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1. Main results

Let X be a Banach space and Sy be its unit sphere. A continuous linear functional f € X* is said to
attain its norm if there exists o € Sx such that |f(zo)| = ||f]|, i-e. |f] has a maximum on Sx. The point
xo is called a “norming point” of f. The first cornerstone in studying norm-attaining linear functionals is
James’ characterization [8] of a reflexive Banach space, which says that every continuous linear functional
on X attains its norm if and only if X is reflexive. After the celebrated Bishop—Phelps theorem [3], “for a
Banach space X, the set of all norm-attaining linear functionals is dense in X*” appeared in 1961, a lot of
attention has been paid to the study of this property for linear operators between Banach spaces.

In this short paper we want to show that a norming point zy € Sx of f is a critical point of f, that
is, f'(zo) = 0. However, from the concept of the Frechét differentiation of f we have f’(z9) = f. Hence
we introduce a concept of the differentiation of a function f defined on Sx, which is compatible with the
differentiation on a manifold.

We now assume that X is a Banach space with a C? smooth norm (1 < p < c0). For every z € Sx, we
denote by H_, the hyperplane tangent to Sx at —z. Let 7, be the stereographic projection from Sx \ {z}
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onto H_,. The desired manifold structure on Sx is defined by the family {7, | z € Sx}. It is easily checked
that Sx is a CP submanifold, modelled on a codimension one, closed linear subspace Xy of X [10, 1T, §2,
Example|. Let ¥ be a diffeomorphism from a closed hyperplane H of a Banach space X onto Sx. For
f:Sx — R we define Dfy : Sx — H* by Dfy(u)(h) := D(f o ¥)(¥~1(u))(h) for u € Sx and h € H,
where D is the Frechét differentiation. We say that f has a “critical point” at v € Sx if Dfy(u) = 0 for
some diffeomorphism ¥ from a closed hyperplane H of a Banach space X onto Sx.

For its well-definedness, it is easy to check that given diffeomorphisms ¥, : H; — Sx and ¥, : H, — Sk,
D fy,(u) =0 if and only if D fy,(u) = 0. Indeed,

D(f o 1) (W7 (u)) = D(f oWy 0 Wy 0 Wy)(¥7 (u)
= D(f o Wa)(¥5 ' (u)) o D(W3 " 0 Ty)(¥ " (u).

Since U, ! o W, is a diffeomorphism, D(¥5! o Uy )(¥; (u)) € L(Hy, Hy) is an isomorphism.

In 1966, C. Bessaga [2] proved that every infinite dimensional Hilbert space is C*° diffeomorphic to its
unit sphere. By improving Bessaga’s non-complete technique, H.T. Dobrowolski [5] proved in 1979 that
every infinite dimensional Banach space X which is linearly injectable into some ¢y(I") is C*° diffeomorphic
to X \ {0}. More generally, Azagra [1] showed the following result in 1997.

Theorem 1.1. (See [1, Theorem 1].) Let X be an infinite dimensional Banach space with a C? smooth norm,
where p € NU {oo}. Then for every closed hyperplane H in X, there exists a CP diffeomorphism between
Sx and H.

From now on, let ¥ denote the C? diffeomorphism from H onto Sx given in the above theorem.

Theorem 1.2. Let X be an infinite dimensional Banach space with a CP smooth norm (1 < p < oo). Then
f € Sx~ attains its norm at u € Sx if and only if f|s, has a critical point at v € Sx.

Proof. Suppose f attains its norm at u € Sx. For each vector h € H, ||h|| = 1 we define g : R — R by
g(\) = foW(Ah+U~1(u)). Then it is clear that g is differentiable on R and also attains either a maximum
or a minimum at A = 0. Hence ¢'(0) = 0 = D(f o ¥)(¥~!(u))(h), which implies that D fg(u) = 0.

For the proof of the other implication it is enough to show that if 0 < f(z1) < 1 at 1 € Sx, then
Dfyg(z1) # 0. Choose zo € Sx with f(x2) > f(z1) and define « : [0,1] — H by

() = U1 ( x1 + s(x2 — x1) >

21+ s(w2 — 21)]

lz1+s(z2—z1)]|

Since s — (M) is C?, so is y(s). We first want to show that

Since ||z1 + s(ze — x1)]] < 1 for s € [0, 1], it follows that

sf(za — 1) = [+ s(w2 —21)) — f(21) < (¥ or(s)) — fa1).
Put z = s(z2 — 1), and we have
z1tz—a |z +2| ‘: (@1+2)A=|lz1+2])+2]lz1+2]]
llz1+=]l lz1+=]l

< -z + 2| + 2] < 2||z]| = 2]z — 24 ]]-
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Combined with the above inequality, for every s € [0, 1] we have

f(xg — 1) < f(Wor(s)) — flx1)

0< <
2||zg — 1| [ ov(s) —

hence we are done.
Suppose that D fy(z1) = 0, i.e. D(f o W)(¥~1(z1)) = 0. By the chain rule, we have

Df(z1) o DU(T(z1)) = 0.
Note that
DV :H — L(H,X) and Df:X — X*.
Since Df(xz1) = f € X*, the above equality implies that
DU (U™ (21))(h) C ker(f)
for every h € H. Hence for every s € [0, 1]
D(W 07)(0)(s) = DU(T~ (1)) 0 DA(0)(s) C ker .
We note that the Taylor expansion of (¥ o «)(s) at 0 gives us
(Woy)(s) = (W or)(0) + D(Woy)(0)(s) + ofs).
Now we want to show that D(¥ o~)(0) > 0. Indeed,

D(W 07)(0) = lim, o+ 1T1=22 Ol

S

= limg_,o+ xl+s(x2;|?1)+_sz!f1;§\(lw2_xl)” H

= lim,o+ |2 + (z2 — 21) — L2y + s(z2 — z1)]]| - \|zl+s(glc2—m1)\|
= lim,_ o+ ||21 (M - 1) +$2H

> 0,

where the last inequality follows from the fact that z; and x4 are linearly independent. Since D(¥o~)(0) > 0,
we obtain the following contradiction

o A
~ B Dwen@

which implies that D fg (1) # 0 for every x1 € Sx with 0 < f(z1) < 1. O

We recall that S.K. Kim and H.J. Lee [9, Theorem 3, Corollary 4] proved that a Banach space X is
uniformly convex if and only if for every € > 0 there is 0 < n(e) < 1 such that for all f € Sx. and
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all € Bx satisfying |f(x)| > 1 — n(e), there exists zg € Sx satisfying |f(zo)| = 1 and ||z — 2| < €. In
particular, a reflexive Banach space X is uniformly smooth if and only if for every € > 0 there is 0 < n(e) < 1
such that for all f € Sx, and all z € Bx satisfying |f(z)| > 1 — n(e), there exists fo € Sx. satisfying
|fo(x)] = 1 and ||f — fol| < e. Applying the diffeomorphisms in the proof of [1, Theorem 1] we obtain the
following strong version of the Bishop—Phelps—Bollobés theorem for a Lipschitz smooth Banach space. We
say that a Banach space X is Lipschitz smooth if its norm || - || is Frechét differentiable on Sx and the
mapping © € Sx — D|| - ||(z) € Sx~ is Lipschitz. Note that a Banach space X is uniformly smooth if and
only if its norm || - || is Frechét differentiable on Sx and the mapping € Sx — D||-||(z) € Sx~ is uniformly
continuous (see [7, Fact 9.7]).

Theorem 1.3. Let X be a Lipschitz smooth Banach space and 0 < € < %. Then there exist a constant a > 0
(depending only on X ) and B(e) with lim. o+ B(€) = 0 such that for all f € Sx. and all z € Sx satisfying
f(2) > 1 —a€?, there exists fo € Sx. satisfying |fo(2)] =1 and || f — fol < B(e).

Before we give its proof, we first explain some materials we need. When Sx does not contain any line
segment passing through —z € S, the explicit formula for the stereographic projection m, from Sx \ {—z}
onto H, = {x: D| - ||(2)(z) = 1}, a hyperplane of X, is that

B 22*%(2) B 2
m(2) = Z+z*(z+x)(x+z)7 Z+1+z*(x)(x+z)’
where z € Sx\{—z} and z* = || - ||'(2) (see [6]). It is also known that its inverse is represented as 7, !(y) =

—2+t(y) - (y + 2), where the mapping y + t(y) is C* [6, Lemma 4]. Then its derivative can be expressed as

DrZ ' (y)(h) = t(y)h+ Dt(y)(h)(y + 2). (1.1)

We also note that D||-||(z) has norm less than or equal to 1 for every = # 0 in X. In fact, for an arbitrary
h # 0 in X and k > 0, we have the Taylor expansion

[ + Eh|l =[] + DIl - [[(2)(kh) + R(kh) < [[z]| + [[Eh]]

By dividing by ||kh||, we have

h\ R(kh)
Dl (m) TR <t

Since R(kh) = o(]|kh||), the conclusion follows as k — 0.

As in the proof of [1, Theorem 1], there are a convex body V/, which is diffeomorphic to Bx, and a C*
diffeomorphism ¢; from OV \ {—z} onto Sx \ {—z}, where OV does not contain any line segment passing
through —z. Since g(z) = A(x)x with 0 < A\(z) < oo, A(x) is C! (see [1,4]). We can also choose a C*
smooth bump function ¢ whose support is contained in B(z; 3) and ¢(z) = 1 for « € B(z; ). Define

g1(x) == (1 — p(z))\=z)z + 0(T)2.

Then g, : X — X is a C! smooth diffeomorphism and g;(z) = « for every € B(z; ;). There is also a C*
diffeomorphism from Sx \ {—z} onto Sx, which we denote by gs.

Further, setting H, = {z € X : D| - ||(2)(z) = z*(x) = 1}, we can have a C! smooth stereographic
projection

my OV A\ {—2} = H,,

Please cite this article in press as: D.H. Cho, Y.S. Choi, Norming points and critical points, J. Math. Anal. Appl. (2016),
http://dx.doi.org/10.1016/j.jmaa.2016.02.030




Doctopic: Functional Analysis YJMAA:20203

D.H. Cho, Y.S. Choi / J. Math. Anal. Appl. e e e (e eee) eee—oese 5

771 by 4. Let Hy = H, — z, which is a closed subspace of X. Define ¢(h) : H, — Hp by

and denote 7

t(h) = h — z. We can easily verify that the C'* diffeomorphism gy 0 g1 09 0t =! from Hy onto Sy satisfies

g2ogioor H(0)=gs0g10(z) =gaogi(z) =go(z) = 2.

More precisely, g o g1(z) = x for every x € B(z; i) Furthermore, we can see that

92 © 91l y(B(z1ynm) = 1d-
Indeed, for every y € Hy with |jy|| < & < & it follows from [[¢(y + 2)|| =1 that
L= 2ty +2) = Dz +ty + 2)yll < [26(y + 2) — 1] + 5t(y + 2).

Since 0 < t(y + z) < 1, we can deduce |2¢t(y + z) — 1| = 2t(y + z) — 1 and

2

<ty +2) < (12)

and

[9(y +2) — 2l = [12(1 = t(y + 2))(=2) + t(y + 2)yll < 2(1 —t(y + 2)) + 6 < 26, (1.3)

Equation (1.3) reveals that

o( (=5 nm) cn(sr) =n (1),

From the definition of ¢ it follows that 91|B(z;i) = Id. The proof of the fact that 92|SXOB(Z;%) = Id can be
found in [1] by adapting the construction of the diffeomorphism gs between Sx \ {—z} and Sx. We are now
ready to prove Theorem 1.3.

Proof of Theorem 1.3. Note that for every y € Hy with |ly|| < %, llg1 0¥ o t7Y(y)|| = 1. By differentiating
both sides, we get for every h € Hy

0= D [l(g1(¥ (™ (1)) © D(g1 09 017 (y))(h)
= DI - (g1 (™ (1)) o Dgr (¥ (e~ (y))) © DY (2 (y)) o D~ () (h)
= D[ - [(91(4(y + 2))) o Dg1(d(y + 2)) © (t(y + 2)h + Di(y + 2)(h)(y + 2 + 2))
= t(y+2)(D[| - [(91(¥(y + 2))) o Dga(¢b(y + 2))(h)
+ Di(y + 2)(R)(D| - [[(91(#(y + 2))) © Dga (¢ (y + 2))(y + = + 2)),

which yields that

Dit(y + 2)(h) = —%w*(h% (1.4)

where w* = D|| - [[(91(¢(y + 2)) o Dga (d(y + 2)).

By assumption we have

f(z)=(fogzogioor™)(0) >1~ae,

Please cite this article in press as: D.H. Cho, Y.S. Choi, Norming points and critical points, J. Math. Anal. Appl. (2016),
http://dx.doi.org/10.1016/j.jmaa.2016.02.030




Doctopic: Functional Analysis YJMAA:20203

6 D.H. Cho, Y.S. Choi / J. Math. Anal. Appl. e e e (eeee) eee—oee

where a > 0 is the constant in the Deville-Godefroy—Zizler variational principle [11, Theorem 4.10]. By this
variational principle there exist ¢ : Hy — R and z9 € Hy such that (f o ga 0 g1 09 o171 + ¢) has strong
maximum at xg and
[0lloc <€ [[DPlloc <€ and [lzof <e.
Clearly we get D(fogaog109 o017t + ¢)(x) = 0, which implies that
ID(fogz0g10¢ 0™ ) (zo)lm, < e (1.5)

It follows from Equation (1.1) and Df(z) = f € X* that

D(f 09209108007 ) (wo)(h) = Df(t(xo + 2)) o Dib(o + 2)(h)
= t(wo +2) - (h) + Dt(wo + 2)(h) - flzo +22)

Equation (1.4) yields that

—1 _ f(x + 2’2) *
D(fogmog oo ao)h) = o+ ) {10 - L2 ur iy}, (16)
where w* = || - ||'(g1(¥(xg + 2))) 0 Dg1(¢¥(zo + 2)) = || - ||'(¥(zo + 2)). Note that w*((xg + 2)) = 1. From

Equation (1.3) we can check easily that
2-be<w (zog+2z) <2+e

Since 1 — 2e < 1 — €2, we also have

2—56S f(zo + 22) < 2+e' (1.7)
24€ ~ w(xg+22) ~ 2—D5e
Then it follows from Equations (1.2), (1.5), (1.6) and (1.7) that

flzo+22)
)] +

[F(h) — w*(h)| < |f(R) - M_1’§6<2+e)+ 6e

w*(zg + 22) 2 2 — be’

We can easily check that (f —w*)(z) < 2e. Since X = Hy @ [z], there is a norm one projection from X onto
[2], and we can see that

24¢€ 6
—w¥| <2 —+1 18e.
IIf w|_e{< 5 )+2_56+}< €

Let M > 0 be the Lipschitz constant such that
-1 @) =11 @)l < Mz =yl
for every z,y € Sx. Then it follows from (1.3) that
If = 2% < |If = w™[| + [lw* — 27| < 2e(M +9),

where z* = || - ||'(2). Set B(e) = 2¢(M + 9), which completes the proof. O
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