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Using a diffeomorphism between the unit sphere and a closed hyperplane of an 
infinite dimensional Banach space, we introduce the differentiation of a function 
defined on the unit sphere, and show that a continuous linear functional attains 
its norm if and only if it has a critical point on the unit sphere. Furthermore, we 
provide a strong version of the Bishop–Phelps–Bollobás theorem for a Lipschitz 
smooth Banach space.
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1. Main results

Let X be a Banach space and SX be its unit sphere. A continuous linear functional f ∈ X∗ is said to 
attain its norm if there exists x0 ∈ SX such that |f(x0)| = ||f ||, i.e. |f | has a maximum on SX . The point 
x0 is called a “norming point” of f . The first cornerstone in studying norm-attaining linear functionals is 
James’ characterization [8] of a reflexive Banach space, which says that every continuous linear functional 
on X attains its norm if and only if X is reflexive. After the celebrated Bishop–Phelps theorem [3], “for a 
Banach space X, the set of all norm-attaining linear functionals is dense in X∗” appeared in 1961, a lot of 
attention has been paid to the study of this property for linear operators between Banach spaces.

In this short paper we want to show that a norming point x0 ∈ SX of f is a critical point of f , that 
is, f ′(x0) = 0. However, from the concept of the Frechét differentiation of f we have f ′(x0) = f . Hence 
we introduce a concept of the differentiation of a function f defined on SX , which is compatible with the 
differentiation on a manifold.

We now assume that X is a Banach space with a Cp smooth norm (1 ≤ p ≤ ∞). For every z ∈ SX , we 
denote by H−z the hyperplane tangent to SX at −z. Let πz be the stereographic projection from SX \ {z}
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onto H−z. The desired manifold structure on SX is defined by the family {πz | z ∈ SX}. It is easily checked 
that SX is a Cp submanifold, modelled on a codimension one, closed linear subspace X0 of X [10, II, §2, 
Example]. Let Ψ be a diffeomorphism from a closed hyperplane H of a Banach space X onto SX . For 
f : SX → R we define DfΨ : SX → H∗ by DfΨ(u)(h) := D(f ◦ Ψ)(Ψ−1(u))(h) for u ∈ SX and h ∈ H, 
where D is the Frechét differentiation. We say that f has a “critical point” at u ∈ SX if DfΨ(u) = 0 for 
some diffeomorphism Ψ from a closed hyperplane H of a Banach space X onto SX .

For its well-definedness, it is easy to check that given diffeomorphisms Ψ1 : H1 → SX and Ψ2 : H2 → SX , 
DfΨ1(u) = 0 if and only if DfΨ2(u) = 0. Indeed,

D(f ◦ Ψ1)(Ψ−1
1 (u)) = D(f ◦ Ψ2 ◦ Ψ−1

2 ◦ Ψ1)(Ψ−1
1 (u))

= D(f ◦ Ψ2)(Ψ−1
2 (u)) ◦D(Ψ−1

2 ◦ Ψ1)(Ψ−1
1 (u)).

Since Ψ−1
2 ◦ Ψ1 is a diffeomorphism, D(Ψ−1

2 ◦ Ψ1)(Ψ−1
1 (u)) ∈ L(H1, H2) is an isomorphism.

In 1966, C. Bessaga [2] proved that every infinite dimensional Hilbert space is C∞ diffeomorphic to its 
unit sphere. By improving Bessaga’s non-complete technique, H.T. Dobrowolski [5] proved in 1979 that 
every infinite dimensional Banach space X which is linearly injectable into some c0(Γ) is C∞ diffeomorphic 
to X \ {0}. More generally, Azagra [1] showed the following result in 1997.

Theorem 1.1. (See [1, Theorem 1].) Let X be an infinite dimensional Banach space with a Cp smooth norm, 
where p ∈ N ∪ {∞}. Then for every closed hyperplane H in X, there exists a Cp diffeomorphism between 
SX and H.

From now on, let Ψ denote the Cp diffeomorphism from H onto SX given in the above theorem.

Theorem 1.2. Let X be an infinite dimensional Banach space with a Cp smooth norm (1 ≤ p ≤ ∞). Then 
f ∈ SX∗ attains its norm at u ∈ SX if and only if f |SX

has a critical point at u ∈ SX .

Proof. Suppose f attains its norm at u ∈ SX . For each vector h ∈ H, ‖h‖ = 1 we define g : R → R by 
g(λ) = f ◦Ψ(λh + Ψ−1(u)). Then it is clear that g is differentiable on R and also attains either a maximum 
or a minimum at λ = 0. Hence g′(0) = 0 = D(f ◦ Ψ)(Ψ−1(u))(h), which implies that DfΨ(u) = 0.

For the proof of the other implication it is enough to show that if 0 ≤ f(x1) < 1 at x1 ∈ SX , then 
DfΨ(x1) 	= 0. Choose x2 ∈ SX with f(x2) > f(x1) and define γ : [0, 1] → H by

γ(s) := Ψ−1
(

x1 + s(x2 − x1)
‖x1 + s(x2 − x1)‖

)
.

Since s 
→
(

x1+s(x2−x1)
‖x1+s(x2−x1)‖

)
is Cp, so is γ(s). We first want to show that

0 < lim
s→0+

f(Ψ ◦ γ(s)) − f(x1)
‖Ψ ◦ γ(s) − x1‖

.

Since ‖x1 + s(x2 − x1)‖ ≤ 1 for s ∈ [0, 1], it follows that

sf(x2 − x1) = f(x1 + s(x2 − x1)) − f(x1) ≤ f(Ψ ◦ γ(s)) − f(x1).

Put z = s(x2 − x1), and we have

‖Ψ ◦ γ(s) − x1‖ =
∥∥∥x1+z−x1‖x1+z‖

‖x1+z‖

∥∥∥ =
∥∥∥ (x1+z)(1−‖x1+z‖)+z‖x1+z‖

‖x1+z‖

∥∥∥
≤ |1 − ‖x + z‖| + ‖z‖ ≤ 2‖z‖ = 2s‖x − x ‖.
1 2 1
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Combined with the above inequality, for every s ∈ [0, 1] we have

0 <
f(x2 − x1)
2‖x2 − x1‖

≤ f(Ψ ◦ γ(s)) − f(x1)
‖Ψ ◦ γ(s) − x1‖

,

hence we are done.
Suppose that DfΨ(x1) = 0, i.e. D(f ◦ Ψ)(Ψ−1(x1)) = 0. By the chain rule, we have

Df(x1) ◦DΨ(Ψ−1(x1)) = 0.

Note that

DΨ : H → L(H,X) and Df : X → X∗.

Since Df(x1) = f ∈ X∗, the above equality implies that

DΨ(Ψ−1(x1))(h) ⊆ ker(f)

for every h ∈ H. Hence for every s ∈ [0, 1]

D(Ψ ◦ γ)(0)(s) = DΨ(Ψ−1(x1)) ◦Dγ(0)(s) ⊆ ker f.

We note that the Taylor expansion of (Ψ ◦ γ)(s) at 0 gives us

(Ψ ◦ γ)(s) = (Ψ ◦ γ)(0) + D(Ψ ◦ γ)(0)(s) + o(s).

Now we want to show that D(Ψ ◦ γ)(0) > 0. Indeed,

D(Ψ ◦ γ)(0) = lims→0+
‖Ψ◦γ(s)−Ψ◦γ(0)‖

s

= lims→0+

∥∥∥x1+s(x2−x1)−x1‖x1+s(x2−x1)‖
s‖x1+s(x2−x1)‖

∥∥∥
= lims→0+

∥∥x1
s + (x2 − x1) − x1

s ‖x1 + s(x2 − x1)‖
∥∥ · 1

‖x1+s(x2−x1)‖

= lims→0+

∥∥∥x1

(
1−‖x1+s(x2−x1)‖

s − 1
)

+ x2

∥∥∥
> 0,

where the last inequality follows from the fact that x1 and x2 are linearly independent. Since D(Ψ ◦γ)(0) > 0, 
we obtain the following contradiction

0 < lim
s→0+

f(Ψ ◦ γ(s)) − f(x1)
‖Ψ ◦ γ(s) − x1‖

= lim
s→0+

[f(Ψ ◦ γ(s)) − f(Ψ ◦ γ(0))] /s
‖Ψ ◦ γ(s) − Ψ ◦ γ(0)‖/s

= lim
s→0+

f(o(s)s )
D(Ψ ◦ γ)(0) = 0,

which implies that DfΨ(x1) 	= 0 for every x1 ∈ SX with 0 ≤ f(x1) < 1. �
We recall that S.K. Kim and H.J. Lee [9, Theorem 3, Corollary 4] proved that a Banach space X is 

uniformly convex if and only if for every ε > 0 there is 0 < η(ε) < 1 such that for all f ∈ SX∗ and 
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all x ∈ BX satisfying |f(x)| > 1 − η(ε), there exists x0 ∈ SX satisfying |f(x0)| = 1 and ‖x − x0‖ < ε. In 
particular, a reflexive Banach space X is uniformly smooth if and only if for every ε > 0 there is 0 < η(ε) < 1
such that for all f ∈ SX∗ and all x ∈ BX satisfying |f(x)| > 1 − η(ε), there exists f0 ∈ SX∗ satisfying 
|f0(x)| = 1 and ‖f − f0‖ < ε. Applying the diffeomorphisms in the proof of [1, Theorem 1] we obtain the 
following strong version of the Bishop–Phelps–Bollobás theorem for a Lipschitz smooth Banach space. We 
say that a Banach space X is Lipschitz smooth if its norm ‖ · ‖ is Frechét differentiable on SX and the 
mapping x ∈ SX → D‖ · ‖(x) ∈ SX∗ is Lipschitz. Note that a Banach space X is uniformly smooth if and 
only if its norm ‖ ·‖ is Frechét differentiable on SX and the mapping x ∈ SX → D‖ ·‖(x) ∈ SX∗ is uniformly 
continuous (see [7, Fact 9.7]).

Theorem 1.3. Let X be a Lipschitz smooth Banach space and 0 < ε < 1
8 . Then there exist a constant a > 0

(depending only on X) and β(ε) with limε→0+ β(ε) = 0 such that for all f ∈ SX∗ and all z ∈ SX satisfying 
f(z) > 1 − aε2, there exists f0 ∈ SX∗ satisfying |f0(z)| = 1 and ‖f − f0‖ < β(ε).

Before we give its proof, we first explain some materials we need. When SX does not contain any line 
segment passing through −z ∈ SX , the explicit formula for the stereographic projection πz from SX \ {−z}
onto Hz = {x : D‖ · ‖(z)(x) = 1}, a hyperplane of X, is that

πz(x) = −z + 2z∗(z)
z∗(z + x) (x + z) = −z + 2

1 + z∗(x) (x + z),

where x ∈ SX\{−z} and z∗ = ‖ · ‖′(z) (see [6]). It is also known that its inverse is represented as π−1
z (y) =

−z+ t(y) · (y+ z), where the mapping y 
→ t(y) is C1 [6, Lemma 4]. Then its derivative can be expressed as

Dπ−1
z (y)(h) = t(y)h + Dt(y)(h)(y + z). (1.1)

We also note that D‖ ·‖(x) has norm less than or equal to 1 for every x 	= 0 in X. In fact, for an arbitrary 
h 	= 0 in X and k > 0, we have the Taylor expansion

‖x + kh‖ = ‖x‖ + D‖ · ‖(x)(kh) + R(kh) ≤ ‖x‖ + ‖kh‖.

By dividing by ‖kh‖, we have

D‖ · ‖(x)
(

h

‖h‖

)
+ R(kh)

‖kh‖ ≤ 1.

Since R(kh) = o(‖kh‖), the conclusion follows as k → 0.
As in the proof of [1, Theorem 1], there are a convex body V , which is diffeomorphic to BX , and a C1

diffeomorphism g̃1 from ∂V \ {−z} onto SX \ {−z}, where ∂V does not contain any line segment passing 
through −z. Since g̃1(x) = λ(x)x with 0 ≤ λ(x) < ∞, λ(x) is C1 (see [1,4]). We can also choose a C1

smooth bump function ϕ whose support is contained in B(z; 12 ) and ϕ(x) = 1 for x ∈ B(z; 14 ). Define

g1(x) := (1 − ϕ(x))λ(x)x + ϕ(x)x.

Then g1 : X → X is a C1 smooth diffeomorphism and g1(x) = x for every x ∈ B(z; 14 ). There is also a C1

diffeomorphism from SX \ {−z} onto SX , which we denote by g2.
Further, setting Hz = {x ∈ X : D‖ · ‖(z)(x) = z∗(x) = 1}, we can have a C1 smooth stereographic 

projection

πz : ∂V \ {−z} → Hz,
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and denote π−1
z by ψ. Let H0 = Hz − z, which is a closed subspace of X. Define ι(h) : Hz → H0 by 

ι(h) = h − z. We can easily verify that the C1 diffeomorphism g2 ◦ g1 ◦ ψ ◦ ι−1 from H0 onto SX satisfies

g2 ◦ g1 ◦ ψ ◦ ι−1(0) = g2 ◦ g1 ◦ ψ(z) = g2 ◦ g1(z) = g2(z) = z.

More precisely, g2 ◦ g1(x) = x for every x ∈ B(z; 14 ). Furthermore, we can see that

g2 ◦ g1|ψ(B(z; 18 )∩H) = Id.

Indeed, for every y ∈ H0 with ‖y‖ ≤ δ < 1
8 it follows from ‖ψ(y + z)‖ = 1 that

1 = ‖(2t(y + z) − 1)z + t(y + z)y‖ ≤ |2t(y + z) − 1| + δt(y + z).

Since 0 ≤ t(y + z) ≤ 1, we can deduce |2t(y + z) − 1| = 2t(y + z) − 1 and

2
2 + δ

≤ t(y + z) ≤ 1, (1.2)

and

‖ψ(y + z) − z‖ = ‖2(1 − t(y + z))(−z) + t(y + z)y‖ ≤ 2(1 − t(y + z)) + δ ≤ 2δ, (1.3)

Equation (1.3) reveals that

ψ

(
B

(
z; 1

8

)
∩H

)
⊂ B

(
ψ(z); 1

4

)
= B

(
z; 1

4

)
.

From the definition of ϕ it follows that g1|B(z; 14 ) = Id. The proof of the fact that g2|SX∩B(z; 14 ) = Id can be 
found in [1] by adapting the construction of the diffeomorphism g2 between SX \{−z} and SX . We are now 
ready to prove Theorem 1.3.

Proof of Theorem 1.3. Note that for every y ∈ H0 with ‖y‖ ≤ 1
8 , ‖g1 ◦ ψ ◦ ι−1(y)‖ = 1. By differentiating 

both sides, we get for every h ∈ H0

0 = D‖ · ‖(g1(ψ(ι−1(y)))) ◦D(g1 ◦ ψ ◦ ι−1(y))(h)

= D‖ · ‖(g1(ψ(ι−1(y)))) ◦Dg1(ψ(ι−1(y))) ◦Dψ(ι−1(y)) ◦Dι−1(y)(h)

= D‖ · ‖(g1(ψ(y + z))) ◦Dg1(ψ(y + z)) ◦ (t(y + z)h + Dt(y + z)(h)(y + z + z))

= t(y + z)(D‖ · ‖(g1(ψ(y + z))) ◦Dg1(ψ(y + z))(h)

+ Dt(y + z)(h)(D‖ · ‖(g1(ψ(y + z))) ◦Dg1(ψ(y + z))(y + z + z)),

which yields that

Dt(y + z)(h) = − t(y + z)
w∗(y + 2z)w

∗(h), (1.4)

where w∗ = D‖ · ‖(g1(ψ(y + z)) ◦Dg1(ψ(y + z)).
By assumption we have

f(z) = (f ◦ g2 ◦ g1 ◦ ψ ◦ ι−1)(0) > 1 − aε2,
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where a > 0 is the constant in the Deville–Godefroy–Zizler variational principle [11, Theorem 4.10]. By this 
variational principle there exist φ : H0 → R and x0 ∈ H0 such that (f ◦ g2 ◦ g1 ◦ ψ ◦ ι−1 + φ) has strong 
maximum at x0 and

‖φ‖∞ ≤ ε, ‖Dφ‖∞ ≤ ε and ‖x0‖ ≤ ε.

Clearly we get D(f ◦ g2 ◦ g1 ◦ ψ ◦ ι−1 + φ)(x0) = 0, which implies that

‖D(f ◦ g2 ◦ g1 ◦ ψ ◦ ι−1)(x0)‖H0 ≤ ε. (1.5)

It follows from Equation (1.1) and Df(x) = f ∈ X∗ that

D(f ◦ g2 ◦ g1 ◦ ψ ◦ ι−1)(x0)(h) = Df(ψ(x0 + z)) ◦Dψ(x0 + z)(h)

= t(x0 + z) · f(h) + Dt(x0 + z)(h) · f(x0 + 2z)

Equation (1.4) yields that

D(f ◦ g2 ◦ g1 ◦ ψ ◦ ι−1)(x0)(h) = t(x0 + z) ·
{
f(h) − f(x0 + 2z)

w∗(x0 + 2z)w
∗(h)

}
, (1.6)

where w∗ = ‖ · ‖′(g1(ψ(x0 + z))) ◦Dg1(ψ(x0 + z)) = ‖ · ‖′(ψ(x0 + z)). Note that w∗(ψ(x0 + z)) = 1. From 
Equation (1.3) we can check easily that

2 − 5ε ≤ w∗(x0 + 2z) ≤ 2 + ε.

Since 1 − 2ε < 1 − ε2, we also have

2 − 5ε
2 + ε

≤ f(x0 + 2z)
w∗(x0 + 2z) ≤ 2 + ε

2 − 5ε . (1.7)

Then it follows from Equations (1.2), (1.5), (1.6) and (1.7) that

|f(h) − w∗(h)| ≤
∣∣∣∣f(h) − f(x0 + 2z)

w∗(x0 + 2z)w
∗(h)

∣∣∣∣ +
∣∣∣∣ f(x0 + 2z)
w∗(x0 + 2z) − 1

∣∣∣∣ ≤ ε

(
2 + ε

2

)
+ 6ε

2 − 5ε .

We can easily check that (f −w∗)(z) ≤ 2ε. Since X = H0 ⊕ [z], there is a norm one projection from X onto 
[z], and we can see that

‖f − w∗‖ ≤ 2ε
[(

2 + ε

2

)
+ 6

2 − 5ε + 1
]
< 18ε.

Let M > 0 be the Lipschitz constant such that

‖‖ · ‖′(x) − ‖ · ‖′(y)‖ ≤ M‖x− y‖,

for every x, y ∈ SX . Then it follows from (1.3) that

‖f − z∗‖ ≤ ‖f − w∗‖ + ‖w∗ − z∗‖ ≤ 2ε(M + 9),

where z∗ = ‖ · ‖′(z). Set β(ε) = 2ε(M + 9), which completes the proof. �
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