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Abstract

We show that the only polynomial sets with a generating function of the form

F (xt − R(t)) and satisfying a three-term recursion relation are the monomial

set and the rescaled ultraspherical, Hermite, and Chebyshev polynomials of the

first kind.
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1. Introduction and main result

The problem of describing all or just orthogonal polynomials generated by

a specific generating function has been investigated by many authors (see for

example [1, 2, 3, 4, 5, 6, 7, 8, 9]). For the special case, where the generating

function has the form F (xt−αt2), the authors in [2], [5] and [10] used different

methods to show that the orthogonal polynomials are Hermite and ultraspher-

ical polynomials. Recently in [4], the author gave a motivation of this question
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and found, even if F is a formal power series, that the orthogonal polynomials

are the ultraspherical, Hermite and Chebychev polynomials of the first kind.

Moreover, for F corresponding to Chebychev polynomials of the first kind, he

showed that these polynomials remain the only orthogonal polynomials with

generating function of the form F (xU(t)− R(t)), where U(t) and R(t) are for-

mal power series. A natural question, as mentioned in [4], is to describe (all or

just orthogonal) polynomials with generating functions

F (xU(t)−R(t)).

In this paper, we consider the subclass case F (xt−R(t)) =
∑

n≥0 αnPn(x)t
n

where the polynomial set (not necessary orthogonal) {Pn}n≥0 satisfies a three-

term recursion relation. The main result obtained here is the following:

Theorem 1. Let F (t) =
∑

n≥0 αnt
n and R(t) =

∑
n≥1 Rnt

n/n be formal power5

series where {αn} and {Rn} are complex sequences with α0 = 1 and R1 = 0.

Define the polynomial set {Pn}n≥0 by

F (xt−R(t)) =
∑
n≥0

αnPn(x)t
n. (1)

If this polynomial set (which is automatically monic) satisfies the three-term

recursion relation⎧⎨⎩ xPn(x) = Pn+1(x) + βnPn(x) + ωnPn−1(x), n ≥ 0,

P−1(x) = 0, P0(x) = 1
(2)

where {βn} and {ωn} are complex sequences, then we have:10

a) If R2 = 0 and αn �= 0 for n ≥ 1, then R(t) = 0, F (t) is arbitrary and

F (xt) =
∑

n≥0 αnx
ntn generates the monomials {xn}n≥0.

b) If α1R2 �= 0, then R(t) = R2t
2/2 and the polynomial sets {Pn}n≥0 are the

rescaled ultraspherical, Hermite and Chebychev polynomials of the first kind.

In the above theorem, let us remark that there is no loss of generality in15

assuming α0 = 1 and R1 = 0. Indeed, we can choose the generating function

γ1+γ2F ((x+R1)t−R(t)) = γ1+γ2
∑

n≥0 αnPn(x+R1)t
n for suitable constants

γ1 and γ2.
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The proof of theorem 1 will be given in section 3. For that purpose some

preliminary results must be developed first in section 2. We end the paper by a20

brief concluding section.

2. Preliminary results

This section contains two propositions and some related corollaries which

are the important ingredients used for the proof of Theorem 1.

Proposition 1. Let {Pn}n≥0 be a monic polynomial set generated by (1). Then25

we have

αnxP
′
n(x)−

n∑
k=1

Rk+1αn−kP
′
n−k(x) = nαnPn(x), n ≥ 1. (3)

Proof. By combining the two derivatives ∂W
∂x and ∂W

∂t of the generating func-

tion W (x, t) = F (xt−R(t)), we obtain

(x−R′(t))
∂W

∂x
= t

∂W

∂t
. (4)

The substitution of the right-hand side of (1) and R′(t) =
∑

n≥0 Rn+1t
n in (4)

gives30 ⎛⎝x−
∑
n≥0

Rn+1t
n

⎞⎠∑
n≥0

αnP
′
n(x)t

n =
∑
n≥0

αnPn(x)nt
n. (5)

After a resummation procedure in left hand side, namely:⎛⎝∑
n≥0

Rn+1t
n

⎞⎠⎛⎝∑
n≥0

αnP
′
n(x)t

n

⎞⎠ =
∑
n≥0

(
n∑

k=0

Rk+1αn−kP
′
n−k(x)

)
tn

and a tn coefficients comparison in (5), the result (3) of proposition 1 follows.

Corollary 1. Let {Pn}n≥0 be a monic polynomial set generated by (1). If

α1R2 �= 0 then αn �= 0 for n ≥ 2.

Proof. In fact suppose that αn0
= 0 for an n0 ≥ 2. Then (3) implies that

Rk+1αn0−k = 0 for k = 1, ..., n0 − 1. In particular R2αn0−1 = 0 for k = 1 gives35

αn0−1 = 0 since R2 �= 0. By induction we arrive at α1 = 0 which contradicts

the premise α1 �= 0.
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Corollary 2. Let α1R2 �= 0. If the polynomial set {Pn} generated by (1) is

symmetric, then

R2l+1 = 0, for l ≥ 1.

Proof. The polynomial set {Pn} is symmetric means that Pn(−x) = (−1)nPn(x)

for n ≥ 0. The substitution x → −x in equation (3) minus equation (3) itself

left us with

(1− (−1)k+1)Rk+1αn−k = 0, for 1 ≤ k ≤ n− 1.

So, by Corollary 1, we have R2l+1 = 0, for l ≥ 1, and R(t) =
∑

k≥1
R2k

2k t2k.

Proposition 2. Let α1R2 �= 0 and define

Tk = R2k, (k ≥ 1), an =
T1

2

αn

αn+1
, (n ≥ 0) and cn =

αn

αn−1
ωn, (n ≥ 1). (6)

For the monic polynomial set generated by (1) and satisfying (2) we have:40

a)

βn = 0, for n ≥ 0. (7)

b)

ωn = nan − (n− 1)an−1, for n ≥ 1. (8)

c)
4T2

T 3
1

(
1− n− 3

n− 2

an−3

an

)
=

n+ 1

an
− 2n

an−1
+

n− 1

an−2
, for n ≥ 3. (9)

d)

2

T1

(
an − n− 2k − 1

n− 2k
an−2k−1

)
Tk+1 +

(
n+ 2

n
cn − n− 2k + 1

n− 2k + 2
cn−2k+1

)
Tk =

=
k∑

l=1

TlTk−l+1

n− 2k + 2l
, for k ≥ 2 and n ≥ 2k + 1. (10)

Proof. By differentiating (2) we get45

xP ′
n(x) + Pn(x) = P ′

n+1(x) + βnP
′
n(x) + ωnP

′
n−1. (11)
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Then by making the combinations nαnEq(11) + Eq(3) and Eq(3) − αnEq(11)

we obtain, respectively,

(n+ 1)αnxP
′
n(x) = nαn

(
P ′
n+1(x) + βnP

′
n(x) + ωnP

′
n−1(x)

)
+

n−1∑
k=1

Rk+1αn−kP
′
n−k(x) (12)

and

(n+ 1)αnPn(x) = αn

(
P ′
n+1(x) + βnP

′
n(x) + ωnP

′
n−1(x)

)− n−1∑
k=1

Rk+1αn−kP
′
n−k(x). (13)

Multiplying (13) by x and using (2) in the left-hand side gives

(n+ 1)αn (Pn+1(x) + βnPn(x) + ωnPn−1(x)) = αn

(
xP ′

n+1(x) + βnxP
′
n(x) + ωnxP

′
n−1(x)

)
−

n−1∑
k=1

Rk+1αn−kxP
′
n−k(x). (14)

For the left-hand side (resp. the right-hand side) of (14) we use (13) (resp.50

(12)) to get

n+ 1

n+ 2
αn

(
P ′
n+2(x) + βn+1P

′
n+1(x) + ωn+1P

′
n(x)

)− n+ 1

n+ 2

αn

αn+1

n∑
k=1

Rk+1αn−k+1P
′
n−k+1(x)

+αnβn

(
P ′
n+1(x) + βnP

′
n(x) + ωnP

′
n−1(x)

)− βn

n−1∑
k=1

Rk+1αn−kP
′
n−k(x)

+
n+ 1

n
αnωn

(
P ′
n(x) + βn−1P

′
n−1(x) + ωn−1P

′
n−2(x)

)− n+ 1

n

αn

αn−1
ωn

n−2∑
k=1

Rk+1αn−k−1P
′
n−k−1(x) =

=
n+ 1

n+ 2
αn

(
P ′
n+2(x) + βn+1P

′
n+1(x) + ωn+1P

′
n(x)

)
+

1

n+ 2

αn

αn+1

n∑
k=1

Rk+1αn−k+1P
′
n−k+1(x)

+
n

n+ 1
αnβn

(
P ′
n+1 + βnP

′
n + ωnP

′
n−1

)
+

1

n+ 1
βn

n−1∑
k=1

Rk+1αn−kP
′
n−k(x)

+
n− 1

n
αnωn

(
P ′
n(x) + βn−1P

′
n−1(x) + ωn−1P

′
n−2(x)

)
+

1

n

αn

αn−1
ωn

n−2∑
k=1

Rk+1αn−k−1P
′
n−k−1(x)

−
n−1∑
k=1

Rk+1
n− k

n− k + 1
αn−k

(
P ′
n−k+1(x) + βn−kP

′
n−k(x) + ωn−kP

′
n−k−1(x)

)
−

n−1∑
k=1

Rk+1

n− k + 1

n−k−1∑
l=1

Rl+1αn−k−lP
′
n−k−l(x), (15)
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which can be simplified to

− αn

αn+1

n∑
k=1

Rk+1αn−k+1P
′
n−k+1(x) +

1

n+ 1
αnβn

(
P ′
n+1(x) + βnP

′
n(x) + ωnP

′
n−1(x)

)
−n+ 2

n+ 1
βn

n−1∑
k=1

Rk+1αn−kP
′
n−k(x) +

2

n
αnωn

(
P ′
n(x) + βn−1P

′
n−1(x) + ωn−1P

′
n−2(x)

)
−n+ 2

n

αn

αn−1
ωn

n−2∑
k=1

Rk+1αn−k−1P
′
n−k−1(x) +

n−1∑
k=1

Rk+1
n− k

n− k + 1
αn−k(P

′
n−k+1(x) + βn−kP

′
n−k(x)

+ωn−kP
′
n−k−1(x)) +

n−1∑
k=1

Rk+1

n− k + 1

n−k−1∑
l=1

Rl+1αn−k−lP
′
n−k−l(x) = 0. (16)

From (16), the coefficient of P ′
n+1(x) is null, so we get (7) which means that

the polynomial set {Pn} is symmetric, see [11, Theorem 4.3]. Therefore, by

Corollary 2, the odd part of the R-sequence is null and a computation of the55

coefficients of P ′
n(x), P

′
n−2(x) and {P ′

n+1−k(x)}n≥k≥4 in (16) yields

2

n
αnωn = R2

αn

αn+1
αn −R2

n− 1

n
αn−1, for n ≥ 1, (17)

2

n
αnωnωn−1 = R4

αn

αn+1
αn−2 +R2

n+ 2

n

αn

αn−1
αn−2ωn −R4

n− 3

n− 2
αn−3 −R2

n− 1

n
αn−1ωn−1 − R2

2

n
αn−2,

for n ≥ 3, (18)

and

Rk+1

(
αn

αn+1
− n− k

n− k + 1

αn−k

αn−k+1

)
+Rk−1

(
n+ 2

n

αn

αn−1
ωn − n− k + 2

n− k + 3

αn−k+2

αn−k+1
ωn−k+2

)
=

k−2∑
l=1

Rk−lRl+1

n− k + l + 2
, n ≥ k ≥ 5. (19)

respectively.

Finally, by using the notations (6), substituting for ωn from (17) into (18) and60

by shifting (k, l)→ (2k + 1, 2l − 1) in (19) we obtain (8), (9) and (10).

In the following corollaries we adopt the same conditions and notations of

Proposition 2.

Corollary 3. If T2 = 0 then R(t) = T1t
2/2. In this case, the polynomials gen-

erated by F (xt−T1t
2/2) and satisfying (2) reduce to the rescaled ultraspherical,65

Hermite and Chebychev polynomials of the first kind.
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Proof. We will use (10) and proceed by induction on k to show that Tk = 0

for k ≥ 3. Indeed k = 2 and n = 5 in (10) leads to 2a5T3/T1 = 0 and since

an �= 0 by Corollary 1 we get T3 = 0. Suppose that T3 = T4 = . . . = Tk = 0.

Then for n = 2k + 1 the equation (10) gives 2a2k+1Tk+1/T1 = 0 and finally70

Tk+1 = 0. Accordingly, R(t) = T1t
2/2 and the generating function (1) takes the

form F
(
xt− T1t

2/2
)
. Now, we make use of (9) (with T1 �= 0 and T2 = 0) and

proceed as in [4] to get the ultraspherical, Hermite and Chebyshev polynomials

of the first kind.

Corollary 4. If Tκ = Tκ+1 = 0 for some κ ≥ 3, then T2 = 0.75

Proof. Let k = κ in (10). Then for n ≥ 2κ+ 1 the fraction
∑κ

l=1
TlTκ−l+1

n−2κ+2l , as

function of integer n, is null even for real n. Multiplying by n − 2κ + 2l and

tends n to 2κ−2l we find TlTκ−l+1 = 0 for 1 ≤ l ≤ κ which is T2Tκ−1 = 0 when

l = 2. Supposing T2 �= 0 leads to Tκ−1 = 0. So Tκ−1 = Tκ = 0 and with the

same procedure we find Tκ−2 = 0. Going so on till we arrive at T2 = 0 which80

contradicts T2 �= 0.

Corollary 5. If R(t) is a polynomial then R(t) = T1t
2/2.

Proof. If R(t) is a polynomial then for some κ ≥ 2, Tk = 0 whenever k ≥ κ. By

Corollary 4, since Tκ = Tκ+1 = 0, we conclude that T2 = 0 and by Corollary 3

that Tk = 0 for k ≥ 3.85

Corollary 6. If an is a rational function of n then T2 = 0.

Proof. Observe that cn = T1 (nan/an−1 − (n− 1)) /2 will also a rational func-

tion of n. Then it follows that, in (10), two fractions are equal for natural

numbers n ≥ 2k + 1, k ≥ 2 and consequently will be for real numbers n. If

we denote by Ns(F (x)) the number of singularities of a rational function F (x)90

then we can easily verify, for all rational functions F and F̃ of x and a constant

a �= 0, that:

a) Ns(F (x+ a)) = Ns(F (x)),

b) Ns(aF (x)) = Ns(F (x)),

7



c) Ns(F (x) + F̃ (x)) ≤ Ns(F (x)) +Ns(F̃ (x)).95

Using property a) of Ns we have

Ns

(
n− 2k − 1

n− 2k
an−2k−1

)
= Ns

(
n

n+ 1
an

)
and Ns

(
n− 2k + 1

n− 2k + 2
cn−2k+1

)
= Ns

(
n

n+ 1
cn

)
.

According to properties b) and c) of Ns, the Ns of the left-hand side of (10)

is finite and independent of k. Thus, the right-hand side of (10) has a finite

number of singularities which is independent of k. As consequence there exists

a k0 for which TlTk−l+1 = 0 for all k ≥ k0 and k0 ≤ l ≤ k. Taking successively

k = k0 = l and k = k0 + 1 = l we get Tk0
= Tk0+1 = 0. Then, by Corollary 4100

we have T2 = 0.

Remark 1. The fact that an is a rational function of n means that F (z) =∑
n≥0 αnz

n is a series of hypergeometric type.

Corollary 7. If Tκ = Tm = 0 for some κ �= m ≥ 3, then T2 = 0.

Proof. If Tκ+1 = 0 or Tm+1 = 0 then by Corollary 4 we have T2 = 0. Suppose105

that Tκ+1 �= 0 and Tm+1 �= 0. Take k = κ and k = m in (10) to get, respectively,

2

T1

(
an − n− 2κ− 1

n− 2κ
an−2κ−1

)
Tκ+1 =

κ∑
l=1

TlTκ−l+1

n− 2κ+ 2l
, for n ≥ 2κ+ 1, (20)

and

2

T1

(
an − n− 2m− 1

n− 2m
an−2m−1

)
Tm+1 =

m∑
l=1

TlTm−l+1

n− 2m+ 2l
, for n ≥ 2m+ 1.

(21)

The operation Eq(20)/Tκ+1 − Eq(21)/Tm+1 gives

n− 2m− 1

n− 2m
an−2m−1 − n− 2κ− 1

n− 2κ
an−2κ−1 = Q1(n). (22)

Assuming m > κ and replacing n by n + 2m + 1 (resp. n + 2m − 2κ) in (22)110

(resp. (21)) leads to

n

n+ 1
an − n+ 2m− 2κ

n+ 2m− 2κ+ 1
an+2m−2κ = Q1(n+ 2m+ 1) (23)

8



and

an+2m−2κ − n− 2κ− 1

n− 2κ
an−2κ−1 = Q2(n+ 2m− 2κ). (24)

Now T1Eq(20)/(2Tκ+1)− Eq(24) is the equation

an − an+2m−2κ = Q3(n). (25)

Multiplying (25) by n+2m−2κ
n+2m−2κ+1 and using (23) we find(
n

n+ 1
− n+ 2m− 2κ

n+ 2m− 2κ+ 1

)
an = Q4(n). (26)

Since the Qi(n) (i = 1..4) functions, the right-hand sides of (22), (23), (24),115

(25) and (26), are rational functions of n then an is also a rational function of

n; and by Corollary 6 we deduce T2 = 0.

Corollary 8. The following equality is true for k ≥ 3 and n ≥ 2k + 3.

Tk−1Dk+1(an − ãn−2k−3)− Tk+1Dk(an−2 − ãn−2k−1) =

k−1∑
l=1

Vk,l

n− 2k + 2l
, (27)

where

• Dk,l = TkTk−l+1 − Tk+1Tk−l.120

• Dk = Dk,1 = T 2
k − Tk+1Tk−1.

• Vk,l =
T1

2 (TlTk+1Dk−1,l−1 − Tl+1Tk−1Dk,l).

• ãn = n
n+1an.

Proof. Denoting the equation (10) by E(k, n) then (27) is the result of the

operation

Tk+1 (Tk−1E(k, n)− TkE(k − 1, n− 2))−Tk−1 (TkE(k + 1, n)− Tk+1E(k, n− 2)) .

Now we are in a position to prove Theorem 1.

9



3. Proof of Theorem 1125

The proof of a)

As R1 = R2 = 0, it is enough to show by induction that Rn = 0 for n ≥ 3. For

n = 1, 2, 3, the equation (3) gives P1(x) = x, P2(x) = x2 and P3(0) = −R3α1

3α3
.

But according to equation (2), for n = 2, P3(0) = 0 and then R3 = 0. Now

assume that Rk = 0 for 2 ≤ k ≤ n − 1. According to (3) we have, for 2 ≤ k ≤130

n− 1, Pk(0) = 0 and Pn(0) = −Rnα1

nαn
. On other hand, by the shift n→ n− 1 in

(2) we have Pn(0) = 0 and thus Rn = 0. As R(t) = 0, the generating function

(1) reduces to F (xt) =
∑

n≥0 αnx
ntn which generates the monomials with F (t)

arbitrary.

The proof of b)135

According to Corollary 3, it is sufficient to prove that T2 = 0. In the sequel we

will investigate three cases:

Case 1: There exists k0 ≥ 3 such that Dk �= 0 for k ≥ k0.

Considering Corollary 7 we can choose k̃ ≥ k0 such that Tk �= 0 for k ≥ k̃−1.140

Let, for k ≥ k̃, D̄k = Dk

Tk−1Tk
and Ē(k, n) be the equation (27) divided by

Tk−1TkTk+1.

By making the operations

D̄k−1Ē(k, n+ 2)− D̄kĒ(k − 1, n)− D̄kĒ(k, n) + D̄k+1Ē(k − 1, n− 2),

we can eliminate ãn−2k−3 and ãn−2k−1 and keeping only, for k ≥ k̃ + 1, the

following equation

an+2 − an−4 − D̃k(an − an−2) =

k∑
l=1

Wk,l

n− 2k + 2l
:= Q

(1)
k (n), (28)

where Wk,l is independent of n and145

D̃k =
D̄2

k + D̄kD̄k−1 + D̄kD̄k+1

D̄k−1D̄k+1
.

Similarly, after eliminating an and an−2 by the operations

D̄k−1Ē(k, n+ 2)− D̄k+1Ē(k − 1, n+ 2)− D̄k−1Ē(k, n) + D̄kĒ(k − 1, n) (29)

10



and then shifting n→ n+ 2k + 1 in (29) we obtain

ãn+2 − ãn−4 − D̃k(ãn − ãn−2) =

k∑
l=1

W̃k,l

n+ 2l + 1
:= Q̃

(1)
k (n), (30)

where W̃k,l is independent of n.

Now, for k �= κ ≥ k̃ + 1, the equations (28) and (30) give, respectively,

(D̃κ − D̃k)(an − an−2) = Q
(1)
k (n)−Q(1)

κ (n) (31)

and150

(D̃κ − D̃k)

(
n

n+ 1
an − n− 2

n− 1
an−2

)
= Q̃

(1)
k (n)− Q̃(1)

κ (n). (32)

If D̃k �= D̃κ for some k �= κ ≥ k̃+ 1, then by (31) and (32) we can eliminate

an−2 to get that an is a rational function of n. So, by Corollary 6, we have

T2 = 0.

If D̃k = D for k ≥ k̃ + 1, then (28) and (30) become, respectively,

an+2 − an−4 −D(an − an−2) = Q
(1)
k (n) (33)

and155

ãn+2 − ãn−4 −D(ãn − ãn−2) = Q̃
(1)
k (n). (34)

The subtraction Eq(33)− Eq(34) leads to

an+2

n+ 3
− an−4

n− 3
−D

(
an

n+ 1
− an−2

n− 1

)
= Q

(2)
k (n). (35)

Then the combinations (Eq(33)− (n+ 3)Eq(35)) /2 and (Eq(33)−(n−3)Eq(35))/2

give, respectively,

3an−4

n− 3
−D

(
− an
n+ 1

+
2an−2

n− 1

)
= Q

(3)
k (n) (36)

and
3an+2

n+ 3
−D

(
2an
n+ 1

− an−2

n− 1

)
= Q

(4)
k (n). (37)

By shifting n→ n+ 2 in (36) we obtain160

3an−2

n− 1
−D

(
− an+2

n+ 3
+

2an
n+ 1

)
= Q

(3)
k (n+ 2). (38)
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The elimination of an+2 and an−2 by the operations DEq(37)−3Eq(38) and

3Eq(37)−DEq(38), respectively, yields

6D − 2D2

n+ 1
an +

D2 − 9

n− 1
an−2 = Q

(5)
k (n) (39)

and
9−D2

n+ 3
an+2 − 6D − 2D2

n+ 1
an = Q

(6)
k (n). (40)

Finally, the shifting n→ n− 2 in (40) leads to

9−D2

n+ 1
an − 6D − 2D2

n− 1
an−2 = Q

(6)
k (n− 2) (41)

and the operation (6D − 2D2)Eq(39) + (D2 − 9)Eq(41) gives165

[(6D − 2D2)2 + (D2 − 9)2]an = Q
(7)
k (n). (42)

According to manipulations made above, Q
(7)
k (n) is a rational function of n.

So, if D �= 3, an is a rational function of n and then T2 = 0.

Now, we explore the case D = 3. We have from (36) and (37):

Q
(3)
k (n) =

1

2

(
Q

(1)
k (n)− (n+ 3)Q

(2)
k (n)

)
=

1

2

(
(n+ 3)Q̃

(1)
k (n)− (n+ 2)Q

(1)
k (n)

)
(43)

and

Q
(4)
k (n) =

1

2

(
Q

(1)
k (n)− (n− 3)Q

(2)
k (n)

)
=

1

2

(
(n− 3)Q̃

(1)
k (n)− (n− 4)Q

(1)
k (n)

)
.

(44)

Remark that Q
(j)
k (n) , 1 ≤ j ≤ 4, and Q̃

(1)
k (n) are independent of k. Observe

also that, according to the left-hand sides of (36) and (37) for D = 3, we have

Q
(3)
k (n+ 2) = Q

(4)
k (n) .

From (43) and (44) we get170

(n+ 4)Q
(1)
k (n+ 2)− (n− 4)Q

(1)
k (n) = (n+ 5) Q̃

(1)
k (n+ 2)− (n− 3) Q̃

(1)
k (n) .

(45)

In (45) two rational functions are equal for natural numbers and are so for real

numbers. By using the expressions of Q
(1)
k (n) and Q̃

(1)
k (n) (see (28) and (30))

12



we find that

(n+ 4)Q
(1)
k (n+ 2)− (n− 4)Q

(1)
k (n) =

k∑
l=1

(n+ 4)Wk,l

n+ 2− 2k + 2l
−

k∑
l=1

(n− 4)Wk,l

n− 2k + 2l

=
2Wk,k

n+ 2
− (2k − 6)Wk,1

n− 2k + 2
(46)

+
k∑

l=2

(2k − 2l + 4)Wk,l−1 − (2k − 2l − 4)Wk,l

n− 2k + 2l
.

and

(n+ 5)Q̃
(1)
k (n+ 2)− (n− 3)Q̃

(1)
k (n) =

k∑
l=1

(n+ 5)W̃k,l

n+ 2l + 3
−

k∑
l=1

(n− 3)W̃k,l

n+ 2l + 1
(47)

=
6W̃k,1

n+ 3
− (2k − 2)W̃k,k

n+ 2k + 3
+

k∑
l=2

(−2l + 4)W̃k,l−1 + (2l + 4)W̃k,l

n+ 2l + 1
.

Observe that the singularities of (46) are even numbers, whereas the singularities

of (47) are odd ones. So, we should have

Wk,k = Wk,1 = W̃k,1 = W̃k,k = 0,

(2k − 2l + 4)Wk,l−1 − (2k − 2l − 4)Wk,l = 0

and

(−2l + 4)W̃k,l−1 + (2l + 4)W̃k,l = 0

for 2 ≤ l ≤ k. Since k ≥ k̃ + 1 ≥ 4 and by induction on l all the Wk,l and W̃k,l175

are null. Thus, (33) reads

an+2 − an−4 − 3 (an − an−2) = 0. (48)

The solution of (48) has the form

an =
(
C1 + C2n+ C3n

2
)
(−1)n + C4 + C5n+ C6n

2. (49)

Using (49) for n even, the left-hand side of (10) is a rational function of n

with finite number of singularities. So, by the same arguments as in Corollary

6 we obtain T2 = 0.180
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Case 2: There exists k0 ≥ 3 such that Dk = 0 for k ≥ k0.

Suppose that Dk = T 2
k − Tk−1Tk+1 = 0 for all k ≥ k0. First, notice that if

there exists a k1 ≥ k0 such that Tk1
= 0, then Tk1−1Tk1+1 = 0. So, Tk1−1 = 0

or Tk1+1 = 0 and by Corollary 4, T2 = 0. We have also Tk0−1 �= 0, otherwise185

Tk0 = 0 and by Corollary 4, T2 = 0.

Now, for Tk �= 0 (k ≥ k0 − 1), we have

Tk+1

Tk
=

Tk

Tk−1
=

Tk0

Tk0−1
. (50)

This means that

Tk =

(
Tk0

Tk0−1

)k−k0

Tk0
= abk (51)

where a = T k0

k0−1/T
k0−1
k0

and b = Tk0
/Tk0−1.

The substitution of Tk by abk in (10) for k ≥ k0 leads to the equation190

2

T1
b

(
an − n− 2k − 1

n− 2k
an−2k−1

)
+
n+ 2

n
cn−n− 2k + 1

n− 2k + 2
cn−2k+1 =

b−k

a

k∑
l=1

TlTk−l+1

n− 2k + 2l
= Qk (n) .

(52)

Let denote (52) by Ẽ (k, n) and make the subtraction Ẽ (k + 1, n+ 2)− Ẽ (k, n)

to get

2

T1
b (an+2 − an) +

n+ 4

n+ 2
cn+2 − n+ 2

n
cn = Qk+1 (n+ 2)−Qk (n) . (53)

On the right hand side of (53) we have, for k ≥ k0, the expression

Q̃k (n) := Qk+1 (n+ 2)−Qk (n) =
b−k−1

a

k+1∑
l=1

TlTk−l+2

n− 2k + 2l
− b−k

a

k∑
l=1

TlTk−l+1

n− 2k + 2l

=
b−k−1

a

Tk+1T1

n+ 2
+

b−k−1

a

Tk (T2 − bT1)

n
+

b−k−1

a

k−1∑
l=1

Tl (Tk−l+2 − bTk−l+1)

n− 2k + 2l

=
T1

n+ 2
+

T2 − bT1

bn
+

b−k−1

a

k−1∑
l=1

Tl (Tk−l+2 − bTk−l+1)

n− 2k + 2l
(54)

from which we deduce

Q̃k+1 (n) =
T1

n+ 2
+

T2 − bT1

bn
+

b−k−2

a

k∑
l=1

Tl (Tk−l+3 − bTk−l+2)

n− 2k − 2 + 2l

=
T1

n+ 2
+

T2 − bT1

bn
+

b−k−2

a

k−1∑
l=1

Tl+1 (Tk−l+2 − bTk−l+1)

n− 2k + 2l
.(55)
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Now since the left hand side of equation (53) is independent of k, it follows195

Q̃k+1 (n)− Q̃k (n) =
b−k−2

a

k−1∑
l=1

(Tl+1 − bTl) (Tk−l+2 − bTk−l+1)

n− 2k + 2l
= 0. (56)

As a result, for 1 ≤ l ≤ k − 1 and k ≥ k0, we have

(Tl+1 − bTl) (Tk−l+2 − bTk−l+1) = 0. (57)

Let take k = 2 (k0 − 2) − 1 and l = k0 − 2 to get (Tk0−1 − bTk0−2)
2
= 0 and

then Tk0−1 = bTk0−2, (or equivalently Dk0−1 = 0). Thus, the equations (50)

and (51) are valid for k = k0 − 1 and by induction we arrive at T4 = bT3, (or

equivalently D4 = 0). For k = 4, the right-hand side of (27) is null. So, V4,2 = 0200

and using T5 = T 2
4 /T3 (from D4 = 0) we get D3 = 0.

On the other side suppose that T2 �= 0, then we can write

Tk =

(
T3

T2

)k−2

T2 = abk, for k ≥ 2,

where b = T3/T2 and a = T 3
2 /T

2
3 . Therefore, the equation (52) reads

2

T1
b

(
an − n− 2k − 1

n− 2k
an−2k−1

)
+

n+ 2

n
cn − n− 2k + 1

n− 2k + 2
cn−2k+1 =

=
T1

n− 2k + 2
+

T1

n
+

k−1∑
l=2

ab

n− 2k + 2l
, for k ≥ 2 and n ≥ 2k + 1. (58)

When n = 2k + 1 and n = 2k + 2, the equation (58) gives

2

T1
ba2k+1 +

2k + 3

2k + 1
c2k+1 =

2

3
c2 +

T1

3
+

T1

2k + 1
+

k−1∑
l=2

ab

2l + 1
(59)

and

2

T1
ba2k+2 +

k + 2

k + 1
c2k+2 =

1

T1
a1b+

3

4
c3 +

T1

4
+

T1

2k + 2
+

k−1∑
l=2

ab

2l + 2
(60)

respectively. Let take n = 2N +1 in (58) and use (59) to obtain the expres-205

sion

2

3
c2 +

T1

3
+

T1

2N + 1
+

N−1∑
l=2

ab

1 + 2l
− 2(N − k)b

2(N − k) + 1

2

T1
a2(N−k) − 2(N − k) + 2

2(N − k) + 3
c2(N−k)+2

=
T1

2(N − k) + 3
+

T1

2N + 1
+

k−1∑
l=2

ab

2(N − k) + 2l + 1
.
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In this last equality let put N − k instead of k to get

− 2bk

2k + 1

2

T1
a2k − 2k + 2

2k + 3
c2k+2 = −2

3
c2 − T1

3
−

N−1∑
l=2

ab

1 + 2l
+

T1

2k + 3
+

N−k−1∑
l=2

ab

2k + 2l + 1

= −2

3
c2 − T1

3
+

T1

2k + 3
−

k∑
l=1

ab

2l + 3
. (61)

After defining A1 = a1

T1
+ 3

4
c3
b + T1

4b , A2 = − 2
3
c2
b − T1

3b and A3 = T1

b and

making the operation

1

k + 2

(
2k + 2

2k + 3
Eq(60) +

k + 2

k + 1
Eq(61)

)
we have

2(k + 1)

(k + 2)(2k + 3)

2

T1
a2(k+1) − 2k

(k + 1)(2k + 1)

2

T1
a2k =

=
A1(2k + 2) +A3

(k + 2)(2k + 3)
+

A2

k + 1
+

A3

(k + 1)(2k + 3)
+

2k + 2

(k + 2)(2k + 3)

k−1∑
l=2

a

2 + 2l
− 1

k + 1

k+1∑
l=2

a

2l + 1

= − 2A1

2 k + 3
+

2A2 −A3

k + 2
+

A2 +A3

k + 1
+

(
− 1

2 k + 3
+

1

k + 2

) k−1∑
l=2

a

l + 1
− 1

k + 1

k+1∑
l=2

a

2l + 1

=
B1

k + 2
+

B2

k + 3
2

+
B3

k + 1
+ a

(
1

k + 2
− 1

2

1

k + 3
2

)
Ψ(k + 1)− 1

2

a

k + 1
Ψ

(
k +

5

2

)
, (62)

where short notations B1 = (−3/2 + γ) a+2A1−A3, B2 = (3/4− γ/2) a−A1,

B3 = (−γ/2− ln (2) + 4/3) a+A2 +A3, (γ is Euler’s constant) are introduced210

as well as Ψ(x) which stands for the Digamma function.

Taking

Uk =
2k

(k + 1)(2k + 1)

2

T1
a2k

and

G(k+1) =
B1

k + 2
+

B2

k + 3
2

+
B3

k + 1
+a

(
1

k + 2
− 1

2

1

k + 3
2

)
Ψ(k + 1)−1

2

a

k + 1
Ψ

(
k +

5

2

)
,

(63)

then (62) can be written in compact form as

Uk+1 − Uk = G(k + 1).
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The later recurrence is easily solved to give

Uk = U3 +

k∑
j=4

G(j).

By using the formula Ψ(j+1) = Ψ(j)+1/j and the relations [12, Theorems

3.1 and 3.2]

k∑
l=0

Ψ(l + α)

l + β
+

k∑
l=0

Ψ(l + β + 1)

l + α
= Ψ(k+α+1)Ψ(k+β+1)−Ψ(α)Ψ(β), (64)

k∑
j=0

Ψ(j + β)

j + β
=

1

2

[
Ψ ′(k + β + 1)−Ψ ′(β) + Ψ(k + β + 1)2 −Ψ(β)2

]
, (65)

we obtain215

Uk =
2k

(k + 1)(2k + 1)

2

T1
a2k =

a

2
(Ψ (k + 2))

2
+B1Ψ(k + 2) +

a

2
Ψ ′ (k + 2) +B2Ψ

(
k +

3

2

)
+(

−a

2
Ψ

(
k +

3

2

)
+B3

)
Ψ(k + 1) +

a

k + 1
+ δ2. (66)

From (66) we deduce the asymptotic behaviour of a2k as k →∞:

2

T1
a2k =

(
δ1

(
k +

3

2
+

1

2k

)
+

3a

4
+

5a

16k
+

a

32k2
− 3a

128k3
+ ...

)
ln(k)+δ2k+δ3+

δ4
k
+
δ5
k2

+
δ6
k3

+· · ·
(67)

where coefficients δi are defined by (higher terms are omitted)

δ1 = B1 +B2 +B3,

δ2 =

(
γ − 25

12

)
B1 +

(
γ + 2 ln(2)− 352

105

)
B2 +

(
γ − 11

6

)
B3

+

((
ln(2)− 107

210

)
γ +

3439

2520
− 11

6
ln (2)− π2

12

)
a+

3

7T1
a6,

δ3 =
3

2
B1 +B2 +

1

2
B3 +

3

2
a+

3

2
δ2,

δ4 =
7

6
B1 +

25

24
B2 +

2

3
B3 +

11

8
a+

1

2
δ2,

δ5 =
1

8
B1 +

1

16
B2 +

1

8
B3 +

5

96
a,

δ6 = − 1

30
B1 +

13

960
B2 − 1

30
B3 − 1

96
a,

...
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At this step we should remark that limk→∞ a2k =∞ for all δi, i = 1, 2, 3, ...,

since a �= 0.

Recall that cn = T1 (nan/an−1 − (n− 1)) /2, then the equation (59) can be220

written as

a2k+1

(
b
2

T1
+

T1

2

2k + 3

a2k

)
= φ(k), (68)

where

φ (k) =
T1

2

2k(2k + 3)

2k + 1
− bA2 +

bA3

2k + 1
+

k−1∑
l=2

ab

2l + 1
.

• If we suppose limk→∞ a2k

2k =∞, then from (68) we deduce on one side

lim
k→∞

a2k+1

2k + 1
= lim

k→∞

φ(k)
2k+1

2b
T1

+ T1

2
2k+3
a2k

=
T 2
1

4b
. (69)

On the other side, for n = 2k + 3, (9) reads

4T2

T 3
1

(
1− 2k

2k + 1

a2k
a2k+3

)
=

2k + 4

a2k+3
− 2

2k + 3

a2k+2
+

2k + 2

a2k+1
. (70)

Under the assumption T2 �= 0, (70) admits the limit ∞ = 8b/T 2
1 , as k → ∞,

which exhibit a contradiction.225

• Now if limk→∞ a2k

2k = η1 �= 0, then from (68) we have

lim
k→∞

a2k+1

2k + 1
= lim

k→∞

φ(k)
2k+1

2b
T1

+ T1

2
2k+3
a2k

=
T1

2
2b
T1

+ T1

2η1

:= η2. (71)

Equation (9) becomes, for n = 2k + 2,

4T2

T 3
1

(
1− 2k − 1

2k

a2k−1

a2k+2

)
=

2k + 3

a2k+2
− 2

2k + 2

a2k+1
+

2k + 1

a2k
. (72)

And if we assume that T2 �= 0 and η2 = ∞, then the limit process k → ∞ in

(72) left us with the contradiction ∞ = 2/η1. But if η2 �= ∞, then by taking

the limit in (70) and (72) we obtain, respectively,230

4T2

T 3
1

(
1− η1

η2

)
=

2

η2
− 2

η1

and
4T2

T 3
1

(
1− η2

η1

)
=

2

η1
− 2

η2
.
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Adding the two later we get 2 − η1/η2 − η2/η1 = 0 and therefore η1 = η2.

According to (71) η1 = 0 which is in contradiction with the initial hypothesis

η1 �= 0.

• Finally if limk→∞ a2k

2k = 0, then from (71) and (68) we have respectively235

limk→∞
a2k+1

2k+1 = 0 and

lim
k→∞

a2k+1

a2k
= lim

k→∞

φ(k)
2k

2b
T1

a2k

2k + T1

2
2k+3
2k

= 1.

Similarly, from (60) we obtain limk→∞
a2k+2

a2k+1
= 1. Now, since limn→∞ an

n = 0

and limn→∞
an+1

an
= 1, the left-hand side of (72) tends to 0 as k → ∞. In the

other hand, according to (67), limk→∞ a2k

2k = 0 implies that δ1 = δ2 = 0 and

a2k =
T1

2

(k + 1)(2k + 1)

2k

(
a

2
(Ψ (k + 2))

2
+B1Ψ(k + 2) +

a

2
Ψ ′ (k + 2) +B2Ψ

(
k +

3

2

)
+(

−a

2
Ψ

(
k +

3

2

)
−B1 −B2

)
Ψ(k + 1) +

a

k + 1

)
,

=
T1

2

((
3a

4
+

5a

16k
+

a

32k2
− 3a

128k3
+ ...

)
ln(k) + δ3 +

δ4
k

+
δ5
k2

+
δ6
k3

+ · · ·
)
. (73)

From (68) we have240

a2k+1 =
φ(k)

b 2
T1

+ T1

2
2k+3
a2k

, (74)

which gives an explicit formula for a2k+1. Using (74), the right-hand side of

(72) reads

−8 b

T1

k + 1

φ (k)
+

2 k + 3

a2k+2
+

(
−2T1

(2k + 3) (k + 1)

φ (k)
+ 2 k + 1

)
1

a2k
. (75)

By virtue of (73), the limit of the both sides of (72), as k → ∞, gives

− 8b
3T 2

1
= 0. So, b = 0 and Tk = 0 for k ≥ 3. Therefore, by corollary 4 we have

T2 = 0 which contradicts T2 �= 0.245

Case 3: For every k0 ≥ 3, there exists k ≥ k0 such that Dk = 0 or Dk �= 0.

To exclude Case 1 and Case 2, there exists a mixed case with infinitely

many k and κ such that: Dk = 0 and Dκ �= 0. Now, it suffices to take k1 and

k2, k1 �= k2, with Dk1
= 0, Dk1+1 �= 0, Dk2

= 0 and Dk2+1 �= 0 to get two250
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equations similar to (20) and (21). Consequently, a reasoning analogous to that

of Corollary 7 completes the proof.

4. Concluding remarks

We have shown that the only polynomial sets (besides the monomial set)

{Pn} generated by F (xt − R(t)) =
∑

n≥0 αnPn(x)t
n and satisfying the three-255

term recursion xPn(x) = Pn+1(x) + βnPn(x) + ωnPn−1(x), are the rescaled

ultraspherical, Hermite and Chebychev polynomials of the first kind. In [10],

the authors generalized the results obtained in [2] and [5] in the context of

d-orthogonality by considering the polynomials (which fulfils a (d+1)-order dif-

ference equation) generated by F ((d+1)xt− td+1), where d is a positive integer.260

Recently in [13], the author characterized the Shefer d-orthogonal polynomials.

These polynomials have the generating function A(t) exp(xH(t)) which has the

alternative form exp(xH(t)+ ln(A(t))) = F (xU(t)−R(t)). So, a natural exten-

sion is to look at polynomial sets generated by F (xU(t)− R(t)) and satisfying

the (d+ 1)-order recursion265

xPn(x) = Pn+1(x) +

d∑
l=0

γl
nPn−l(x), (76)

where {γl
n}, 0 ≤ l ≤ d, are complex sequences.

Currently, we are attempting to generalize the results given here by investigat-

ing polynomial sets satisfying the recursion (76) and generated by F (xt−R(t)).

This also provides generalizations of the results given in [10] and [13].
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