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1. Introduction

The disk algebra, whether for a single, finitely many, or infinite variables is an area of intensive research 
(see e.g. [1–5,9,11–15]). In this paper we consider the natural vector-valued extension of the disk algebra 
A(D).

Let X and E be complex Banach spaces. As usual, BX and BX will stand for the open (respectively 
closed) unit ball of X. By H(BX , E) we denote the space of all mappings f : BX → E holomorphic (i.e. 
complex-Fréchet differentiable) on BX . As in the scalar valued case, the vector-valued extension of the disk 
algebra has two natural and equivalent definitions. One, denoted by Au(BX , E), is the Banach space of all 
uniformly continuous functions f : BX → E that, moreover, are holomorphic on BX , endowed with the 
supremum norm. The other natural definition is the following.

Au(BX , E) := {f : BX → E : f ∈ H(BX , E) and f uniformly continuous on BX}.
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Clearly the mapping R : Au(BX , E) → Au(BX , E) that associates to each element in Au(BX , E) its 
restriction to the open unit ball BX is an isometric isomorphism, since uniformly continuous functions 
defined on the open unit ball BX of a Banach space X and with values in another Banach space are bounded 
and admit a unique extension to the closed unit ball BX which is also uniformly continuous. Thus, from 
now on, we write Au(BX , E) = Au(BX , E). For C-valued functions we simply denote Au(BX , C) = Au(BX).

With Eτ we denote E endowed with the topology τ which is either the weak topology w(E, E∗) or, 
whenever E is a dual space, i.e. there exists a complex Banach space Y such that E = Y ∗, the weak-star 
topology w∗(Y ∗, Y ).

A very classical result by Dunford of 1938 [6, Theorem 76, p. 354] or [10, Theorem 3.10.1, p. 93 combined 
with Theorem 3.17.1, p. 112], states that H(BX , Ew) = H(BX , E). This means that a mapping f : BX → E

is holomorphic if and only if u ◦ f : BX → C is holomorphic for every u : E → C continuous linear form (in 
short for every u ∈ E∗).

Moreover, if E = Y ∗, then H(BX , Ew∗) = H(BX , E). Again a mapping f : BX → Y ∗ is holomorphic if 
and only if u ◦ f : BX → C is holomorphic for every u ∈ Y where we consider Y as a subspace of E∗ = Y ∗∗.

The main goal of this paper is to discuss if analogues of Dunford’s results are true in the context of 
vector-valued algebras of the disk (or more properly called, algebras of the ball).

For that reason, we are going to consider the following spaces.

Au(BX , Eτ ) := {f : BX → E : f ∈ H(BX , E) and f is τ – uniformly continuous on BX},

and

Au(BX , Eτ ) := {f : BX → E : f ∈ H(BX , E) and f is τ – uniformly continuous on BX},

where τ denotes either the topology w or w∗. Observe that when considering the norm topology in the 
range space, we simply write E. All of these spaces are Banach spaces when endowed with the supremum 
norm topology.

We explore the connections between these algebras of the disk,

Au(BX , E) = Au(BX , E), Au(BX , Ew)

and the space of mapping defined in the closed unit ball Au(BX , Ew). Since the mapping R : Au(BX , Ew) →
Au(BX , Ew) defined as R(f)(x) = f(x) for every x in BX is well defined, injective, and actually an isometry 
into, one can consider Au(BX , Ew) as a subset of Au(BX , Ew), and we have the following chain of inclusions.

Au(BX , E) = Au(BX , E) ⊆ Au(BX , Ew) ⊆ Au(BX , Ew). (1.1)

Contrary to the Dunford’s first stated result for holomorphic mapping both inclusions can be strict. This 
claim is shown in Section 2, where in Theorem 2.3 a necessary and sufficient condition for the equality 
Au(BX , Ew) = Au(BX , Ew) is given. Moreover, our main result, Theorem 2.7, proves that given a complex 
Banach space X, the equality Au(BX , E) = Au(BX , Ew) holds if and only if E has the Schur property. 
Therefore, we give a new characterization of that property. We recall that a Banach space E has the Schur 
property if every weakly convergent sequence is norm convergent (see [7, p. 253]). The classical Banach 
sequence space �1 has this property [7, Theorem 5.36].

In Section 3 we give two different sufficient conditions for the Banach space Au(BX , Ew) to be a Banach 
algebra whenever the space E is a Banach algebra.

We refer to [7] for notation and background information on Banach spaces. We will use the following 
classical Banach sequence spaces. The space c0 of all null sequences endowed with the supremum norm, the 
space �∞ of all bounded sequences also endowed with the supremum norm and the space �1 of all absolutely 
summable sequences (xn)n endowed with the usual norm given by ‖(xn)n‖ :=

∑∞ |xn|, (xn)n ∈ �1.
n=1
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2. Spaces of holomorphic and uniformly continuous vector valued functions

The objective in this section is to clarify in which cases these inclusions are strict. If X is finite dimensional, 
then f : BX → Eτ is continuous if and only if f is uniformly continuous, since Eτ is always a space with 
a uniformity. Thus we shall omit the subindex u, putting for example A(D, E) to denote the (uniformly) 
continuous functions on the closed disc D with values in a Banach space E which are holomorphic in the 
interior.

First we consider the question of when the injective mapping R : Au(BX , Ew) → Au(BX , Ew) defined 
above as R(f)(x) = f(x) for every x in BX is onto.

In the space Au(BX , Ew), a priori we only have that for each u ∈ E∗ there is a unique uniformly 
continuous extension û ◦ f : BX → C. This allows us to produce a unique uniformly continuous extension 
but taking values in E∗∗

w∗ as next Lemma shows.

Lemma 2.1. Let X be a Banach space. Given f ∈ Au(BX , Ew) there exists a unique f̂ ∈ Au(BX , E∗∗
w∗) such 

that f̂ |BX
= f .

Proof. Let f ∈ Au(BX , Ew). For each u ∈ E∗ there exists a function û ◦ f : BX → C which ex-
tends u ◦ f continuously. If (xn)n is a sequence in BX convergent to x ∈ BX \ BX then we define 
〈f̂(x), u〉 = limn u ◦ f(xn). The continuity of û ◦ f yields that f̂(x) is a well defined bounded linear map-
ping since f(BX) is (weakly) bounded. The uniform continuity of û ◦ f and its holomorphy on BX implies 
f̂ ∈ Au(BX , E∗∗

w∗). �
In the next Lemma we give a sufficient condition for the strict inclusion Au(BX , Ew) � Au(BX , Ew) to 

hold.

Lemma 2.2. If X and E are Banach spaces and we assume that there exists f ∈ Au(BX , Ew) satisfying that 
f̂(∂BX) ∩E∗∗ \ E 
= ∅, then

(a) f ∈ Au(BX , Ew) \Au(BX , Ew).
(b) f̂ ∈ Au(BX , (E∗∗)w∗) \A(BX , (E∗∗)w).
(c) Moreover, if we consider g : BX → E∗∗, defined by z �→ f(z), then g ∈ Au(BX , (E∗∗)w). Let ĝ ∈

Au(BX , (E(4))w∗) be the extension given by Lemma 2.1. Then, ĝ(∂BX) ∩E(4) \E∗∗ 
= ∅ (i.e. g = f but 
ĝ 
= f̂).

Proof. Part (a) is obvious since if we assume that there exists g ∈ Au(BX , Ew) such that f(x) = g(x)
for every x ∈ BX . We can consider g : BX → (E∗∗)w∗ and it is a (uniformly) continuous mapping. Since 
f̂ : BX → (E∗∗)w∗ is continuous too and both coincide with f in the dense subset BX , we have g = f̂ and 
then f̂(∂BX) ⊂ E. A contradiction.

The assertion (b) follows from the fact that f(BX) ⊆ E, f(∂BX) ∩E∗∗ \E 
= ∅ and E(E∗∗)w = E‖·‖ = E.
To see (c) we fix z0 ∈ ∂BX with f̂(z0) ∈ E∗∗ \ E. Since ĝ : BX → ((E∗∗)∗∗, w∗) is continuous, if 

ĝ(z0) ∈ E∗∗ then for each sequence (zk)k ⊂ BX convergent to z0 and for each u ∈ (E∗∗)∗ we have 
u(ĝ(z0)) = limk u ◦ g(zk) = limk u ◦ f(zk), i.e. f(zk) converges to ĝ(z0) in (E∗∗, w) and f(zk) converges to 
f̂(z0) in the weaker topology (E∗∗, w∗) and we obtain that ĝ(z0) = f̂(z0). But, as E(E∗∗,w) = E(E∗∗,‖·‖) = E, 
we get ĝ(z0) ∈ E, but, by hypothesis, f̂(z0) ∈ E∗∗ \ E. A contradiction. �

Observe that in part (c) above if we assume that, f̂(z) ∈ E∗∗\E for each z ∈ ∂BX , then, ĝ(z) ∈ E(4)\E∗∗

for each z ∈ ∂BX .
These two lemmas give the following characterization.
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Theorem 2.3. Let X and E be complex Banach spaces, the equality

Au(BX , Ew) = Au(BX , Ew),

holds if and only if every f ∈ Au(BX , Ew) satisfies that f̂(∂BX) ⊂ E.

An immediate consequence is the following Corollary.

Corollary 2.4. If E is a reflexive Banach space, then

Au(BX , Ew) = Au(BX , Ew),

for every Banach space X.

A basic example fulfilling the hypothesis of Lemma 2.2 is the following.

Example 2.5. For f : D → c0, z �→ (zn)n, we have f̂ : D → l∞, z �→ (zn)n, and hence,

(a) f ∈ A(D, (c0)w) \A(D, (c0)w).
(b) f̂ ∈ A(D, (l∞)w∗) \A(D, (l∞)w).
(c) If we consider g : D → l∞, z �→ f(z) then g ∈ A(D, (l∞)w). Let ĝ ∈ A∞(D, (l∗∗∞)∗w) be the extension 

given by Lemma 2.1. Then, ĝ(z) ∈ l∗∗∞ \ l∞ for each z ∈ ∂D.

Proof. Take h : D → l∞, defined by h(z) = (zn)n. If u = (an) ∈ �1, we have u(h(z)) =
∑∞

n=1 anz
n, that 

is an element of the algebra of the disk A(D). Thus h ∈ A(D, (l∞)w∗) and it is an extension of f . By 
Lemma 2.1, the extension is unique. Hence f̂ = g. �

Of course, in the above example u ◦ ĝ(z) = u ◦ f̂(z) for each u ∈ l1 ⊆ l∗∞ and each z ∈ D, but l1 is not 
σ(l∗∞, l∗∗∞) dense (i.e. separating in l∗∗∞). Thus, if we want continuity in the extension composing with the 
functionals of l∗∞, it is possible but we need the extension to take values in l∗∗∞ \ l∞. The argument can be 
reiterated to get different extensions in further even duals.

The precise difference between A(D, (c0)w) and A(D, c0) is illustrated below.

Proposition 2.6. Let f : D → c0, f(z) = (fn(z))n. Then

(a) f ∈ A(D, (c0)w) if and only if (fn)n converges weakly to 0 in A(D).
(b) f ∈ A(D, c0) if and only if (fn)n converges in norm to 0 in A(D).

Proof. We see (a). Since A(D) is a subspace of C(D), the Banach space of continuous functions on D, we 
conclude from Riesz Representation theorem and Hahn–Banach theorem that each functional u ∈ A(D)∗
can be represented with a regular complex measure μ, i.e. u(f) =

∫
D
fdμ. If f ∈ A(D, (c0)w) then f(D) is 

(weakly) bounded in c0, i.e. there exists M > 0 such that |fn(z)| ≤ M for each z ∈ D and n ∈ N. Moreover 
limn fn(z) = 0 for each z ∈ D. Hence we can apply Dominated Convergence Lebesgue’s theorem to get that 
limn

∫
D
fndμ = 0 for each regular complex measure μ on D, and hence limn u(fn) = 0 for each u ∈ A(D)∗. 

Conversely, if (fn)n tends weakly to 0 in A(D) then (fn)n is weakly bounded, and then norm bounded. 
Hence for each (αn)n ⊂ l1, the series 

∑
n αnfn is uniformly convergent in A(D).

To see (b) we observe that (fn)n converges in norm to 0 in A(D) if and only if (fn) is equicontinuous 
and pointwise convergent to 0, if and only if (fn)n converges weakly to 0 and it is equicontinuous. This is 
a consequence of Arzelà–Ascoli theorem, since A(D) is a subspace of C(D), and the fact that in a compact 
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space there is not any strictly weaker topology which is Hausdorff. Now for the sequence (fn) ⊂ A(D)
to be equicontinuous and weakly convergent to 0 is equivalent to be f : D → c0 continuous and weakly 
holomorphic in D by (a). That in turn, as D is a compact set, is equivalent to f be uniformly continuous 
and holomorphic on D. �

Now we address the question of characterizing the complex Banach spaces E satisfying that Au(BX , E) =
Au(BX , Ew) for every Banach space X. The answer leads us to give a new characterization of complex 
Banach spaces having the Schur property.

Theorem 2.7. Let X and E be complex Banach spaces. The following are equivalent.

(i) E has the Schur property.
(ii) Au(BX , E) = Au(BX , Ew).
(iii) Au(BX , E) = Au(BX , Ew).

Proof. (i) ⇒ (ii). Assume that E has the Schur property and there are a Banach space X and f ∈
Au(BX , Ew) such that there exist ε > 0 and sequences (xn)n and (yn)n in BX such that ‖xn − yn‖ tends 
to 0 and ‖f(xn) − f(yn)‖ ≥ ε. The hypothesis f ∈ Au(BX , Ew) yields that u ◦ f is uniformly continuous, 
and then |u ◦ f(xn) − u ◦ f(yn)| tends to 0 for each u ∈ E∗, i.e. f(xn) − f(yn) tends to 0 weakly in E, and 
hence also in norm since E has the Schur property, a contradiction.

(ii) ⇒ (iii). Since Au(BX , E) ⊂ Au(BX , Ew) ⊂ Au(BX , Ew), we get

Au(BX , E) = Au(BX , Ew)

for every X.
(iii) ⇒ (i). Let E be a Banach space without the Schur property, and let (en)n be a sequence in the unit 

sphere SE of E which is weakly convergent to 0. Let x0 ∈ SX . We consider a linear mapping ϕ : X → C, 
such that ϕ(x0) = 1. Now we take a sequence (zn)n in the unit circle ∂D and a sequence (rn)n of positive 
numbers (convergent to zero) such that D(zj , rj) ∩ D(zk, rk) = ∅ if j 
= k. Take gn(z) := (z + zn)/2 and 
fn(z) = gn(z)k(n) for k(n) being a natural number such that |gn(z)|k(n) < 1/4n in D \D(zn, rn). We define 
f(x) =

∑
n fn(ϕ(x))en, x ∈ BX .

Let us show that f ∈ Au(BX , Ew) \Au(BX , E). The series is well defined since ϕ(x) belongs at most to 
one ball D(zk, rk) for each x ∈ BX . For each n ∈ N and yn in the boundary of D(zn, rn) ∩ D we have that 
‖znx0 − ynx0‖ = |zn − yn| = rn tends to 0 and

‖f(znx0) − f(ynx0)‖ ≥ |fn(zn)| −
∑
j �=n

|fj(zn)| −
∑
j∈N

|fj(yn)| ≥ 1 − 1/3 − 1/3 = 1/3.

Hence f is not uniformly continuous on BX .
If we take u ∈ E∗ then u(f)(x) =

∑
fn(ϕ(x))u(en) is a convergent series in A(BX) since (u(en))n tends 

to 0 and 
∑

n |fn(z)| ≤ 4/3 for all z ∈ D. Hence f ∈ Au(BX , Ew). �
In particular we have the following Corollary.

Corollary 2.8. Let E be complex Banach space. The following are equivalent.

(i) E has the Schur property.
(ii) A(D, E) = A(D, Ew).
(iii) A(D, E) = A(D, Ew).
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Remark 2.9. If E has the Schur property then

Au(BX , Ew) = Au(BX , Ew)(= Au(BX , E)),

but this does not give a characterization. Corollary 2.4 shows that for reflexive spaces

Au(BX , Ew) = Au(BX , Ew),

and from the Jossefson–Nizenweig theorem it follows that no infinite dimensional reflexive space has the 
Schur property.

Remark 2.10. Example 2.5 together Proposition 2.6 and Theorem 2.7 give a proof of the well known fact 
that the space A(D) does not have the Schur property.

Let us observe that in the above proof one can take the sequence (zn)n convergent to 1. Consequently, 
the constructed f is in fact not continuous in x0. Actually, the characterization gives that E has the Schur 
property if and only if A(D, Ew) = A(D, E). Now, it is a natural question to ask if Au(BX , Ew) ∩C(BX , E) =
Au(BX , E) when E does not have the Schur property. We see below that in general the answer is negative.

Theorem 2.11. If the complex Banach space E does not have the Schur property then there exists a complex 
Banach space X such that

Au(BX , Ew) ∩ C(BX , E) � Au(BX , E).

Proof. Let (xn) be a sequence on the unit sphere of E weakly convergent to 0. We consider f : Bl2 → E, 
(zn)n →

∑
znnxn. For each (zn)n in Bl2 we have 

∑
|zn|n ≤ 1 +

∑
n≥2 |zn|2 ≤ 2, hence f is well defined and 

bounded. We check now that f is continuous. We fix z = (zn)n ∈ Bl2 . Let 0 < ε < 1. There exists n0 such 
that

‖(zn)n≥n0‖2 =

⎛
⎝ ∑

n≥n0

|zn|2
⎞
⎠

1/2

< ε/4.

We have
∑
n≥n0

|zn|n ≤
∑
n≥n0

|zn|2 = ‖(zn)n≥n0‖2
2 < ‖(zn)n≥n0‖2 < ε/4.

If t = (tn)n ∈ Bl2 and ‖z − t‖2 < ε/4 then also

‖(zn)n≥n0 − (tn)n≥n0‖2 < ε/4,

and hence

‖(tn)n≥n0‖2 ≤ ‖(tn − zn)n≥n0‖2 + ‖(zn)n≥n0‖2 < ε/2.

This yields

∑
|tn|n ≤

∑
|tn|2 = ‖(tn)n≥n0‖2

2 ≤ ‖(tn)n≥n0‖2 < ε/2.

n≥n0 n≥n0
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We get now 0 < δ < ε/4 such that ‖z − t‖2 < δ implies

n0−1∑
n=1

|znn − tnn| <
ε

4 .

For this δ we get that ‖z − t‖2 < δ implies

‖f(z) − f(t)‖ = ‖
∑
n

(znn − tnn)xn‖ ≤
n0−1∑
n=1

|znn − tnn| +
∑
n≥n0

|zn|n +
∑
n≥n0

|tn|n < ε.

Hence f is continuous.
Let u ∈ E∗ and z = (zn)n ∈ Bl2 . The series

u ◦ f(z) =
∑

znnu(xn), z = (zn)n ∈ Bl2

is uniformly convergent on Bl2 , i.e. the series converges in Au(Bl2). This follows from the convergence to 0 
of (u(xn))n and the estimate ∑

n

|zn|n ≤ 1 + ‖z‖2
2 ≤ 2

for each z = (zn)n ∈ Bl2 .
To finish we observe that∥∥∥∥f(en) − f

(
n− 1
n

en

)∥∥∥∥ = 1 −
(
n− 1
n

)n

→ 1 − e−1,

and hence f is not uniformly continuous. �
There exists another natural extension to the infinite dimensional setting of the algebra of the disk, it is 

the Banach algebra of holomorphic, bounded and continuous functions on the closed ball of a Banach space 
defined as

A∞(BX , E) = {f : BX → E : f ∈ H∞(BX , E) ∩ C(BX , E)},

endowed with the supremum norm, where H∞(BX , E) denotes the space of all holomorphic and bounded 
mappings from BX into E.

The corresponding analogue with the weak topology is

A∞(BX , Ew) = {f : BX → Ew) : f ∈ H∞(BX , Ew)) ∩ C(BX , Ew)}.

One has here the following inclusions

Au(BX , E) ⊆ A∞(BX , E) ⊆ A∞(BX , Ew).

Analogues to Theorems 2.7 and 2.11 hold, and give in part (a) the following characterization.

Theorem 2.12.

(a) Let X and E be complex Banach spaces. The space E has the Schur property if and only if

A∞(BX , E) = A∞(BX , Ew).
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(b) If the complex Banach space E does not have the Schur property there exists a complex Banach space X

for which

Au(BX , E) � A∞(BX , E) ∩Au(BX , Ew)

3. Banach algebras

Since holomorphic functions, continuous and bounded uniformly continuous functions remain stable under 
products, it is immediate that Au(BX , E) and A∞(BX , E) are Banach algebras whenever E is. Additionally, 
Au(BX , Ew) and A∞(BX , Ew) are contained in H∞(BX , E), the Banach space of all bounded holomorphic 
functions from BX into E. Hence, for f, g ∈ Au(BX , Ew), respectively f, g ∈ A∞(BX , Ew), we have

‖fg‖ = sup
x∈BX

‖f(x)g(x)‖ ≤ sup
x∈BX

‖f(x)‖‖g(x)‖ = ‖f‖g‖.

Thus, fg ∈ H∞(BX , E), respectively fg ∈ H∞(BX , E) ∩ C∞(BX , F ), where C∞(BX , F ) is the Banach 
space of all bounded continuous mappings on the closed unit ball BX with values in F .

Our aim in this section is to study, if we assume that E is a Banach algebra, when the Banach spaces 
Au(BX , Ew) and A∞(BX , Ew) are Banach algebras.

Let us observe that as a consequence of Theorem 2.7, if E is a Banach algebra with the Schur property 
(e.g. �1) then Au(BX , Ew) = Au(BX , E), and hence, Au(BX , Ew) is a Banach algebra too.

Proposition 3.1. Let E be a Banach subalgebra of C(K), the Banach algebra of complex valued continuous 
functions on a Hausdorff compact space K endowed with the supremum norm. The following hold.

(a) A∞(BX , Ew) is a Banach algebra.
(b) Au(BX , Ew) is a Banach algebra.

Proof. To see (a), let f, g ∈ A∞(BX , Ew) and (xn)n be a sequence in BX convergent in norm to x ∈ BX . 
Then (f(xn)g(xn))n is a sequence of continuous functions on K which is uniformly bounded and pointwise 
convergent to f(x)g(x), i.e. for each z ∈ K f(xn)(z)g(xn)(z) converges to f(x)(z)g(x)(z). By Dominated 
Convergence Lebesgue’s theorem, for each regular measure μ in K we get

lim
n

∫
K

f(xn)(z)g(xn)(z)dμ(z) =
∫
K

f(x)(z)g(x)(z)dμ(z).

We conclude from Hahn–Banach theorem and Riesz representation theorem that f(xn)g(xn) tends weakly 
to f(x)g(x), and we have obtained that fg ∈ A∞(BX , Ew).

Now we prove (b). Let M(E) be the maximal ideal space of E and f, g ∈ Au(BX , Ew). Since Au(BX , Ew)
is a subspace of A∞(BX , Ew), part (a) implies that u ◦ fg is continuous for each u ∈ M(E). Suppose that 
there exists u ∈ E∗ such that u ◦ fg is not uniformly continuous. Then there exist ε > 0 and two sequences 
(xn)n and (yn)n in BX such that ‖xn − yn‖ → 0 but |u ◦ fg(xn) − u ◦ fg(yn)| > ε for every n. Let z ∈ K.

|δz(f(xn)g(xn) − f(yn)g(yn))| = |f(xn)(z)g(xn)(z) − f(yn)(z)g(yn)(z)|

≤ |f(xn)(z)(g(xn)(z) − g(yn)(z))| + |g(yn)(z)(f(xn)(z) − f(yn)(z))|

≤ ‖f‖|g(xn)(z) − g(yn)(z)| + ‖g‖|f(xn)(z) − f(yn)(z)|,



JID:YJMAA AID:20120 /FLA Doctopic: Functional Analysis [m3L; v1.172; Prn:18/01/2016; 15:03] P.9 (1-11)
D. García et al. / J. Math. Anal. Appl. ••• (••••) •••–••• 9
and the right hand side tends to 0 since δz ∈ E∗ and δz ◦ f and δz ◦ g are uniformly continuous. Now, the 
Riesz representation theorem and the Hahn–Banach theorem yield that there exists a regular measure μ
on K such that

u(x) =
∫
K

x(z)dμ(z)

for each x ∈ E. Since (f(xn)g(xn) − f(yn)g(yn))n ⊂ E is a bounded sequence which tends pointwise to 0, 
we have that, Dominated Convergence Lebesgue’s theorem yields

u ◦ fg(xn) − u ◦ fg(yn) = lim
n

∫
K

(f(xn)(z)g(xn)(z) − f(yn)(z)g(yn)(z))dμ(z) = 0,

a contradiction. �
Proposition 3.2. Let E be a Banach algebra such that span(M(E)) is dense in E∗. Then both A∞(BX , Ew)
and Au(BX , Ew) are Banach algebras.

Proof. We prove the statement for Au(BX , Ew), the proof for A∞(BX , Ew) is analogous. We observe that 
if f, g ∈ Au(BX , Ew), then u ◦ fg is uniformly continuous for each u ∈ span(M(E)), since such a u can 
be written u =

∑k
i=1 aimi, with ai ∈ C and mi ∈ M(E), and m ◦ (fg) = (m ◦ f)(m ◦ g) is a uniformly 

continuous function for each m ∈ M(E). Assume that both f and g are in the unit ball of Au(BX , E), and 
then

sup
x∈BX

‖f(x)g(x)‖ ≤ sup
x∈BX

‖f(x)‖‖g(x)‖ ≤ 1.

Let v ∈ E∗, let ε > 0 and let u ∈ span(M(E)) such that ‖v − u‖ < ε/3. There exists 0 < δ < 1 such that 
x, y ∈ BX and ‖x − y‖ < δ imply |u ◦ (fg)(x) − u ◦ (fg)(y)| < ε/3. Now, for x, y ∈ BX and ‖x − y‖ < δ, we 
have

|v ◦ (fg)(x) − v ◦ (fg)(y)| ≤ |(v − u) ◦ (fg)(x)| + |(u− v) ◦ (fg)(y)| + |u ◦ (fg)(x) − u ◦ (fg)(y)| < ε. �
Let G be a compact topological group, let 1 ≤ p < ∞ and let Lp(G) be the space of all functions 

f : G → C with f measurable and |f |p integrable with respect to the Haar measure. These spaces are 
Banach algebras with respect to the convolution [8, 5.21, p. 135].

Corollary 3.3. Let G be an abelian compact topological group and let 1 < p < ∞, we have that 
Au(BX , Lp(G)w) is a Banach algebra.

Proof. Let denote Ĝ its dual group formed by all the characters. For ξ ∈ Ĝ the abstract Fourier transform 
f̂ : Ĝ → C is defined by

f̂(ξ) =
∫
G

〈x, ξ〉f(x)dx.

By [8, Theorem 4.2], the maximal ideal space M(L1(G)) of L1(G) is completely determined by the Fourier 
transform, i.e. for ξ ∈ Ĝ, if we define

Λξ(f) := f̂(ξ), f ∈ L1(G),
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then

M(L1(G)) = {Λξ : ξ ∈ Ĝ}.

Moreover, Lp(G) ⊂ L1(G) for 1 < p < ∞. Thus

M(Lp(G)) = {Λξ : ξ ∈ Ĝ}, 1 < p < ∞.

Now, for each 1 < p < ∞, Lp(G) is a reflexive Banach algebra and M(Lp(G)) is separating in Lp(G) by the 
Fourier Uniqueness theorem [8, 4.33]. Hence, the reflexivity of Lp(G) yields that the span of M(Lp(G)) is 
dense in Lq(G), with 1/p + 1/q = 1. The result now follows from Proposition 3.2. �
Remark 3.4.

(a) As a particular case of the above corollary we can take as G the torus T, the finite product of the torus 
TN or the countable product of the copies of the torus TN. In these cases the characters are Z, the 
finite product ZN and the countable direct sum Z(N) respectively, and the abstract Fourier transform 
becomes the usual Fourier transform.

(b) c0 satisfies the hypothesis of both Proposition 3.1 and Proposition 3.2. But, in general, Proposition 3.2
cannot be applied to C(K) for an arbitrary compact space K, because the maximal ideal space M(C(K))
of C(K), that coincides with the set {δx : x ∈ K} of the evaluations at points of K, is not a total subset 
of C(K)∗, i.e. they do not separate points in C(K)∗∗. Indeed, let K be a perfect Hausdorff compact set 
and let m be a regular measure on K satisfying that all singletons have measure zero. This happens 
if K ⊂ Rn and m is the Lebesgue measure or if K is an infinite compact group and m is the Haar 
measure. Let us assume without loss of generality m(K) = 1. Under these hypotheses, m cannot be 
approached by a finite linear combination of evaluations.
Let 1 > δ > 0. We denote m(f) =

∫
K
fdm. Let {x1, . . . , xn} ⊂ K and {a1, . . . , an} ∈ C be arbitrary. 

Let U be an open neighborhood of {x1, . . . , xn} with m(U) < δ. Let V be a closed neighborhood of 
{x1, . . . , xn} contained in U . We apply Uryshon’s Lemma to get a positive function f in the closed unit 
ball of C(K) such that f |V = 0 and fK\U = 1. We have now m(f) > 1 − δ since f is positive and 
identically 1 in K \ U and m(K \ U) > 1 − δ. Moreover 

∑
aif(xi) = 0. Thus

||m−
n∑

i=1
aiδxi

‖| ≥ |m(f) −
∑

aif(xi)| > 1 − δ.

Hence the evaluations at points of K is not a total subset of C(K)∗. Further, we have proved that the 
distance of m to the closed span of {δx : x ∈ K} is 1.
Reciprocally, the Banach algebras Lp(G) with respect to the convolution �, where G is an abelian 
compact topological group and 1 < p < ∞, are not subalgebras of any C(K), since there exists f in 
Lp(G) such that ‖f � f‖ < ‖f‖2. Hence Lp(G) fulfills the hypothesis of Proposition 3.2 but not the one 
of Proposition 3.1.
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