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Abstract

We show that the only polynomial sets with a generating function of the form
F(at — R(t)) and satisfying a three-term recursion relation are the monomial
set and the rescaled ultraspherical, Hermite, and Chebyshev polynomials of the
first kind.
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1. Introduction and main result

The problem of describing all or just orthogonal polynomials generated by
a specific generating function has been investigated by many authors (see for
example [1, 2, 3, 4, 5, 6, 7, 8, 9]). For the special case, where the generating
function has the form F(xt — at?), the authors in [2], [5] and [10] used different
methods to show that the orthogonal polynomials are Hermite and ultraspher-

ical polynomials. Recently in [4], the author gave a motivation of this question
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and found, even if F is a formal power series, that the orthogonal polynomials
are the ultraspherical, Hermite and Chebychev polynomials of the first kind.
Moreover, for F' corresponding to Chebychev polynomials of the first kind, he
showed that these polynomials remain the only orthogonal polynomials with
generating function of the form F(a2U(t) — R(t)), where U(t) and R(t) are for-
mal power series. A natural question, as mentioned in [4], is to describe (all or

just orthogonal) polynomials with generating functions
F(zU(t) — R(t)).

In this paper, we consider the subclass case F'(zt = R(t)) = 3, 5 anPn ()"
where the polynomial set (not necessary orthogonal) {P,},>¢ satisfies a three-

term recursion relation. The main result obtained here is the following;:

Theorem 1. Let F(t) =3 oo ant™ and R(t) =, - Rat™/n be formal power
series where {ay,} and {R,} are complex sequences with ag = 1 and Ry = 0.
Define the polynomial set {P,}n>0 by
F(ot = R(t) =Y anPa(a)t". (1)
n>0
If this polynomial set (which is automatically monic) satisfies the three-term

recursion relation

IL’Pn(:Z?) - n+1(1’) + 6npn(x) + wnPn—l(x)a n Z 07
Pfl(.’L') == 0, Po(.’l,') =1

(2)

where {6} and {w,} are complex sequences, then we have:

a) If R, = 0 and a, # 0 for n > 1, then R(t) = 0, F(t) is arbitrary and
F(zt) =3, 5 ana™t" generates the monomials {x" }>0.

b) If a1 Ry # 0, then R(t) = Rot?*/2 and the polynomial sets {Py,}n>0 are the

rescaled ultraspherical, Hermite and Chebychev polynomials of the first kind.

In the above theorem, let us remark that there is no loss of generality in
assuming ap = 1 and R; = 0. Indeed, we can choose the generating function
Y+ F((z+R)t—R(t)) = 71+72 2,50 @nPn(z+R1)t" for suitable constants
y1 and 7.
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The proof of theorem 1 will be given in section 3. For that purpose some
preliminary results must be developed first in section 2. We end the paper by a

brief concluding section.

2. Preliminary results

This section contains two propositions and some related corollaries which

are the important ingredients used for the proof of Theorem 1.

Proposition 1. Let {P,},>0 be a monic polynomial set generated by (1). Then

we have

n
anzPl (z) — ZRkHan_kP,,’L_k(x) =na,P,(x), n>1. (3)
k=1

PRrROOF. By combining the two derivatives %L; and %—Vtv of the generating func-

tion W(x,t) = F(xt — R(t)), we obtain

@-R’(t))%’ :t%v. (4)

The substitution of the right-hand side of (1) and R'(t) =3_ 5, Rut1t" in (4)
gives

x — Z Ry qt" Z a, PL(x)t" = Z an P (x)nt™. (5)

n>0 n>0 n>0

After a resummation procedure in left hand side, namely:

Z Ry qt" Z a, PL(x)t" | = Z ( R;HlankP,’Lk(x)) "
k=0

n>0 n>0 n>0

and a t" coefficients comparison in (5), the result (3) of proposition 1 follows.

Corollary 1. Let {P,},>0 be a monic polynomial set generated by (1). If
a1 Rs # 0 then o, # 0 forn > 2.

PROOF. In fact suppose that a,, = 0 for an ng > 2. Then (3) implies that
Riyian,— =0 for k=1,....,n9 — 1. In particular Roap,—1 =0 for k=1 gives
Qng—1 = 0 since Ry # 0. By induction we arrive at oy = 0 which contradicts

the premise o; # 0.
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Corollary 2. Let a1 Ry # 0. If the polynomial set {P,} generated by (1) is

symmetric, then

Roiy1 =0, forl>1.

PROOF. The polynomial set { P, } is symmetric means that P, (—z) = (=1)"P,(z)
for n > 0. The substitution x — —z in equation (3) minus equation (3) itself

left us with
(11— (=D YHRpi10p =0, for1<k<n-—1.
So, by Corollary 1, we have Rg;11 =0, for [ > 1, and R(t) = Zk21 %t%.
Proposition 2. Let ay Ry # 0 and define
Ty an

Ty = Roy,, (k>1), a, = , (n>0) and ¢, =
b= Rap, (B2 1), an =520, (2 0) and e = =7

@ n

Wn, (n>1). (6)

For the monic polynomial set generated by (1) and satisfying (2) we have:

a)
Bn =0, forn>0. (7)

b)
Wp =na, — (n—Day_1, forn>1. (8)

c)

475 n—3a,_3 n+1 2n n—1

221 = = — > 3. 9
T3 ( n—2 ap ) an an,l—i_an,z7 forn = 9)

d)

2 n—2k—1 n+2 n—2k+1
— \an — ————(——Qpn—2k—1 Tk+1 + n Cn — Cn—2k+1 Tk ==

Ty n — 2k n—2k+2
k
T Tk—1+1
= >2 >2 1. (1
Z sy for k> 2 and n > 2k + 1. (10)
PRroOOF. By differentiating (2) we get
2P, (%) + Pu(@) = Py () + BBy (2) + wn Py (11)



Then by making the combinations na, Eq(11) + Eq(3) and Eq(3) — o, Eq(11)

we obtain, respectively,

(n+ 1)ayzPy(z) = noy, (Pl 1 (2) 4+ B Ph(z) + wan Py () + z_: Rii10,— 1P (z) (12)
k=1

and

(n+ 1)anPy(z) = oy (P41 () + BuPl(x) + wn P Z Ry p10n—k Py (). (13)

Multiplying (13) by x and using (2) in the left-hand side gives

(n+ Doy (Pry1(z) + BnPo(z) + wpProa(z)) = (xpn-i-l( )+ anpvlz(x) + wnxpn 1(@)
— > Rpsran P, (o). (14)
k=1

For the left-hand side (resp. the right-hand side) of (14) we use (13) (resp.
(12)) to get

n+1
n+2

n+1l o,
n+2an+1

(879 (Pvlz+2( )+/Bn+1 n+1( )+wn+1prlz(x)) - ZRk+1an k-‘rlPL k+1( )

+anﬁn ( n+1( ) s BnP’I’/L(m) + Wwn 7/171(‘7;)) - ﬁn Z Rk+1anfkprlkk(x)

n—2

wnZRk+10‘n—k’ 1PL p-1(2) =
k=1

ZRk+1an k1P gy ()

n+1 o,

n. Qp-1

n+1

+ Apln (P;z(x) + 6"—1P7/L—1('r) + wn—1P7lz—2(‘T)) -

1 Qo
n+2 ny1 %

n—+1
n+ 2

an (Pryo(7) + Bur1 Ppy (o) + wona P (@) +

+ Qnfn ( ntl T 5nP +wn P, 1 ﬂn Z RkJrlO‘n*kPrlsz(x)

n+1

n—2

/
W Y Ripr0n-i—1 Py (@)
k=1

n—1 1 a,

+ QnWn (Pn( )+ B Py 1 () +W7L—1P7/L—2(33)) + -

n Qp—1

1
n—=k
- ; Rya manfk (P'r/Lkarl(m) + Bk Pp_j () + wn,kal,k,l(m))

n—1 n—k—1

Ry /
. e 1
E Gkt 12:1 Riyian g1 Py_y_ (), (15)
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which can be simplified to

1
Z Ryy1am— k+1Pn k+1( ) + ——au ( n+1( ) + ﬂnP;z(x) + Wnpvlz 1(1'))
anﬂ n+1
n—1
_n+ 2 2
nt lﬁn Z Ryt100, -1 P, k(x) + Eanwn (P’rll(x) + ﬁnflprlhl(x) + wnflprlh2(x))
n—2
n+2 o, —k
T an ; Rpr0m—p—1Pp_p 1 (2) + Z Rt k 1k P (@) + B Py (2)
n—1 R n—k—1
k+1
+wn_kP —k— 1 + Z n—Fk 1 ; Rl_t,_lan_k_lp,:,‘_k_l(x) =0. (16)

From (16), the coefficient of P} (z) is null, so we get (7) which means that
the polynomial set {P,} is symmetric, see [11, Theorem 4.3]. Therefore, by
Corollary 2, the odd part of the R-sequence is null and a computation of the
coefficients of P (x), P,,_,(x) and {P)_ | _,.(%)}n>k>4 in (16) yields

n—1

— Wy, = Ro o, — Ro ap_1, form>1, (17)
n Un41
« n+2 « n—3 n—1 R2
—OpWpWp—1 = R4 L Qp—2 + RZ L Qp—2Wn — R47an—3 - RQ Qp—1Wnp—1 — Jan—%
n Qpt1 n  Qp_1 n—2 n
for n > 3, (18)
and
o, n—k  o,_p n+2 o, n—Fk+2an ko
R - + Ry — W—
k+1 <an+1 n—k+1 ank+1> k—1 ( n a1 Wn, n—k +3Oén7k+1 n—k+2
k—2
Ry Ry
= n>k>5.(19
Z n—k+1+2’ 2k 25.(19)
respectively.

Finally, by using the notations (6), substituting for w,, from (17) into (18) and
by shifting (k,1) — (2k + 1,2/ — 1) in (19) we obtain (8), (9) and (10).

In the following corollaries we adopt the same conditions and notations of

Proposition 2.

Corollary 3. If To = 0 then R(t) = T1t?/2. In this case, the polynomials gen-
erated by F(xt —T1t?/2) and satisfying (2) reduce to the rescaled ultraspherical,
Hermite and Chebychev polynomials of the first kind.
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PrROOF. We will use (10) and proceed by induction on k to show that T = 0
for k > 3. Indeed k = 2 and n = 5 in (10) leads to 2a575/7; = 0 and since
an, # 0 by Corollary 1 we get T35 = 0. Suppose that T5 =Ty = ... =T = 0.
Then for n = 2k + 1 the equation (10) gives 2as;41Tk+1/71 = 0 and finally
Ti+1 = 0. Accordingly, R(t) = T1t?/2 and the generating function (1) takes the
form F (xt — Tit?/2). Now, we make use of (9) (with Ty # 0 and 75 = 0) and
proceed as in [4] to get the ultraspherical, Hermite and Chebyshev polynomials
of the first kind.

Corollary 4. If T, =T,+1 =0 for some k > 3, then Ty = 0.

TiTr_141

PROOF. Let k = & in (10). Then for n > 2 + 1 the fraction Y77 | J=5=r

as
function of integer n, is null even for real n. Multiplying by n — 2x + 2] and
tends n to 2k — 2] we find T)T};_;+1 = 0 for 1 <[ < g which is T57T};_1 = 0 when
[ = 2. Supposing Tb # 0 leads to T,,_1 = 0. So T,_1 = T,, = 0 and with the
same procedure we find T,,_o = 0. Going so on till we arrive at T, = 0 which

contradicts T # 0.
Corollary 5. If R(t) is a polynomial then R(t) = Tit?/2.

PROOF. If R(t) is a polynomial then for some x > 2, T}, = 0 whenever k > x. By
Corollary 4, since T,; = T,;+1 = 0, we conclude that 75 = 0 and by Corollary 3
that 7, = 0 for k > 3.

Corollary 6. If a,, is a rational function of n then Ty = 0.

PROOF. Observe that ¢,, = T1 (nay,/an—1 — (n — 1)) /2 will also a rational func-
tion of n. Then it follows that, in (10), two fractions are equal for natural
numbers n > 2k + 1, k > 2 and consequently will be for real numbers n. If
we denote by Ny (F(x)) the number of singularities of a rational function F(x)
then we can easily verify, for all rational functions F and F of z and a constant
a # 0, that:

8) Ny(F(z +a)) = Ny(F (),

b) Ny(aF(x)) = Ny(F (),



o ¢) Ny(F(z) + F(z)) < No(F(z)) + No(F(2)).
Using property a) of N; we have

n—2k—1 n n—2k+1 n
Ny | ———an—2x— =Ns | ——ay, st 57, otn— =Ng|——cn |-
( n_ok (nok 1) <n+1“>an (n—2k+QC 2’““) <n+1c>

According to properties b) and c) of Nj, the N of the left-hand side of (10)
is finite and independent of k. Thus, the right-hand side of (10) has a finite
number of singularities which is independent of k. As consequence there exists
a ko for which T)Ty_;+1 = 0 for all k > kg and kg <[ < k. Taking successively
w k=ky=1land k =ko+1=1we get Ty, = Ti,+1 = 0. Then, by Corollary 4

we have T, = 0.

Remark 1. The fact that a, is a rational function of n means that F(z) =

Y ons0 n2™ is a series of hypergeometric type.
Corollary 7. If T, =T, =0 for some k # m > 3, then Ty = 0.

ws  PROOF. If T;11 = 0 or T}, 41 = 0 then by Corollary 4 we have T, = 0. Suppose
that T11 # 0 and T;p,41 # 0. Take k = k and k = m in (10) to get, respectively,

K

2 —2rk—1 T, —
= (an _ u‘an_%_l) Ter1 = Z T4l for n > 2k +1, (20)

Ty n— 2k —n—2k+20
and
2 n—2m-—1 N A A
= a, - —— ne9me1 | Tona1 = — A >2 1.
T (a n—om 1) = ;n—2m+2l orn = am
(21)
The operation Eq(20)/T.+1 — Eq(21)/Ty41 gives
n—2m-—1 n—2k—1
5 On-2m-1— T 5 Un—-2k—-1 = . 22
o Gn—2m-1 g On—2k-1 Q1(n) (22)

o Assuming m > k and replacing n by n 4+ 2m + 1 (resp. n + 2m — 2x) in (22)
(resp. (21)) leads to

n n—+2m — 2k
Ay —
n+1 n—+2m—2k+1

Ap4-2m—2k = Ql(n + 2m + 1) (23)



and
n—2k-—1

An+2m—2k — Ap—2k—1 = QQ (TL +2m — 2’1) (24)

n— 2k

Now T1Eq(20)/(2T,+1) — Eq(24) is the equation
Ay, — An+42m—2k = Q3 (n) (25)

Multiplying (25) by ;252225 and using (23) we find

n n+2m — 2k
n+1l n+2m-—2k+1

) an = Quln). (26)

us  Since the Q;(n) (i = 1..4) functions, the right-hand sides of (22), (23), (24),
(25) and (26), are rational functions of n then a,, is also a rational function of

n; and by Corollary 6 we deduce Tb = 0.

Corollary 8. The following equality is true for k > 3 and n > 2k + 3.

k-1
Ty—1Dpy1(an — Gn-2k—3) = Top1 Di(an-n — nok1) = Yy ——>——, (27)

where
120 o Dy =Ti Ty 111 — Tp1 Tk
® Dy =Dy =T — Tip1Tho1.

o Vii =2 (T\Ths1D—1,-1 — Ti+1Tk—1Dyy).

PRrROOF. Denoting the equation (10) by E(k,n) then (27) is the result of the

operation
Tk+1 (Tk_lE(k, n) — TkE(k — 1, n — 2))7Tk_1 (TkE(k + ]., n) — Tk_HE(k, n — 2)) .

Now we are in a position to prove Theorem 1.
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3. Proof of Theorem 1

The proof of a)
As Ry = Ry = 0, it is enough to show by induction that R,, = 0 for n > 3. For
n = 1,2,3, the equation (3) gives Pi(z) = x, Py(x) = 2% and P3(0) = —%STO;R
But according to equation (2), for n = 2, P5(0) = 0 and then R3 = 0. Now
assume that Ry = 0 for 2 < k < n — 1. According to (3) we have, for 2 < k <
n—1, P,(0) =0 and P,(0) = fZ"TO:. On other hand, by the shift n —+n—11in
(2) we have P,(0) = 0 and thus R, = 0. As R(t) = 0, the generating function
(1) reduces to F'(zt) = >, -, anz™t™ which generates the monomials with F(t)
arbitrary.

The proof of b)
According to Corollary 3, it is sufficient to prove that T = 0. In the sequel we

will investigate three cases:

Case 1: There exists ky > 3 such that Dy £ 0 for k > k.
Considering Corollary 7 we can choose k > kg such that Tj, # 0 for k > k—1.
Let, for k > k, Dy = 725 and E(k,n) be the equation (27) divided by
Ty 1Tk Thq1.

By making the operations
Dk_lE(kj, n —+ 2) — DkE(k‘ —1, ’I’L) — DkE(ki,’l’L) + D]H_lE(k —1,n— 2),

we can eliminate a,_s;—3 and a,_or—1 and keeping only, for £ > k+ 1, the

following equation

k
Wi

= _ § : _ 1
Ap42 — Qp—4 — Dk(an - 0%—2) = = (TL), (28)
—n— 2k + 21

where W}, ; is independent of n and

b Dﬁ + DyDi—1 + DDy 41
k = — = .
Dy_1Dy11

Similarly, after eliminating a,, and a,_2 by the operations

Dy 1E(k,n+2) — Dy 1 E(k —1,n+2) — Dy_1E(k,n) + DyE(k — 1,n) (29)

10



and then shifting n — n + 2k 4+ 1 in (29) we obtain
Gny2 — n-s — Dilin — Gn_2) = Y ——— = Q}" (n), (30)

where kal is independent of n.

Now, for k # k > k + 1, the equations (28) and (30) give, respectively,
(Dx = Dy){an = an-2) = Q1" (n) — QM (n) (31)

1o and

(D — Di) ( e f) =M -QPm). ()

If Dy, # D, for some k # x > k + 1, then by (31) and (32) we can eliminate
an—2 to get that a, is a rational function of n. So, by Corollary 6, we have
T5 = 0.

If Dy = D for k >k +1, then (28) and (30) become, respectively,

an+2 — Qp—4 — D(an - an—?) = ](fl) (n) (33)

15 and

Gint2 — fn_a — D(an — in_2) = Q" (n). (34)

The subtraction Eq(33) — Eq(34) leads to

Un 42 Up—4 2% Ap—2 (2)
_ _-D(l=_ _ = ) 35
n+3 n-3 (n+1 nl) Qi () (35)

Then the combinations (F¢(33) — (n + 3)Eq(35)) /2 and (Eq(33)—(n—3)Eq(35))/2

give, respectively,

30y_4 an 202\ . (3)
n—3 D( n+1+n1)_ k() (36)
and
3an+2 2ay, Ap—2 (4)
— D — - — ) = .
n+3 (n+1 nl) Qi () (37)

160 By shifting n — n + 2 in (36) we obtain

3an_2 _D (_ An+4-2 2ay,

n—1 n+3 n—i—l): ](63)(n+2)' (38)

11
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The elimination of a,42 and a,_s by the operations DEq(37) —3FE¢(38) and
3Eq(37) — DEq(38), respectively, yields

6D — 2D? D?—-9

)]
n+1 an + n—1 Up—2 = Jy, (n) (39>
and
9 — D? 6D — 2D? (6)

a, = Q" (n). (40)

Finally, the shifting n — n — 2 in (40) leads to

n-+3 fnt2 = n+1

9—D2a _6D—2D2
n+1 " n—1

tn2 = Q (n=2) (41)
and the operation (6D — 2D?)Eq(39) + (D? — 9)Eq(41) gives
(6D —2D%) + (D* - 9)|a, = Q" (n). (42)

According to manipulations made above, ij) (n) is a rational function of n.
So, if D # 3, a, is a rational function of n and then Ty = 0.

Now, we explore the case D = 3. We have from (36) and (37):

O ) =3 (@ ) - 1+ 3)QF ) = 5 (0 + 38 () — (0 +2)QL (m)

(43)
and
O =3 (@ )~ -3 QP ) = 5 (0 =3 m) — (n - HQL ().

(44)
Remark that Q,(j) (n),1<j<4,and @,&1) (n) are independent of k. Observe
also that, according to the left-hand sides of (36) and (37) for D = 3, we have

3 9 4
](C ) ( v ) I(i: ) (”) .
From (43) and (44) we get

(n+49@Q) (1+2) (1= 9 () = (1 +5) QL (1 +2) ~ (1 =3 QY (n).
(45)
In (45) two rational functions are equal for natural numbers and are so for real

numbers. By using the expressions of Q,(cl) (n) and é,&l) (n) (see (28) and (30))

12



we find that

k k
1) (1) (n + 4)W;€7l (n — 4)Wk,l

4 2)—(n—14 = NPT R T )WL
(@7 (n+2) — (n = 4)Q," (n) Zn+2—2k+21 Zn—2k+21

=1 =1
Wik  (2k—6)Wg1

= — 46
n—+2 n—2k+2 (46)

. M2k — 2+ )Wy — (2k — 21 — )Wy,
n — 2k + 21 '

=2

and

A _
(n+5Q (n+2)—(n-3)Q (n) = Y (47)

. GWk,l (2k — 2)Wk,k n i (72[ + 4)Wk,l—1 + (21 + 4)Wk,l

n+3 n+2k+3 n+2l+1

Observe that the singularities of (46) are even numbers, whereas the singularities

of (47) are odd ones. So, we should have
Wik =Wpa = Wm = Wk,k =0,

(2]{1 — 2l + 4)Wk,l—1 — (Qk — 20 — 4)Wk,l =0

and

(—21 + 4)Wk,zf1 + (2l + 4)Wk,l =0

s for 2 <[ < k. Since k > k+1 > 4 and by induction on [ all the W ; and kal
are null. Thus, (33) reads

Apyo — Up_g — 3(ay — an—_z) = 0. (48)
The solution of (48) has the form
an = (C1 + Con + C3n®) (=1)" + Cy + Csn + Cgn®. (49)

Using (49) for n even, the left-hand side of (10) is a rational function of n
with finite number of singularities. So, by the same arguments as in Corollary

10 6 we obtain To = 0.

13
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Case 2: There exists ky > 3 such that D, = 0 for k > kg.

Suppose that Dy = T,f — Tk—1Tx+1 = 0 for all k > kg. First, notice that if
there exists a k1 > ko such that Ty, = 0, then T, _17%,+1 = 0. So, T, -1 =0
or T, +1 = 0 and by Corollary 4, To = 0. We have also Tj,_1 # 0, otherwise
Ty, = 0 and by Corollary 4, 15 = 0.

Now, for T}, # 0 (k > ko — 1), we have

Tyt T, Tk,
pu— p— . 50
T, Tho1 Try—1 (50)

T k—ko
Ty = < ko ) Ty, = ab (51)
where a = T,f(?ﬁl/T,i?*l and b = Ty, /Tiy—1-
The substitution of Ty, by ab”® in (10) for k > kg leads to the equation

k
2 n—2k—1 n+2 n—2k+1 bk Ty
b (an - an—2k—1)+ Cn— Cn—2k+1 = g S
n a

T n — 2k n—2k+2 lzln—2k+2l

(52)
Let denote (52) by E (k,n) and make the subtraction E (k 4+ 1,n + 2) — E (k,n)

This means that

to get
2 n+4 n+ 2
= b(an APy = 2) — . 53
7 (Gnt2 — )+n+26 +2 - Qr+1(n+2) — Qp (n) (53)

On the right hand side of (53) we have, for k > kg, the expression

~ bR TiT e T
Q) = Qi+ - Qeln)=—] l; 2k+21_72n—2k+21

bR T Ty bR T (T — bTy) | bR
k+141 + k( 2 1) +

k‘

—1
Ty (Th—142 — bTh—141)

a n+2 a n a = n — 2k + 2l
k—1
T To—bTy bkt T (Th—i+2 — bThk—141)
- 4
n—|—2Jr bn + Z n— 2k + 2l (54)

=1
from which we deduce

T Ty — by b %2 E T (Th g — bT
1 + 2 1+ Z l( k—I1+3 k l+2)
n-+2 bn a n—2k—2+21

Qi1 (n)
=1
o k=1

T n Ty — b1y n b=k—2 Z Ti41 (Th—i42 — bTh—141)

n+2 bn a = n — 2k + 21

(55)

14
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s Now since the left hand side of equation (53) is independent of k, it follows

b*kalT — b1 (T, T
Z 141 1) (Th—i42 k—1+41) —0. (56)

Qi (n) = (n n— 2k + 2I

=1

As aresult, for 1 <[ <k —1 and k > kg, we have
(Ti41 = 0T1) (T 142 — bTk—141) = 0. (57)

Let take k = 2 (ko —2) — 1 and | = ko — 2 to get (Tr,—1 — bTk,—2)°> = 0 and
then Tj,—1 = bTk,—2, (or equivalently Dy,_1 = 0). Thus, the equations (50)
and (51) are valid for £ = kg — 1 and by induction we arrive at Ty = bT3, (or
a0 equivalently Dy = 0). For k = 4, the right-hand side of (27) is null. So, V42 =0
and using Ts = T2 /T3 (from Dy = 0) we get D3 = 0.
On the other side suppose that T5 # 0, then we can write

k—2
Ty, = <> Ty = ab®, for k > 2,

where b = T3/T» and a = T /T%. Therefore, the equation (52) reads

b n—2k—1 +n—|-2 n—2k+1
n— ————————Cy—2h— Cpn — Cp— =
T n — 2k N n n—2k+2 k1

k—1

L n ab
S Y g k>2andn>2k+1. (58
T +Zn—2k+2l o andn = 2k -+ (58)

When n = 2k + 1 and n = 2k + 2, the equation (58) gives

2 2k + 3 2 T

—b —_— — 59

T, Ty T 32ty +2k+1 (59)

and
k—1

2 k+2 1 3 T T ab
—b b — —_— 60
T a2k+2+k+162k+2 Tal + C3+4+2k+2+221+2 (60)

205 respectively. Let take n = 2N 41 in (58) and use (59) to obtain the expres-

sion
N-1
2. .0, N ab 2(N — k)b 2 2N — k) +2
302+ 3 TNt 2N +1 * ; 1+20 2(N—k) _|_1T1a2(N—k) (N — k) +3CQ(N—k)+2

k—1
T1 T ab
2(N7k)+3+2N+1+;2(ka)+2l+1'

15



In this last equality let put N — k instead of k to get

ko2 2ky2 _gc_g_Nz‘:l b, Ty +N‘Z’“:‘1 ab
2+ 1Ty ¢ 2,43 KT T 37T 3 l21+2z 2%k+3 " & 2k +2+1
k
2 T1
= —Ze- L 1
3 2k+3 . (61)
After defining A; = % + %f’ + va Ay = —%%2 — % and Az = 7;1 and
making the operation
1 [2k+2 k42
— (222 Eg(60) + —= Eq(61
k+2<2k+3 9(60) + 3o Pl )>
we have
2k +1) 2 2%k 2
(k+2)2k+3) 11 2*) T G+ D)2k +1) T 2
_ Ak Ay A As L %2 ’“i 1 ’“i a
(k+2)2k+3)  k+1 (k+1)(2k+3)  (k+2)(2k+3) 1222+2l FH1420+1
241 24, A5 | Ayt Ag Lo, 1 ’“i a
N 2k +3 k+2 k+1 2k+3 k42 l+1 k41 20+ 1
B, By B3 1 1 1 1 a 5
= = )V (k41— Tkt 62
k+2+k+§+k+1+a(k+2 2k+§> kD=5 55 <+2>’ (62)

where short notations By = (=3/2 +~v)a+2A; — Az, Bo = (3/4 —v/2)a— Ay,
20 Bg=(—v/2—-1n(2)+4/3)a+ Ay + As, (7 is Euler’s constant) are introduced

as well as ¥U(z) which stands for the Digamma function.

Taking
U 2k 2
=
P kT DEkr LT
and
B, By Bs 1 11 1 5
G(k+1 - = v (k 1—77\11 k
(k+1) = k+2 k+3 k+1+a<k+2 2k+g) (k+1) 2k+1 <+2>’

(63)
then (62) can be written in compact form as

Upr1 — U =G(k+1).

16



The later recurrence is easily solved to give

k
Up=Us+ Y G(j).

j=4
By using the formula ¥(j+1) = ¥(j) + 1/j and the relations [12, Theorems
3.1 and 3.2)

Z’“:xl/(z+a)+z’“:\p(z+ﬁ+1)

o =kt at DUk B41) - U(a)U(B), (64)

BEYEE % [@/(k+B+1)—W'(B)+W(k+B+1)* - ¥(A?, (65)
§=0

215 we obtain

B 2k 2 a 9 a_, 3
Uk = DR T T S (W (k+2)° + BiW (k+2)+ 50 w+2%h&@<k+2>+
O (k4 3) 4By ) Uk 1)+ 45 (66)
2 2 8 k+1 ' %

From (66) we deduce the asymptotic behaviour of agy, as k — oo:

2 3 1 3a 5a a 3a 64 05 Og

= (o (ke ) 420 2 O O ) (k)4 Gak st 2 28 %

T, (1( +2+2k>+'4*'mk+3%ﬁ P )1ﬁ)+2 Tt et et
(67)

where coefficients 0; are defined by (higher terms are omitted)

01 = By + By + Bs,
25 352 11
(52— <’Y—E> B1+ <’Y+2h’1(2)—m> B2+ <’Y—6) B3

107 3439 11 2 3
In(2) — -~ L ) 2
+<(M) 2w>7+2m0 g @ m>“+7ﬂa“

5323314—32—&-%33-#%&4-;527
542%31-1—%324-%33-&-%60-&-%52,
55=é31+%32+533+%a,
56:—3*1031-#%32—%33—%@’

17



At this step we should remark that limg_, o, asi, = oo for all §;, 1 =1,2,3, ...,
since a # 0.
220 Recall that ¢, = T} (nap/an,—1 — (n — 1)) /2, then the equation (59) can be

written as

L2+ 3) = 6(), (68)

b 2 +
A2k+1 T, 2 agn

where
T, 2k(2k + 3) ; ab
_ LRk s) PR
5 k1 2+ a1t T

=2

¢ (k)

o If we suppose limy_, o ¢ = 00, then from (68) we deduce on one side

azk+1 sl T?
. T i
_ PTS W 69
kovoo 2k + 1 kvoo 25 4 TLZRES = (69)
1

a2k

On the other side, for n = 2k + 3, (9) reads

(70)

4T2< 2k asp )_2k+4_22k+3+2k+2

T 2k + 1 aspy3 a2} +3 gk+2  G2k41

Under the assumption Ty # 0, (70) admits the limit oo = 8b/T%, as k — oo,
2s  which exhibit a contradiction.

e Now if limy oo GE =11 # 0, then from (68) we have

o $(k) i

2k+1 . 2k+1 2

m ——=1 = = = 1. (71)
20 | 71 2k+3 20 | Ty

k—oo 2k +1 k— o0 T —+ 2 “aon T T

Equation (9) becomes, for n = 2k + 2,

(72)

475 2k — 1 agp—1 2k + 3 2k+2 2k+1
T} 2k asp+2 a2k 42 a2k+1 asy

And if we assume that 75 # 0 and 72 = oo, then the limit process k — oo in
(72) left us with the contradiction co = 2/m;. But if 12 # oo, then by taking

20 the limit in (70) and (72) we obtain, respectively,
7 2 N2 M

17 m) m  m

and



235

240

245

250

Adding the two later we get 2 — ny/n2 — n2/m = 0 and therefore 71 = ns.
According to (71) 71 = 0 which is in contradiction with the initial hypothesis

m # 0.
e Finally if limy o, 5% = 0, then from (71) and (68) we have respectively

limyg o 5225 = 0 and

2k+1
- (k)
fim === Jim ﬁknzmszl
k—oo Qg k— o0 T —+ ok
. . . . askr2 . o Ay
Similarly, from (60) we obtain limy_, s = 1. Now, since lim,, o %> =0

and lim,, “Ztl = 1, the left-hand side of (72) tends to 0 as k — oo. In the

other hand, according to (67), limy ;o %2 = 0 implies that §; = do = 0 and

B T(k+1)(2k+1)(
azx = —or |3

2
as a
= B —By | VY (k+1)+———
( 5 < ) 1 2) (k+1)+ k+1>7
3a 5(1 a 3a 5 55 56
= —_—— — 1} .. 0 -+ =+
<( 6k 32k 128K ) (H?’+k:+k2+k3+
From (68) we have
¢(k)
A2k+1 = m» (74)
T 2 az

which gives an explicit formula for asyy1. Using (74), the right-hand side of
(72) reads

1. ()

bk+1 2k+3 (_2T1(2k+3)(k+1) 2k+1>
a2k

ToW " ams o (k)

By virtue of (73), the limit of the both sides of (72), as k — oo, gives

3T2 = 0. So, b =0 and T = 0 for k£ > 3. Therefore, by corollary 4 we have
T5 = 0 which contradicts T # 0.

Case 3: For every ko > 3, there exists k > kg such that D = 0 or Dy # 0.
To exclude Case I and Case 2, there exists a mixed case with infinitely
many k and k such that: Dy = 0 and D, # 0. Now, it suffices to take k; and
ka, k1 # ko, with Dy, = 0, Dg,+1 # 0, Dy, = 0 and Di,11 # 0 to get two

19
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265

270

equations similar to (20) and (21). Consequently, a reasoning analogous to that

of Corollary 7 completes the proof.

4. Concluding remarks

We have shown that the only polynomial sets (besides the monomial set)
{Pn} generated by F(zt — R(t)) = >_, 5o anPp(2)t" and satisfying the three-
term recursion xP,(z) = P,y1(x) + BnPn(z) + wyPu—1(x), are the rescaled
ultraspherical, Hermite and Chebychev polynomials of the first kind. In [10],
the authors generalized the results obtained in [2] and [5] in the context of
d-orthogonality by considering the polynomials (which fulfils a (d+ 1)-order dif-
ference equation) generated by F((d+ 1)zt —t%+1), where d is a positive integer.
Recently in [13], the author characterized the Shefer d-orthogonal polynomials.
These polynomials have the generating function A(t) exp(xH (t)) which has the
alternative form exp(zH (t) +1In(A(t))) = F(zU(t) — R(t)). So, a natural exten-
sion is to look at polynomial sets generated by F(zU(t) — R(t)) and satistying

the (d + 1)-order recursion

d
2Py (%) = Poyi(z) + Y i Paci(@), (76)
1=0

where {7}, 0 <1 < d, are complex sequences.
Currently, we are attempting to generalize the results given here by investigat-
ing polynomial sets satisfying the recursion (76) and generated by F(zt — R(t)).

This also provides generalizations of the results given in [10] and [13].
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