dx + 1

≤ c

⎛
⎝ −

ˆ

B2r

Φp2(|Du|)τ0 dx

⎞
⎠

1
τ0

+ 1

≤ c

⎛
⎝ −

ˆ

B2r

Φ(x, |Du|)
τ0+1

2 dx

⎞
⎠

p2
p1

2
τ0+1

+ c

and

−
ˆ

B2r

Φ
(
x,

|ψ − (ψ)B2r |
r

)
dx ≤ −

ˆ

B2r

Φp2

(
|ψ − (ψ)B2r |

r

)
dx + 1

≤ c

⎛
⎝ −

ˆ

B2r

Φp2(|Dψ|)τ0 dx

⎞
⎠

1
τ0

+ 1

≤ c

⎛
⎝ −

ˆ

B2r

Φ(x, |Dψ|) dx

⎞
⎠

p2
p1

+ c.

We note from (4.1) and (4.2) that

(p2 − p1) log
(

1
r

)
≤ [p(·)]β(4r)β 2

β

(
1
r

) β
2

= 8[p(·)]β
β

r
β
2 ≤ 1,

from which and again (4.2) imply⎛
⎝ −

ˆ

B2r

Φ(x, |Du|) dx

⎞
⎠

p2−p1

≤ c

(
M

rn

)p2−p1

≤ c

(
1

rn+1

)p2−p1

≤ c. (4.4)

Similarly, we have ⎛
⎝ −

ˆ

B2r

Φ(x, |Dψ|) dx

⎞
⎠

p2−p1

≤ c. (4.5)

Combining the above results we have

−
ˆ

Br

Φ(x, |Du|) dx ≤ c

⎛
⎝ −

ˆ

B2r

Φ(x, |Du|)
τ0+1

2 dx

⎞
⎠

2
τ0+1

+ c −
ˆ

B2r

Φ(x, |Dψ|) dx + c.

Finally, since Dψ ∈ L∞(Ω), we obtain (4.3) from Gehring’s lemma, see for instance [26, Theorem 6.6]. �
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Remark 4.3. From the proof of the previous theorem, one can deduce that the result of Theorem 4.2 still 
holds true if p(·) satisfies so-called vanishing log-Hölder continuity:

lim
t→0

ω(r) log
(

1
r

)
= 0

and Dψ ∈ L1+σ̃
loc (Ω) for some σ̃ > 0. The proof is almost same, and the restrictions of r in (4.2) and the 

constants σ0 and c are modified in the reasonable way. In particular, σ0 and c depend on n, γ1, γ2, σ̃.

4.2. Comparison estimates

Let u ∈ KΦ
ψ(Ω) be a solution to the obstacle problem of KΦ

ψ(Ω) and B2r ⊂ Ω, where r > 0 is a sufficiently 
small number satisfying (4.2) and (4.11) below. Set

Dψ := sup
Ω

|Dψ|, p2 := sup
Br

p(·) and p1 := inf
Br

p(·).

We start with the comparison principle for ∂Φ.

Lemma 4.4. Suppose that w ∈ W 1,Φ(U) satisfies

{
−div (∂Φp(Dψ)) ≤ −div (∂Φp(Dw)) in Br,

ψ ≤ w on ∂Br,

in the weak sense, that is, (ψ − w)+ ∈ W
1,Φp

0 (Br) and

ˆ

U

(∂Φp(Dψ) − ∂Φp(Dw)) ·Dϕdx ≤ 0

for all ϕ ∈ W
1,Φp

0 (Br) with ϕ ≥ 0. Then we have ψ ≤ w a.e. in Br.

Proof. By taking ϕ = (ψ − w)+ in the above weak inequality and (2.6), we have

ˆ

{x∈Br:ψ(x)>w(x)}

Φp(|Dψ −Dw|) dx

≤ κ

ˆ

{x∈Br:ψ(x)>w(x)}

[Φp(|Dψ|) + Φp(|Dw|)] dx,

for any κ ∈ (0, 1). Since κ is arbitrary, we see that ψ ≤ w a.e. in Br. �
Next, we consider the following two comparison maps with so-called Orlicz growth. Here, we suppose 

that

p2 − p1 ≤ ω(2r) ≤ σ0

2 (4.6)

Then we have p2 ≤ p(x)(1 +p2−p1) ≤ p(x)(1 +σ0/2) and so, by (4.3), (4.4) and (4.5), we have Φp2(|Du|) ∈
L1(Br) with the estimate
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−
ˆ

Br

Φp2(|Du|) dx ≤ −
ˆ

Br

Φ(x, |Du|)1+p2−p1 dx + 1

≤ c −
ˆ

B2r

Φ(x, |Du|) dx + cΦγ2(Dψ) + c.

Let w ∈ W 1,Φp2 (Br) be the unique weak solution to

{
−div (∂Φp2(Dw)) = −div (∂Φp2(Dψ)) in Br,

w = u on ∂Br,
(4.7)

and v ∈ W 1,Φp2 (Br) be the unique weak solution to

{
−div (∂Φp2(x,Dv)) = 0 in Br,

v = w on ∂Br.
(4.8)

Then by a standard energy estimate we have
ˆ

Br

Φp2(|Dw|) dx ≤ c

ˆ

Br

Φp2(|Du|) dx + c

ˆ

Br

Φp2(|Dψ|) dx

≤ c

⎛
⎝ ˆ

B2r

Φp2(|Du|) dx + rn

⎞
⎠ (4.9)

and

ˆ

Br

Φp2(|Dv|) dx ≤ c

ˆ

Br

Φp2(|Dw|) dx ≤ c

⎛
⎝ ˆ

B2r

Φ(x, |Du|) dx + rn

⎞
⎠ , (4.10)

where c > 0 depends on n, γ1, γ2, Dψ.

Lemma 4.5. Suppose that r > 0 satisfies that

ω(2r) ≤ σ1

2 , where σ1 := min
{

(γ1 − 1)β
4n , σ0

}
. (4.11)

Then we have

ˆ

Br

Φp2(Du−Dw) dx ≤ cr
(γ1−1)β

2

⎧⎨
⎩Mσ1

ˆ

B2r

Φp2(|Du|) dx + rn

⎫⎬
⎭ (4.12)

for some c(n, γ1, γ2, [p(·)]β , [Dψ]β , Dψ) ≥ 1.

Proof. Form (4.7), we see that

ˆ
∂Φp2(Dw) · (Du−Dw) dx =

ˆ
∂Φp2(Dψ) · (Du−Dw) dx. (4.13)
Br Br
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Since w = u ≥ ψ on ∂Br, in view of Lemma 4.4, we have w ≥ ψ a.e. in Br. By putting w = u in Ω \Br, we 
have w ∈ W 1,Φ(Ω) and w ≥ ψ a.e. in Ω, that is, w ∈ KΦ

ψ(Ω). Therefore, by testing ϕ = w − u in (1.2), we 
have

ˆ

Br

∂Φ(x,Du) · (Dw −Du) dx ≥ 0. (4.14)

Combining (4.13) and (4.14) we have

I1 :=
ˆ

Br

(∂Φp2(Du) − ∂Φp2(Dw)) · (Du−Dw) dx

≤
ˆ

Br

(∂Φp2(Du) − ∂Φ(x,Du)) · (Du−Dw) dx +
ˆ

Br

∂Φp2(Dψ) · (Dw −Du) dx

=: I2 + I3.

Then, applying (2.6) and (4.9), we have

ˆ

Br

Φp2(|Du−Dw|) dx ≤ cκ

⎛
⎝ ˆ

Br

Φp2(|Du|) dx + rn

⎞
⎠+ cκ− 2−γ1

2 I1 (4.15)

for any κ ∈ (0, 1).
We next estimate I2. Applying the mean value theorem to the map t ∈ [0, 1] �→ |Du|t(p2−p(x)) we obtain

|∂Φp2(Du) − ∂Φ(x,Du)| =
∣∣∣(|Du|p2−p(x) − 1)∂Φ(x,Du) + (p2 − p(x))|Du|p2−2 log(e + |Du|)Du

∣∣∣
≤ c(p2 − p1)

(
|Du|tx(p2−p(x))| log |Du|| + |Du|p2−p(x)

)
|Du|p(x)−1 log(e + |Du|)

for some tx ∈ (0, 1), where x ∈ Br. Then using the elementary inequalities t(γ1−1)| log t| ≤ c(γ1) for 0 < t ≤ 1
and log t ≤ c(σ)tσ for t ≥ 1 with σ > 0, we have

|∂Φp2(Du) − ∂Φ(x,Du)| ≤ c(p2 − p1)
(
|Du|σ2Φp2(|Du|)|Du|−1 + 1

)
,

where σ2 := (γ1−1)σ1
2γ1

and σ1 is denoted in (4.11). From this estimate, (4.1), (2.1), (2) of Proposition 2.1, 
(2.5) and (4.9), we have

|I2| ≤ c(p2 − p1)
ˆ

Br

[
|Du−Dw| + |Du|σ2Φp2(|Du|)|Du|−1|Du−Dw|

]
dx

≤ crβ
ˆ

Br

[
Φp2(|Du−Dw|) + Φ∗

p2
(|Du|σ2Φp2(|Du|)|Du|−1)

]
dx

≤ crβ
ˆ

Br

[
Φp2(|Du−Dw|) + |Du|

σ2p2
p2−1 Φp2(|Du|) + 1

]
dx

≤ crβ
ˆ

Br

[
Φp(x)+ω(2r)+ σ2γ1

γ1−1
(|Du|) + 1

]
dx

≤ crβ
ˆ [

Φ(x, |Du|)1+σ1 + 1
]
dx.
Br
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Note that in the last inequality, we have used the fact ω(2r) ≤ σ1
2 and σ2γ1

γ1−1 ≤ σ1
2 . Moreover, applying 

Theorem 4.2,

|I2| ≤ crβ
{
rn

⎛
⎝ −

ˆ

B2r

Φ(x, |Du|) dx

⎞
⎠

1+σ1

+
ˆ

B2r

[
Φ(x, |Dψ|)1+σ1 + 1

]
dx

}

≤ crβ

⎛
⎝r−nσ1Mσ1

ˆ

B2r

Φp2(|Du|) dx + rn

⎞
⎠ , (4.16)

where c > 0 depends on n, γ1, γ2, [p(·)]β , Dψ.
Finally we estimate I3. We first observe that

I3 =

∣∣∣∣∣∣
ˆ

Br

(∂Φp2(Dψ) − ∂Φp2(Dψ(x0)) · (Dw −Du) dx

∣∣∣∣∣∣ ,
where x0 is the center of Br. If p2 > 2, then by (2.7), (4.1) and (4.9), we have

|I3| ≤
ˆ

Br

|∂Φp2(Dψ) − ∂Φp2(Dψ(x0))||Dw −Du| dx

≤
ˆ

Br

(|Dψ| + |Dψ(x0)|)p2−2|Dψ −Dψ(x0)|

× log(e + |Dψ| + |Dψ(x0)|)|Dw −Du| dx

≤ crβ

⎛
⎝ ˆ

Br

[|Du| + |Dw| + 1] dx

⎞
⎠

≤ crβ

⎛
⎝ ˆ

Br

Φp2(|Du|) dx + rn

⎞
⎠ ,

where c > 0 depends on γ1, γ2, [Dψ]β , Dψ. Similarly, if p2 < 2, then applying (2.8), (4.1) and (4.9), we 
have

|I3| ≤ cr(p2−1)β

⎛
⎝ ˆ

Br

Φp2(|Du|) dx + rn

⎞
⎠ .

From those two cases, we obtain

|I3| ≤ cr(γ1−1)β

⎛
⎝ ˆ

Br

Φp2(|Du|) dx + rn

⎞
⎠ . (4.17)

Consequently, by (4.15), (4.16), (4.17) and the fact I1 = I2 + I3 we obtain

ˆ
Φp2(Du−Dw) dx ≤ cκ

⎛
⎝ ˆ

Φp2(Du) dx + rn

⎞
⎠

Br Br
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+ cκ− 2−γ1
2 r(γ1−1)β

⎧⎨
⎩r−nσ1Mσ1

ˆ

B2r

Φp2(|Du|) dx + rn

⎫⎬
⎭ .

Hence, by taking κ = r
(γ1−1)β
2(2−γ1) we have (4.12). �

Lemma 4.6. Then we have

ˆ

Br

Φp2(Dw −Dv) dx ≤ cr
(γ1−1)β

2

⎛
⎝ ˆ

B2r

Φp2(|Du|) dx + rn

⎞
⎠ (4.18)

for some c(n, γ1, γ2, [Dψ]β , Dψ) ≥ 1.

Proof. Since w − v ∈ W 1,Φ2
0 (Br), we deduce from (4.7) and (4.8) that

ˆ

Br

(∂Φp2(Dw) − ∂Φp2(Dv)) · (Dw −Dv) dx

=
ˆ

Br

(∂Φp2(Dψ) − ∂Φp2(Dψ(x0))) · (Dw −Dv) dx,

where x0 is the center of the ball Br. Applying (2.6), (4.9) and (4.10), we have

ˆ

Br

Φp2(|Dw −Dv|) dx ≤ cκ

⎛
⎝ ˆ

Br

Φp2(|Du|) dx + rn

⎞
⎠

+ cκ− 2−γ1
2

ˆ

Br

(∂Φp2(Dw) − ∂Φp2(Dv)) · (Dw −Dv) dx.

Moreover, in the same way to estimate I3 in the proof of the previous lemma, we have
ˆ

Br

(∂Φp2(Dψ) − ∂Φp2(Dψ(x0))) · (Dw −Dv) dx

≤ cr(γ1−1)β

⎛
⎝ ˆ

Br

Φp2(|Du|) dx + rn

⎞
⎠ .

Hence, we have

ˆ

Br

Φp2(Dw −Dv) ≤ cκ

⎛
⎝ ˆ

Br

Φp2(Du) dx + rn

⎞
⎠

+ cκ− 2−γ1
2 r(γ1−1)β

⎛
⎝ ˆ

Br

Φp2(|Du|) dx + rn

⎞
⎠

Consequently, by taking κ = r
(γ1−1)β

2−γ1 , we obtain (4.18). �
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4.3. Hölder continuity of Du

We first observe the following two lemmas. The first one is a technical iteration lemma.

Lemma 4.7. [25, Lemma 2.1 of Chapter 3] Let φ be a nonnegative and nondecreasing function. Suppose that

φ(ρ) ≤ A
{(ρ

r

)α1
+ ε

}
φ(r) + Brα2

for all 0 < ρ < r < r0, with nonnegative constants A, B, α1, α2 (α1 > α2). Then there exists ε0 =
ε(A, α1, α2) > 0 such that if ε < ε0, for all 0 < ρ < r ≤ r0 we have

φ(ρ) ≤ c
{(ρ

r

)α2
φ(r) + Brα2

}

for some c = c(A, α1, α2) > 0.

The second lemma is the results of Hölder continuity for function Φp2 .

Lemma 4.8. ([16], see also [24, Lemma 2.6 and Corollary 2.7]) Let 1 < γ1 ≤ p ≤ γ2 < ∞ and v ∈ W 1,Φp(Br)
be a weak solution to

div(∂Φp(Dv)) = 0 in Br.

There exists β1 ∈ (0, 1) and c > 0 depending on n, γ1, γ2 such that for any 0 < ρ < r,

−
ˆ

Bρ

Φp(|Dv − (Dv)Bρ
|) dx ≤ c

(ρ
r

)β1
−
ˆ

Br

Φp(|Dv|) dx (4.19)

and

−
ˆ

Bρ

Φp(|Dv|) dx ≤ c −
ˆ

Br

Φp(|Dv|) dx. (4.20)

From the comparison estimates and the previous lemmas, we obtain the following decay estimates.

Proposition 4.9. Let u ∈ KΦ
ψ(Ω) is a solution to the obstacle problem of KΦ

ψ(Ω). There exists δ =
δ(n, γ1, γ2, ω(·), L, ψ) ∈ (0, 1) such that if r > 0 satisfies (4.2), (4.11) and r ≤ δM− 2σ1

(γ1−1)β , where σ1 is 
denoted in (4.11), and B2r ⊂ Ω, then we have for any τ ∈ (0, n) and ρ ∈ (0, r),

−
ˆ

Bρ

Φp2(|Du|) dx ≤ cρ−τ

⎛
⎝ −

ˆ

Br

Φp2(|Du|) dx + 1

⎞
⎠ , (4.21)

for some c = c(n, γ1, γ2, [p(·)]β , [Dψ]β , Dψ, τ) > 0.

Proof. By (4.12), (4.18), (4.20) and (4.10),

ˆ
Φp2(|Du|) dx ≤ c

⎛
⎜⎝ ˆ

Φp2(|Du−Dw|) dx +
ˆ

Φp2(|Dw −Dv|) dx +
ˆ

Φp2(|Dv|) dx

⎞
⎟⎠
Bρ Bρ Bρ Bρ
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≤ cr
(γ1−1)β

2

⎧⎨
⎩Mσ1

ˆ

B2r

Φp2(|Du|) dx + rn

⎫⎬
⎭+

(ρ
r

)n ˆ
Br

Φp2(|Dv|) dx

≤ c6

{(ρ
r

)n
+ r

(γ1−1)β
2 Mσ1

} ˆ

B2r

Φp2(|Du|) dx + c7r
n−τ ,

for some c6, c7 > 0 depending only on n, γ1, γ2, [p(·)]β , [Dψ]β , Dψ and any τ ∈ (0, n). At this point, we 
take δ > 0 sufficiently small so that

r
(γ1−1)β

2 Mσ1 ≤ δ
(γ1−1)β

2 ≤ ε0,

where ε0 > 0 is given in Lemma 4.7 with (A, B, τ1, τ2) = (c6, c7, n, n − τ), from which we obtain

ˆ

Bρ

Φp2(|Du|) dx ≤ c
(ρ
r

)n−τ
ˆ

Br

Φp2(|Du|) dx + cρn−τ

≤ cρn−τ

⎛
⎝ −

ˆ

Br

Φp2(|Du|) dx + 1

⎞
⎠ .

This implies (4.21). �
Now, we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let r0 > 0 satisfy (4.2), (4.6), (4.11) when r = r0 and

r
(γ1−1)β

4
0 Mσ1 ≤ 1.

Suppose 0 < ρ < r ≤ r0/2, and set

p+ := sup
Br0

p(·), p− := inf
Br0

p(·) and p2 := sup
Br

p(·).

From the results in the previous subsection, we observe

ˆ

Bρ

|Du− (Du)Bρ
|p2 dx ≤ c

ˆ

Bρ

|Du− (Dv)Bρ
|p2 dx

≤ c

ˆ

Bρ

|Dv − (Dv)Bρ
|p2 dx + c

ˆ

Bρ

|Du−Dv|p2 dx.

Applying (4.19), (4.10) and (4.21) with (ρ, r, p2) replaced by (r, r0, p+), we have

ˆ

Bρ

|Dv − (Dv)Bρ
|p2 dx ≤

ˆ

Bρ

Φp2(|Dv − (Dv)Bρ
|) dx

≤ cρn
(ρ
r

)β1

⎛
⎝ −

ˆ
Φp2(|Du|) dx + 1

⎞
⎠

Br
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≤ cρn
(ρ
r

)β1

⎛
⎝ −

ˆ

Br

Φp+(|Du|) dx + 1

⎞
⎠

≤ cρn
(ρ
r

)β1
r−τ

⎛
⎜⎝ −

ˆ

Br0

Φp+(|Du|) dx + 1

⎞
⎟⎠ .

On the other hand, by (4.12), (4.18) and (4.21) with (ρ, r, p2) replaced by (2r, r0, p+), we have

ˆ

Bρ

|Du−Dv|p2 dx ≤
ˆ

Br

Φp2(|Du−Dv|) dx

≤ cr
(γ1−1)β

2 +n

⎛
⎝Mσ1 −

ˆ

B2r

Φp2(|Du|) dx + 1

⎞
⎠

≤ cr
(γ1−1)β

4 +n

⎛
⎝ −

ˆ

B2r

Φp+(|Du|) dx + 1

⎞
⎠

≤ cr
(γ1−1)β

4 +n−τ

⎛
⎜⎝ −

ˆ

Br0

Φp+(|Du|) dx + 1

⎞
⎟⎠ ,

for any τ ∈ (0, n). Therefore, combining the previous estimates, we obtain

ˆ

Bρ

|Du− (Du)Bρ
|p2 dx ≤ c(ρn+β1r−β1−τ + rβ2+n−τ )

⎛
⎜⎝ −

ˆ

Br0

Φp+(|Du|) dx + 1

⎞
⎟⎠ ,

where β2 := (γ1−1)β
4 . Now we choose ρ = r1+μ with μ = β2

n+β1
, so that

ˆ

Bρ

|Du− (Du)Bρ
|p2 dx ≤ cρ

n+β2−τ
1+μ

⎛
⎜⎝ −

ˆ

Br0

Φp+(|Du|) dx + 1

⎞
⎟⎠ .

Finally, choosing τ = β2−nμ
2 = β1β2

2(n+β1) , we have

ˆ

Bρ

|Du− (Du)Bρ
|p2 dx ≤ cρn+ β1β2

2(n+β1+β2)

⎛
⎜⎝ −

ˆ

Br0

Φp+(|Du|) dx + 1

⎞
⎟⎠ ,

which implies

⎛
⎜⎝ −

ˆ

Bρ

|Du− (Du)Bρ
|γ1 dx

⎞
⎟⎠

1
γ1

≤ cρ
β1β2

2γ2(n+β1+β2)

⎛
⎜⎝ −

ˆ

Br0

Φp+(|Du|) dx + 1

⎞
⎟⎠

1
p−

.

Therefore, we conclude that for B2r0(x0) ⊂ Ω we have



978 J. Ok / J. Math. Anal. Appl. 444 (2016) 957–979
⎛
⎜⎝ −

ˆ

Bρ(y)

|Du− (Du)Bρ
|γ1 dx

⎞
⎟⎠

1
γ1

≤ cρ
β1β2

2γ2(n+β1+β2)

⎛
⎜⎝ −

ˆ

B2r0(x0)

Φp+(|Du|) dx + 1

⎞
⎟⎠

1
p−

for any Bρ(y) ⊂ B(r0/2)1+μ(x0). By Campanto’s theorem, see for example [25, Theorem 1.2 in Chapter 3], 
this estimate implies Du ∈ Cα(B(r0/2)1+μ(x0)) with α = β1β2

2γ2(n+β1+β2) . �
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