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aDip. Economia, Università degli Studi di Perugia, Italy
bDip. S.B.A.I., “La Sapienza” Università di Roma, Italy

Abstract

Given a (finitely additive) full conditional probability space (X,F ×F0, μ) and
a conditional measurable space (Y,G×G0), a multivalued mapping Γ from X to
Y induces a class of full conditional probabilities on (Y,G × G0). A closed form
expression for the lower and upper envelopes μ∗ and μ∗ of such class is provided:
the envelopes can be expressed through a generalized Bayesian conditioning rule,
relying on two linearly ordered classes of (possibly unbounded) inner and outer
measures. For every B ∈ G0, μ∗(·|B) is a normalized totally monotone capacity
which is continuous from above if (X,F×F0, μ) is a countably additive full con-
ditional probability space and F is a σ-algebra. Moreover, the full conditional
prevision functional M induced by μ on the set of F-continuous conditional
gambles is shown to give rise through Γ to the lower and upper full conditional
prevision functionals M∗ and M∗ on the set of G-continuous conditional gam-
bles. For every B ∈ G0, M∗(·|B) is a totally monotone functional having a
Choquet integral expression involving μ∗. Finally, by considering another con-
ditional measurable space (Z,H×H0) and a multivalued mapping from Y to Z,
it is shown that the conditional measures μ∗∗, μ∗∗ and functionals M∗∗, M∗∗

induced by μ∗ preserve the same properties of μ∗, μ∗ and M∗, M∗.

Keywords: Multivalued mapping, totally monotone capacity, probability
envelopes, finite additivity, lower conditional prevision
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1. Introduction

Let (X,F , μ) be a finitely additive probability space and (Y,G) a measurable
space, where both F and G are algebras (not necessarily σ-algebras) of subsets of
X and Y , respectively. Throughout the paper we consider arbitrary non-empty
sets without requiring any topological structure.
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A multivalued mapping Γ from X to Y is a function Γ : X → ℘(Y ), which
expresses a set of (logical) relations between X and Y [18]. Every multivalued
mapping Γ has associated a lower and an upper inverse [11, 28] defined, for
every B ∈ G, as

B∗ := Γ∗(B) = {x ∈ X : ∅ �= Γ(x) ⊆ B},
B∗ := Γ∗(B) = {x ∈ X : Γ(x) ∩B �= ∅}.

If F and G are σ-algebras, Γ is usually referred to as random set (see, e.g., [28]).
In the literature there are different notions of measurability for a multivalued

mapping [18, 28], in particular, Γ is said (F ,G)-strongly measurable if, for every
B ∈ G, both B∗ and B∗ belong to F . Weaker notions of measurability essentially
rely on topological assumptions on the space Y and on the facts that F and G
are (suitable) σ-algebras and μ is countably additive (see, e.g., [25]).

If μ(Y ∗) > 0, a (F ,G)-strongly measurable Γ induces a lower and an upper
probability on G (see, e.g., [11]), setting, for every B ∈ G,

μ∗(B) =
μ(B∗)
μ(Y ∗)

and μ∗(B) =
μ(B∗)
μ(Y ∗)

.

In this construction, no restriction besides (F ,G)-strong measurability has
been imposed on the multivalued mapping Γ. Note that the renormalization by
μ(Y ∗) is necessary when {x ∈ X : Γ(x) = ∅} �= ∅, in order to obtain normalized
capacities μ∗ and μ∗ on (Y,G), i.e., μ∗(∅) = μ∗(∅) = 0 and μ∗(Y ) = μ∗(Y ) = 1.

In the rest of the paper we assume that Γ satisfies the following natural
requirements:

(A1) {x ∈ X : Γ(x) = ∅} = ∅;
(A2) {y}∗ �= ∅ for every y ∈ Y .

Notice that (F ,G)-strong measurability can be a stringent assumption that
cannot be relaxed working in a countably additive setting without topological
assumptions since, as is well-known, a countably additive μ on F cannot be
generally extended to ℘(X) by preserving countable additivity. Then, it is
necessary to work with finitely additive probabilities. Finite additivity allows
to overcome any measurability and topological restriction: a consequence is
that the induced capacities could not satisfy some regularity conditions (such
as continuity).

In a finitely additive setting, μ can be extended to the whole ℘(X) giving
rise to the convex compact set of finitely additive probability measures M,
whose envelopes μ = minM and μ = maxM coincide with the inner and outer
measures generated by μ on ℘(X) and are defined, for every A ∈ F , as

μ(A) = sup{μ(K) : K ⊆ A,K ∈ F},
μ(A) = inf{μ(K) : A ⊆ K,K ∈ F}.
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For a Γ satisfying conditions (A1) and (A2), the lower and upper probabilities
on G are defined, for every B ∈ G, as

μ∗(B) = μ(B∗) and μ∗(B) = μ(B∗).

In game theory and dynamic programming (see, e.g., [15, 22, 35]) it is natural
to consider finitely additive conditional probability assessments, moreover, the
possibility to condition to events of “zero probability” reveals to be crucial as
it deeply impacts on the analysis of a game [21]. Therefore, for such class of
problems (see, e.g., [27]), a suitable framework to model uncertainty is that of
full conditional probability spaces [14, 30].

Leaving apart measurability restrictions, the multivalued mapping Γ can be
considered as an “imprecise” random quantity used to transport probabilistic
information from one space to another [23]. Hence, the aim of the paper is
to consider the above transportation problem starting from a full conditional
probability space (X,F × F0, μ) and provide a characterization of the lower
and upper conditional probabilities induced on a conditional measurable space
(Y,G × G0) by the multivalued mapping Γ. This issue seems to be particularly
interesting for partially identified models that are objects gathering more and
more interest in economics and statistics [26].

We prove (see Theorem 2) that the lower and upper conditional probabilities
on G ×G0 induced by (X,F ×F0, μ) and Γ are defined, for every A|B ∈ G×G0,
as μ∗(A|B) = 1 when A ∩B = B, and otherwise

μ∗(A|B) =

⎧⎪⎪⎨⎪⎪⎩
να((A∩B)∗)

να((A∩B)∗)+να((Ac∩B)∗) if there is α ∈ I such that

να((A ∩B)∗) + να((A
c ∩B)∗) ∈ (0,+∞),

0 otherwise,

where {να : α ∈ I} and {να : α ∈ I} are two suitable linearly ordered classes of
(possibly unbounded) inner and outer measures on ℘(X), and the complements
are taken in Y . The dual conditional measure is defined, for every A|B ∈ G×G0,
as

μ∗(A|B) = 1− μ∗(Ac|B).

Furthermore, it is proved that, for every B ∈ G0, μ∗(·|B) and μ∗(·|B) are
normalized totally monotone and totally alternating capacities on G which are
continuous, respectively, from above and from below if μ(·|·) is a countably
additive full conditional probability and F is a σ-algebra.

We show that the full conditional prevision functional M induced by μ on
the set of F-continuous conditional gambles gives rise through Γ to the lower
and upper full conditional prevision functionals M∗ and M∗ on the set of G-
continuous conditional gambles which are, respectively, totally monotone and
totally alternating and have a Choquet integral expression.

Finally, starting from (Y,G × G0, μ∗), we consider its transportation to an-
other conditional measurable space (Z,H×H0) through a multivalued mapping
Γ′ from Y to Z. Also in this case we obtain conditional measures μ∗∗, μ∗∗ and
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functionals M∗∗, M∗∗ preserving the same quoted properties of μ∗, μ∗ and M∗,
M∗. Moreover, we show that the conditional measures μ∗∗, μ∗∗ and functionals
M∗∗, M∗∗ can be directly obtained transporting (X,F ×F0, μ) to (Z,H×H0)
through the composition Γ′ ◦ Γ.

The above results concerning μ∗ and μ∗ (as well as μ∗∗ and μ∗∗) are obtained
translating the transportation of (X,F×F0, μ) to (Y,G×G0) through Γ in terms
of extensions of a suitable full conditional probability space (Ω,A×A0, P ). For
that, the problem of extending an arbitrary full conditional probability space
reveals to be fundamental, so a complete characterization is given.

The paper is structured as follows. In Section 2, we first focus on the uncon-
ditional case starting from (X,F , μ) and Γ, showing that the lower and upper
probabilities μ∗(·) and μ∗(·) on (Y,G) can be characterized in terms of exten-
sions of a suitable finitely additive probability space (Ω,A, P ). Section 3 recalls
some preliminaries on full conditional probability spaces. Section 4 provides a
closed form expression for the envelopes of the class of full conditional proba-
bilities extending an arbitrary full conditional probability space, together with
an investigation of their properties. In Section 5, starting from (X,F × F , μ)
and Γ, it is shown that the lower and upper conditional probabilities μ∗(·|·) and
μ∗(·|·) on (Y,G × G0) can be characterized in terms of extensions of a suitable
full conditional probability space (Ω,A×A0, P ). Finally, in Section 6 we con-
sider the transportation of (Y,G × G, μ∗) to (Z,H×H0) through a multivalued
mapping Γ′.

2. Unconditional case: extensions of a finitely additive probability

The lower and upper probabilities on (Y,G) induced by (X,F , μ) and Γ can
be interpreted in terms of extensions of a suitable finitely additive probability
space.

Define Ω = (X × Y ) \⋃x∈X({x} × (Y \ Γ(x))) and consider the algebras of
its subsets

A = {(A× Y ) ∩ Ω : A ∈ F} and A′ = {(X ×B) ∩ Ω : B ∈ G},
that under conditions (A1) and (A2) are isomorphic to F and G, respectively.

The finitely additive probability μ induces a finitely additive probability
space (Ω,A, P ) such that, for every A ∈ F , P ((A× Y ) ∩ Ω) = μ(A).

In turn, the probability P can be extended, generally not in a unique way,
to the whole ℘(Ω): the set P of finitely additive probabilities extending P
is a convex compact subset of [0, 1]℘(Ω) endowed with the product topology,
whose envelopes P = minP and P = maxP coincide with the inner and outer
measures generated by P on ℘(Ω). Such functions satisfy the duality relation,
for every F ∈ ℘(Ω), P (F ) = 1− P (F c). For every B ∈ G, it follows
μ∗(B) = μ(B∗) = P ((X ×B) ∩ Ω) and μ∗(B) = μ(B∗) = P ((X ×B) ∩ Ω),

i.e., μ∗ and μ∗ on (Y,G) coincide, respectively, with the restrictions of P and P
on A′.
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The envelopes P and P are, respectively, totally monotone and totally al-
ternating capacities [3, 4, 5], i.e., they satisfy, for every n ≥ 2 and for every
A1, . . . , An ∈ ℘(Ω),

(TM) P (
⋃n

i=1 Ai) +
∑

∅�=I⊆{1,...,n}
|I| is even

P
(⋂

i∈I Ai

) ≥ ∑
∅�=I⊆{1,...,n}
|I| is odd

P
(⋂

i∈I Ai

)
;

(TA) P (
⋂n

i=1 Ai) +
∑

∅�=I⊆{1,...,n}
|I| is even

P
(⋃

i∈I Ai

) ≤ ∑
∅�=I⊆{1,...,n}
|I| is odd

P
(⋃

i∈I Ai

)
.

In particular, since P and P are normalized, they are also referred to as belief
and plausibility functions, respectively [33, 34].

In [34] belief and plausibility functions are said continuous if they are contin-
uous, respectively, from above and from below, i.e., if P (

⋂
n∈N An) = limn∈N P (An)

for every decreasing sequence {An}n∈N in ℘(Ω) and P (
⋃

n∈N Bn) = limn∈N P (Bn)
for every increasing sequence {Bn}n∈N in ℘(Ω).

It is well-known that if (Ω,A, P ) is a countably additive probability space
where A is a σ-algebra, then continuity of P and P easily follows, while starting
from a finitely additive probability space (Ω,A, P ) or in case A is only an
algebra, the envelopes P and P are generally not continuous.

The following example shows that the hypothesis of countable additivity for
P is not sufficient to guarantee continuity of P and P when A is not a σ-algebra.

Example 1. Identify Ω with [0, 1], and let A and A′ be, respectively, the algebra
of finite unions of subintervals of [0, 1] and the Borel σ-algebra on [0, 1]. Let P
be the restriction of the Lebesgue measure on A.

As is well-known, P is countably additive on A and has a unique countably
additive extension on A′ which is determined by the Carathéodory outer measure
P

c
, defined, for every A ∈ ℘(Ω), as

P
c
(A) = inf

{∑
i∈I

P (Bi) : {Bi}i∈I ⊆ A, card I ≤ ℵ0, A ⊆
⋃
i∈I

Bi

}
.

The function P
c
turns out to be countably additive on A′ and so the unique

countably additive extension Q is obtained setting Q(A) = P
c
(A) for every

A ∈ A′.
Nevertheless, Q is not the only finitely additive probability extending P on A′,

but there is a class P of such extensions whose pointwise envelopes P = minP
and P = maxP are defined for A ∈ A′ as

P (A) = sup{P (B) : B ⊆ A,B ∈ A} and P (A) = inf{P (B) : A ⊆ B,B ∈ A}.
In particular, it holds Q(Q ∩ [0, 1]) = 0 so P (Q ∩ [0, 1]) = 0, while the ≤-

denseness of Q ∩ [0, 1] in [0, 1] implies P (Q ∩ [0, 1]) = 1, i.e., there are two
finitely additive extensions P̃1, P̃2 of P on A′ such that P̃1(Q ∩ [0, 1]) = 0 and
P̃2(Q ∩ [0, 1]) = 1.

The envelopes P and P are, respectively, a belief and a plausibility function
on A′ since they are normalized and, respectively, totally monotone and totally
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alternating. Nevertheless, P and P are not continuous. To prove the claim,
let q1, q2, . . . be any enumeration of Q ∩ [0, 1] and denote An = {q1, . . . , qn},
for n ∈ N. It holds that An ↑ Q ∩ [0, 1] but P (An) = 0, for n ∈ N, thus
limn∈N P (An) = 0 �= 1 = P (Q ∩ [0, 1]), which implies P is not continuous from
below, and by duality P is not continuous from above.

On the other hand, by considering the unique countably additive extension
Q of P on A′, it is well-known, that there is no countably additive extension of
Q on ℘(Ω) even though there are (infinite) finitely additive extensions forming
the set Q whose pointwise envelopes are Q = minQ and Q = maxQ which are
defined, for A ∈ ℘(Ω), as

Q(A) = sup{Q(B) : B ⊆ A,B ∈ A′} and Q(A) = inf{Q(B) : A ⊆ B,B ∈ A′}.
It actually holds Q(A) = P

c
(A) and Q(A) = 1 − P

c
(Ac). Also in this case

Q and Q turn out to be, respectively, a normalized totally monotone capacity
and a normalized totally alternating capacity on ℘(Ω), but now their continuity,
respectively, from above and from below is easily established. �

The previous discussion highlights that the total monotonicity (alternance)
of a finitely additive probability μ on a space (X,F) is preserved both when we
take the corresponding inner (outer) measure μ (μ) defined on (X,℘(X)) and
when we consider the corresponding lower (upper) probability μ∗ (μ∗) defined on
a different space (Y,G) through a multivalued mapping Γ : X → ℘(Y ) satisfying
(A1) and (A2). The last statement is in line with [9, 24] where Γ is classified
as a n-monotonicity preserving transformation, with n ≥ 2.

Actually, a more general result holds by considering a possibly unbounded
[0,+∞]-valued n-monotone capacity ϕ on (X,F), with n ≥ 2. Denote again
with ϕ the corresponding inner measure on (X,℘(X)) and with ϕ∗ the corre-
sponding lower capacity defined on a different space (Y,G) through a multival-
ued mapping Γ : X → ℘(Y ) satisfying (A1) and (A2), obtained, for every
A ∈ ℘(X) and every B ∈ G, as

ϕ(A) = sup{K ∈ F : K ⊆ A} and ϕ∗(B) = ϕ(B∗).

The proof of the following proposition follows by essentially known results
present in the literature and is reported for completeness.

Proposition 1. If ϕ is a possibly unbounded [0,+∞]-valued n-monotone ca-
pacity on (X,F), with n ≥ 2, then

(i) ϕ is a possibly unbounded [0,+∞]-valued n-monotone capacity on (X,℘(X));

(ii) ϕ∗ is a possibly unbounded [0,+∞]-valued n-monotone capacity on (Y,G).
Proof. Both ϕ and ϕ∗ are trivially monotone with respect to set inclusion and
vanish on ∅. For every A1, . . . , An belonging either to ℘(X) or to G, it holds

ϕ′
(

n⋃
i=1

Ai

)
+

∑
∅�=I⊆{1,...,n}
|I| is even

ϕ′
(⋂

i∈I

Ai

)
≥

∑
∅�=I⊆{1,...,n}
|I| is odd

ϕ′
(⋂

i∈I

Ai

)
,
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where ϕ′ stands either for ϕ (and so Ai ∈ ℘(X)) or ϕ∗ (and so Ai ∈ G).
The above inequality is well-defined in case some evaluations of ϕ or ϕ∗ are

equal to +∞. This follows by the monotonicity of ϕ and ϕ∗, and by the usual
convention +∞ ≥ +∞. Thus assume that all the evaluations of ϕ and ϕ∗ in
the above inequalities are finite.

The proof of the inequality for ϕ can be traced back to Lemma 18.3 in the
original work by Choquet [4] where only a short proof is given. Limiting to
normalized capacities, it has been explicitly proved for the case n = 2 in [38]
and for any n ≥ 2 in [3]. Hence, a proof can be obtained in analogy to the proof
of Proposition 1 in [3]. The proof of the inequality for ϕ∗ can be carried on in
analogy to the proof of Theorem 1 in [24] noticing that (

⋃n
i=1 Ai)∗ ⊇ ⋃n

i=1 Ai∗
and

(⋂
i∈I Ai

)
∗ =

⋂
i∈I Ai∗, and using the n-monotonicity of ϕ.

Analogously, starting from a possibly unbounded [0,+∞]-valued n-alternating
capacity ψ on (X,F), with n ≥ 2, we can prove the following proposition.

Proposition 2. If ψ is a possibly unbounded [0,+∞]-valued n-alternating ca-
pacity on (X,F), with n ≥ 2, then:

(i) ψ is a possibly unbounded [0,+∞]-valued n-alternating capacity on (X,℘(X));

(ii) ψ∗ is a possibly unbounded [0,+∞]-valued n-alternating capacity on (Y,G).

3. Full conditional probability spaces

Let Ω be a non-empty set and A an arbitrary algebra of its subsets. For
every algebra A of subsets of Ω, denote A0 = A \ {∅}.

A full conditional probability on A (see, e.g., [14, 29]) is a function P :
A×A0 → [0, 1] satisfying the following conditions:

(C1) P (E|H) = P (E ∩H|H), for every E ∈ A and H ∈ A0;

(C2) P (·|H) is a finitely additive probability on A, for every H ∈ A0;

(C3) P (E ∩ F |H) = P (E|H) · P (F |E ∩ H), for every H,E ∩ H ∈ A0 and
E,F ∈ A.

A full conditional probability on A is said countably additive if condition (C2) is
reinforced with countable additivity [30]. The pair (Ω,A×A0) is said conditional
measurable space, while (Ω,A×A0, P ) is referred to as full conditional probability
space following the terminology of [30], and is said countably additive if P (·|·)
is.

It is known (see [1, 20, 31]) that any full conditional probability P (·|·) on A
induces a dimensionally ordered class {mα : α ∈ I} of [0,+∞]-valued finitely
additive measures on A which is unique up to the choice of a positive multi-
plicative constant for each mα. Denoting with Iα the ideal of A where mα is
finite, the family {mα : α ∈ I} must satisfy the following properties:
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(i) {Iα : α ∈ I} is linearly ordered by a relation ≤ on I defined as α ≤ β ⇐⇒
Iα ⊇ Iβ ;

(ii) for every E ∈ A0, there exists a unique α ∈ I such that E ∈ Iα \
⋃

α<β Iβ ;
(iii) for every α ∈ I, the restriction of mα on Iα is a (possibly unbounded)

non-trivial finitely additive measure ranging in [0,+∞) such that for every
E ∈ Iα, mα(E) = 0 if and only if E ∈ ⋃

α<β Iβ ∪ {∅};
(iv) for every α ∈ I and E,H ∈ Iα, mα(E ∩H) = P (E|H) ·mα(H).

On the converse, any dimensionally ordered class {mα : α ∈ I} on an
algebra A uniquely determines a full conditional probability P (·|·) on A, indeed,
for every E|H ∈ A ×A0 there exists a unique index α ∈ I such that mα(H) ∈
(0,+∞) and so

P (E|H) =
mα(E ∩H)

mα(H)
.

Every dimensionally ordered class {mα : α ∈ I} on A induces two classes
{mα : α ∈ I} and {mα : α ∈ I} of [0,+∞]-valued functions on ℘(Ω) defined
for every E ∈ ℘(Ω) as

mα(E) = sup {mα(K) : K ⊆ E,K ∈ A} ,
mα(E) = inf {mα(K) : E ⊆ K,K ∈ A} ,

where the infimum and the supremum are taken in [0,+∞], which are, for α ∈ I,
the inner and outer measures induced by mα. It is easy to verify that, for α ∈ I,
the functions mα and mα satisfy the following properties:

(P1) mα(E) ≤ mα(E), for every E ∈ ℘(Ω);

(P2) mα(E) ≤ mα(F ) and mα(E) ≤ mα(F ), for every E,F ∈ ℘(Ω) such that
E ⊆ F ;

(P3) mα is totally monotone and mα is totally alternating.

4. Extensions of a full conditional probability

By Corollary 2 in [14], every full conditional probability P (·|·) on A can
be extended to a full conditional probability on ℘(Ω): in general, countable
additivity is not preserved in the extension process. The extension is generally
not unique but we have a class of possible extensions which is a compact subset
of [0, 1]℘(Ω)×℘(Ω)0 endowed with the product topology.

Hence, given a full conditional probability P (·|·) on A consider the set

P =
{
P̃ : P̃ is a full conditional probability on ℘(Ω) extending P

}
,

whose lower and upper envelopes are denoted as P = minP and P = maxP.
Such functions satisfy the duality relation, for every F |K ∈ ℘(Ω) × ℘(Ω)0,
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P (F |K) = 1−P (F c|K). By Theorem 4 in [29], for every F |K ∈ ℘(Ω)×℘(Ω)0,
it holds

P (E|H) = sup
{
PD(E|H) : D ⊆ A, finite sub-algebra

}
,

P (E|H) = inf
{
P

D
(E|H) : D ⊆ A, finite sub-algebra

}
,

where PD(E|H) and P
D
(E|H) are the bounds obtained extending the full con-

ditional probability P|D×D0 on D to the whole ℘(Ω)× ℘(Ω)0.
The following theorems generalize some results given in [6] in case of finite

domains. The proposed generalizations are not trivial since their proofs rely on
different mathematical techniques. The proofs in [6] are essentially based on the
representation of a full conditional probability P (·|·) on a finite algebra A by a
finite linearly ordered class of (unconditional) probability measures {P0, . . . , Pk}
defined onA and having disjoint supports. The above representation is generally
not possible with infinite algebras (see, e.g., Example 2) where it is necessary to
consider possibly infinite classes of possibly unbounded [0,+∞]-valued finitely
additive measures [20].

The following Theorem 1 is new with respect to the results given in [6]
and provides a direct characterization of the lower envelope P (·|·) only relying
on the initial full conditional probability P (·|·). Actually, Theorem 1 is the
basis of the proof of Theorem 2 which is the analogue of Theorem 2 in [6] and
characterizes P (·|·) in terms of the classes of inner and outer measures induced
by the dimensionally ordered class {mα : α ∈ I} representing P (·|·). In a
sense, the direct characterization obtained in Theorem 1 allows to overcome the
difficulties in dealing with unbounded measures.

Theorem 1. The lower envelope P (·|·) is such that, for every F |K ∈ ℘(Ω) ×
℘(Ω)0, P (F |K) = 1 when F ∩K = K, and otherwise

(i) if K ∈ A0, then

P (F |K) = sup {P (B|K) : B ⊆ F,B ∈ A} ;

(ii) if K ∈ ℘(Ω)0 \ A0, then if there exists A ∈ A0 such that K ⊆ A and
P (K|A) > 0 we have that

P (F |K) =
P (F ∩K|A)

P (F ∩K|A) + P (F c ∩K|A)
,

otherwise P (F |K) = 0.

Proof. Condition (i). For every F |K ∈ ℘(Ω)×A0, we can restrict to those finite
sub-algebras D of A containing K, since every finite sub-algebra can be suitably
enlarged in order to meet this form. Denote with B the maximal element of D
with respect to inclusion relation such that B ⊆ F . In turn, this implies

P (F |K) = sup{P (B|K) : B ⊆ F,B ∈ A},
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so P (·|K) coincides with the inner measure on ℘(Ω) generated by P (·|K) and
is normalized and totally monotone by Proposition 1.

Condition (ii). For F |K ∈ ℘(Ω)× (℘(Ω)0 \ A0), if there exists A ∈ A0 such
that K ⊆ A and P (K|A) > 0, denote with PP (·|A) the core of P (·|A) on ℘(Ω),
i.e., the convex compact set of finitely additive probabilities on ℘(Ω) dominating
P (·|A) [13]. Considering the Choquet integral [4], it holds

P (F∩K|A) = C

∫
1F∩K(ω)P (dω|A) and P (F c∩K|A) = C

∫
1F c∩K(ω)P (dω|A).

It is immediately seen that min {1F∩H(ω),1F c∩H(ω)} = 0 for ω ∈ Ω, moreover,
1F∩H and (1− 1F c∩H) are comonotonic, i.e., for every ω, ω′ ∈ Ω,

[1F∩H(ω)− 1F∩H(ω′)] [(1− 1F c∩H(ω))− (1− 1F c∩H(ω′))] ≥ 0.

Hence, Proposition 6.26 in [37] implies the existence of a finitely additive prob-
ability π̃A in PP (·|A) such that∫

1F∩H(ω)π̃A(dω) = C

∫
1F∩H(ω)P (dω|A),∫

(1− 1F c∩H(ω))π̃A(dω) = C

∫
(1− 1F c∩H(ω))P (dω|A),

where the left-side integrals are usual Stieltjes integrals [2]. Since∫
(1− 1F c∩H(ω))π̃A(dω) = 1−

∫
1F c∩H(ω))π̃A(dω),

C

∫
(1− 1F c∩H(ω))P (dω|A) = 1− C

∫
1F c∩H(ω)P (dω|A),

it follows

C

∫
1F c∩H(ω)P (dω|A) =

∫
1F c∩H(ω)π̃A(dω),

i.e., both P (F ∩K|A) and P (F c ∩K|A) are obtained integrating with respect
to π̃A. Finally we have

P (F |K) = min

{
P̃ (F ∩K|A)

P̃ (K|A)
: P̃ ∈ P

}
= min

{
π̃(F ∩K)

π̃(K)
: π̃ ∈ PP (·|A)

}
=

π̃A(F ∩K)

π̃A(F ∩K) + π̃A(F c ∩K)
=

P (F ∩K|A)

P (F ∩K|A) + P (F c ∩K|A)
,

where the first two equalities are trivial, while the third and the fourth follow
from the previous argument.

Otherwise, for all A ∈ A0 with K ⊆ A it holds P (K|A) = 0, which implies
for every such A the existence of P̃A ∈ P such that P̃A(K|A) = 0 and so
P̃A(K|B) = 0 for every B ∈ A0 with A ⊆ B. We show the existence of P̃0 ∈ P
such that P̃0(K|A) = 0 for all A ∈ A0 with K ⊆ A. The compactness of P
in the product topology of [0, 1]℘(Ω)×℘(Ω)0 is equivalent to the fact that every
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family of non-empty closed subsets of P with the finite intersection property
has non-empty intersection.

For an arbitrary finite sub-algebra D ⊆ A define

K∗
D =

⋂
{B ∈ D0 : K ⊆ B},

which belongs to D0 since D is finite. Introduce the collection

E0 =
{
PD
0 =

{
P̃ ∈ P : P̃ (K|K∗

D) = 0
}

: D ⊆ A, cardD < ℵ0

}
,

which is a family of non-empty closed subsets of P.
We show that E0 has the finite intersection property. For any D1, . . . ,Dn

finite sub-algebras of A, the algebra D′ generated by
⋃n

i=1 Di is still a finite
sub-algebra of A, moreover, K∗

D′ ⊆ K∗
Di

for i = 1, . . . , n. It follows that, for
i = 1, . . . , n, K ∩ K∗

DLi
⊆ K ∩ K∗

D′
L

and Kc ∩ KDLi
⊇ Kc ∩ K∗

D′
L
, and so

K|K∗
Di

⊆GN K|K∗
D′ for i = 1, . . . , n, according to the definition of inclusion

relation for conditional events ⊆GN given in [17]. Hence, for every P̃ ∈ PD′
0

we have P̃ (K|K∗
D′) = 0 and by the monotonicity of P̃ with respect to ⊆GN

relation [7, 17], it follows P̃ (K|K∗
Di
) = 0 for i = 1, . . . , n, and so P̃ ∈ PDi

0 for

i = 1, . . . , n. This implies
⋂n

i=1 PDi
0 �= ∅ and so E0 satisfies the finite intersection

property which, in turn, implies
⋂
E0 �= ∅, i.e., there exists P̃0 ∈ ⋂

E0 such
that P̃0(K|A) = 0 for every A ∈ A0 with K ⊆ A. The restriction Q̃0 of P̃0

on ℘(Ω)×A0 can be extended to the whole ℘(Ω)× ℘(Ω)0 obtaining a compact
subset Q of P whose lower envelope Q = minQ is such that Q ≥ P . Applying

Corollary 2 in [6] to the restriction of Q0 to every finite set of the form E ×D0,
where E ⊆ ℘(Ω) and D ⊆ A ∩ E are finite sub-algebras with {F,K} ⊆ E , we
derive Q(F |K) = 0, which implies P (F |K) = 0.

The following proposition states that P (·|K) is a normalized totally mono-
tone capacity on ℘(Ω), for every K ∈ ℘(Ω)0.

Proposition 3. The lower envelope P (·|·) is such that P (·|K) is a normalized
totally monotone capacity on ℘(Ω), for every K ∈ ℘(Ω)0.

Proof. For every K ∈ ℘(Ω)0, we have P (∅|K) = 0, P (Ω|K) = 1, thus it remains
to prove that P (·|K) is totally monotone. For condition (i) of Theorem 1 the
proof follows by Proposition 1, since P (·|K) turns out to be an inner measure.
For condition (ii) of Theorem 1, if there exists A ∈ A0 such that K ⊆ A
and P (K|A) > 0, let E1, . . . , En ∈ ℘(Ω) and D be the algebra generated by
{E1, . . . , En,K}. Then, the proof follows considering the restriction of P (·|A)
to D and applying Theorem 1 in [19]. Finally, if P (K|A) = 0 for all A ∈ A0 such
that K ⊆ A, P (·|K) turns out to be a normalized totally monotone capacity
vacuous at K, i.e., such that P (F |K) = 1 if F ∩K = K and 0 otherwise.

We next investigate the continuity from above of P (·|·) in the case the start-
ing full conditional probability space is countably additive and is related to a
σ-algebra.
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Proposition 4. If (Ω,A×A0, P ) is a countably additive full conditional prob-
ability space where A is a σ-algebra, then the lower envelope P (·|K) is a nor-
malized totally monotone capacity continuous from above on ℘(Ω), for every
K ∈ ℘(Ω)0.

Proof. If K ∈ A0, then the statement immediately follows by condition (i) of
Theorem 1 since P (·|K) turns out to be an inner measure induced by a countably
additive probability on a σ-algebra. If K ∈ ℘(Ω)0 \A0 and there exists A ∈ A0

such that K ⊆ A and P (K|A) > 0, then the statement follows by the previous
point and Proposition 2.3 in [12]. Finally, if P (K|A) = 0 for all A ∈ A0 such
that K ⊆ A, P (·|K) turns out to be a normalized totally monotone capacity
vacuous at K, which is easily seen to be continuous from above.

The next theorem characterizes P (·|·) in terms of the classes of inner and
outer measures {mα : α ∈ I} and {mα : α ∈ I} on ℘(Ω) induced by the
dimensionally ordered class {mα : α ∈ I} representing P (·|·) on A.

Theorem 2. The lower envelope P (·|·) is such that, for every F |K ∈ ℘(Ω) ×
℘(Ω)0, P (F |K) = 1 when F ∩K = K, and otherwise

P (F |K) =

⎧⎪⎪⎨⎪⎪⎩
mα(F∩K)

mα(F∩K)+mα(F c∩K) if there is α ∈ I such that

mα(F ∩K) +mα(F
c ∩K) ∈ (0,+∞),

0 otherwise.

Proof. For K ∈ A0, there is a unique index α ∈ I such that mα(K) ∈ (0,+∞).
By condition (i) of Theorem 1,

P (F |K) = sup {P (B|K) : B ⊆ F,B ∈ A}
= sup

{
mα(B ∩K)

mα(K)
: B ⊆ F,B ∈ A

}
=

mα(F ∩K)

mα(K)
.

Consider the rings AK = {E ∩K : E ∈ A} and ℘(Ω)K = {E ∩K : E ∈ ℘(Ω)}
both having K as top element. The restriction nα = mα|AK turns out to be a

bounded finitely additive measure on AK giving rise to the bounded inner and
outer measures nα and nα on ℘(Ω)K , for which it holds nα(K) = nα(K) =
nα(K) = mα(K). In analogy with the proof of condition (ii) of Theorem 1,
it is easily proven the existence of a bounded finitely additive measure π̃α on
℘(Ω)K such that nα ≤ π̃α ≤ nα, and π̃α(F ∩K) = nα(F ∩K) = mα(F ∩K) and
π̃α(F

c ∩K) = nα(F
c ∩K) = mα(F

c ∩K). In turn, this implies mα(F ∩K) +
mα(F

c ∩K) = π̃α(K) = mα(K) and so mα(F ∩K) +mα(F
c ∩K) ∈ (0,+∞)

and

P (F |K) =
mα(F ∩K)

mα(F ∩K) +mα(F c ∩K)
.

For K ∈ ℘(Ω)0 \ A0, by condition (ii) of Theorem 1, if there exists A ∈ A0

such that K ⊆ A and P (K|A) > 0, let α ∈ I be the unique index such that
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mα(A) ∈ (0,+∞). By the previous step, it holds

P (F |K) =
P (F ∩K|A)

P (F ∩K|A) + P (F c ∩K|A)
=

mα(F∩K)
mα(A)

mα(F∩K)
mα(A) + mα(F c∩K)

mα(A)

=
mα(F ∩K)

mα(F ∩K) +mα(F c ∩K)
∈ [0, 1],

and so it must be mα(F ∩K) +mα(F
c ∩K) ∈ (0,+∞).

Finally, if P (K|A) = 0 for every A ∈ A0 such that K ⊆ A, we have to
distinguish two cases. If there is no α ∈ I such that mα(F ∩K)+mα(F

c∩K) ∈
(0,+∞), then P (F |K) = 0 and this is consistent with Theorem 1. On the
contrary, suppose there is α ∈ I such that mα(F ∩K)+mα(F

c∩K) ∈ (0,+∞).
For every A ∈ A0 such that K ⊆ A let β ∈ I be the unique index such that

mβ(A) ∈ (0,+∞). We have P (K|A) =
mβ(K)

mβ(A) = 0, so it follows mβ(F ∩K) ≤
mβ(K) = 0 < mβ(A) = mβ(A). In turn, this implies mβ(F ∩K) = 0 for every
β ∈ I and so, in particular, also for α, thus it must be mα(F

c ∩K) ∈ (0,+∞).
Hence, the value

P (F |K) =
mα(F ∩K)

mα(F ∩K) +mα(F c ∩K)
= 0

is consistent with Theorem 1.

The characterization given in Theorem 2 provides a generalized Bayesian
conditioning rule corresponding to the one originally introduced in [38] for 2-
monotone capacities, and is a generalization of Theorem 2 in [6], the latter
holding for finite spaces. The Bayesian conditioning rule has been discussed for
belief functions in [11, 16, 19] and for n-monotone capacities, with n ≥ 2, in [12,
36]. In the quoted papers, the starting point is a bounded n-monotone capacity
ϕ with dual capacity ψ, for which the Bayesian conditioning rule produces a
conditional bounded n-monotone capacity ϕ(·|K), provided the denominator is
positive.

The rule given in Theorem 2 covers also the case in which the denominator
is zero, but relies on two linearly ordered classes of possibly unbounded totally
monotone and totally alternating capacities, respectively.

Figure 1 shows the relationships between the classes {mα : α ∈ I}, {mα :
α ∈ I} and {mα : α ∈ I}, and the conditional measures P (·|·) and P (·|·).
Notice that the diagram commutes in the sense that we can arrive to P (·|·)
either by generating the classes {mα : α ∈ I} and {mα : α ∈ I} from
{mα : α ∈ I} and then applying the generalized Bayesian conditioning rule
(Theorem 2), or directly by the conditional inner and outer measures determined
by P (·|·) (Theorem 1).

The following example shows a conditional event F |K ∈ ℘(Ω) × ℘(Ω)0 for
which there is no α ∈ I such that mα(F ∩K) +mα(F

c ∩K) ∈ (0,+∞).
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{mα : α ∈ I} additive
{mα : α ∈ I} totally monotone
{mα : α ∈ I} totally alternating

P (·|·) additive P (·|·) totally monotone

Figure 1: Diagram showing the relations determined by Theorems 1 and 2

Example 2. Identify Ω with N and let A be the algebra of finite-cofinite subsets
of N and P (·|·) the full conditional probability on A defined for every E|H ∈
A×A0 as

P (E|H) =

⎧⎨⎩
cardE∩H
cardH if H is finite,

0 if E and Hc are finite,
1 if E and H are cofinite.

A dimensionally ordered class on A representing P (·|·) is {m0,m1} where
m0 and m1 are defined for every E ∈ A as

m0(E) =

{
0 if E is finite,
1 if E is cofinite,

and m1(E) =

{
cardE if E is finite,
+∞ if E is cofinite.

Let ℘(Ω) be the power set of N, and {m0,m1} and {m0,m1} the correspond-
ing classes of inner and outer measures on ℘(Ω). Take F = {2n : n ∈ N} and
K = {2n : n ∈ N} ∪ {1, 3}.

We have m0(F∩K) = m0(F
c∩K) = 0, m1(F∩K) = +∞ and m1(F

c∩K) =
2, so there is no α ∈ I such that mα(F∩K)+mα(F

c∩K) ∈ (0,+∞). Theorem 2
implies that P (F |K) = 0, indeed every A ∈ A0 such that K ⊆ A must be a
cofinite set of N, for which m0(A) = 1. Moreover, we have

P (K|A) = sup{P (B|A) : B ⊆ K,B ∈ A}
= sup

{
m0(B)

m0(A)
: B ⊆ K,B ∈ A

}
= m0(K) = 0.

Hence, we have P (K|A) = 0 for every A ∈ A0 such that K ⊆ A and Theorem 1
implies P (F |K) = 0. �

The following example shows a conditional event F |K ∈ ℘(Ω) × ℘(Ω)0 for
which there is α ∈ I such that mα(F ∩K)+mα(F

c∩K) ∈ (0,+∞), in the case
P (K|A) = 0 for every A ∈ A0 such that K ⊆ A.

Example 3. Let Ω = {ω1, . . . , ω8} and A be the finite sub-algebra of ℘(Ω) with
set of atoms CA = {C1, . . . , C4}, where Ci = {ω2i−1, ω2i}, for i = 1, . . . , 4. Let
P (·|·) be the full conditional probability on A represented by the dimensionally
ordered class {m0,m1} on A whose distributions on CA are

CA C1 C2 C3 C4

m0 1 2 0 0
m1 +∞ +∞ 3 1
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Taking E = {ω6, ω7, ω8} and H = C3 ∪ C4, simple computations show that

P (E|H) =
m1(E ∩H)

m1(E ∩H) +m1(Ec ∩H)
= sup{P (B|H) : B ⊆ E,B ∈ A} =

1

4
.

Now, let F = {ω3} and K = {ω3, ω5}, it holds m0(F ∩K) = m0(F
c ∩K) =

m1(F ∩K) = 0 and m1(F
c ∩K) = 3, thus m1(F ∩K)+m1(F

c ∩K) ∈ (0,+∞)
and Theorem 2 implies

P (F |K) =
m1(F ∩K)

m1(F ∩K) +m1(F c ∩K)
= 0.

Every A ∈ A0 such that K ⊆ A must be such that A ⊇ C2∪C3 = {ω3, ω4, ω5, ω6},
so m0(A) ∈ (0,+∞) and

P (K|A) = sup{P (B|A) : B ⊆ K,B ∈ A}
= sup

{
m0(B)

m0(A)
: B ⊆ K,B ∈ A

}
=

m0(K)

m0(A)
= 0,

which by Theorem 1 implies P (F |K) = 0. �

The following example shows that: (i) countable additivity cannot be gen-
erally preserved in the extension of a full conditional probability; (ii) the condi-
tional lower and upper envelopes are generally not continuous totally monotone
and totally alternating capacities when A is not a σ-algebra.

Example 4. Identify Ω with [0, 1], and let A and A′ be, respectively, the algebra
of finite unions of subintervals of [0, 1] and the Borel σ-algebra on [0, 1].

Let P (·|·) be the full conditional probability on A generated by the dimen-
sionally ordered class {mα : α ∈ {−1} ∪ [0, 1]} on A, where:

• m−1 coincides with the restriction of the Lebesgue measure on A = I−1;

• I0 is the ideal of finite subsets of [0, 1] and m0 coincides with the restriction
of the Dirac measure δ0 on I0 and is +∞ on A \ I0;

• for α ∈ (0, 1], Iα = I0 \ {E ∈ A : β ∈ E, 0 ≤ β < α} and mα coincides
with the restriction of the Dirac measure δα on Iα and is +∞ on A \ Iα.

Since, for α ∈ {−1} ∪ [0, 1], mα is bounded and countably additive on Iα, it
follows (see [1, 8, 31]) that P (·|H) is countably additive on A, for every H ∈ A0.

In the case only finite additivity is required, P (·|·) can be extended to a full
conditional probability on A′, even though this extension is not unique. To see
this, consider the classes of inner and outer measures {mα : α ∈ {−1} ∪ [0, 1]}
and {mα : α ∈ {−1} ∪ [0, 1]} induced on ℘(Ω) by {mα : α ∈ {−1} ∪ [0, 1]}.
For k ∈ [0, 1), let Ek = [0, k] ∪ (Q ∩ (k, 1]) for which it holds

m−1(Ek) = k, m−1(Ek) = 1, m−1(E
c
k) = 0, m−1(E

c
k) = 1− k,
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that implies

P (Ek|Ω) = m−1(Ek) = k and P (Ek|Ω) = m−1(Ek) = 1.

Thus, by Example 1 we have that P (·|Ω) and P (·|Ω) are, respectively, a normal-
ized totally monotone and a normalized totally alternating capacity on A′ but
are not continuous. In particular, each extension P̃ of P on A′ × A′0 can be
further extended (not in a unique way) to a full conditional probability on the
whole ℘(Ω)× ℘(Ω)0.

On the other hand, the countably additive full conditional probability P (·|·)
on A can be extended to a countably additive full conditional probability Q(·|·)
on A′. In turn, such an extension is represented by the dimensionally ordered
class {nα : α ∈ {−1} ∪ [0, 1]} on A′, where:

• n−1 coincides with the Lebesgue measure on A′ = J−1;

• J0 is the σ-ideal of n−1-null sets and n0 coincides with the restriction of
the Dirac measure δ0 on J0 and is +∞ on A′ \ J0;

• for α ∈ (0, 1], Jα = J0 \ {E ∈ A′ : β ∈ E, 0 ≤ β < α} and nα coincides
with the restriction of the Dirac measure δα on Jα and is +∞ on A\Jα.

Notice that such extension is such that Q(Q∩ [0, 1]|Ω) = n−1(Q∩[0,1])
n−1(Ω) = 0, more-

over, if C is the Cantor set in [0, 1], it holds n−1(C) = 0 and n0(C) = 1,

thus Q(Q ∩ [0, 1]|C) = n0(Q∩[0,1]∩C)
n0(C) = 1. Nevertheless, Q(·|·) cannot be fur-

ther extended to a countably additive full conditional probability on ℘(Ω), while
a (not unique) finitely additive full conditional probability on ℘(Ω) extending
Q(·|·) exists.

In particular, if Q is the set of (finitely additive) full conditional probabilities
on ℘(Ω) extending Q(·|·) with Q = minQ and Q = maxQ, by Propositions 3

and 4 we have that, for every K ∈ ℘(Ω)0, Q(·|K) and Q(·|K) are, respectively,
a normalized totally monotone capacity continuous from above and a normalized
totally alternating capacity continuous from below on ℘(Ω). �

Let L(Ω,A) be the linear space ofA-continuous real-valued functions on Ω [2]
and L(Ω) := L(Ω, ℘(Ω)) the linear super-space of bounded real-valued functions
on Ω. Both L(Ω) and L(Ω,A) are lattices (see [10, 37]), i.e., they are closed
under pointwise minimum ∧ and maximum ∨. The elements of L(Ω,A) × A0,
denoted as f |H’s, are usually called conditional gambles (see, e.g., [37]).

Following the terminology of [14], every full conditional probability P on the
algebra A is in bijection with a full conditional prevision functional on L(Ω,A)
(see, e.g., [29, 40]) defined, for every f |H ∈ L(Ω,A)×A0, as

P(f |H) =

∫
f(ω)P (dω|H),

where the integral is of Stieltjes type [2]. By the same argument, every full
conditional probability P̃ on ℘(Ω) extending P is in bijection with a full con-
ditional prevision functional P̃ on L(Ω). Hence, the class P of extensions of P
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determines a class P of full conditional previsions on L(Ω) extending P which is

a compact subset of RL(Ω)×℘(Ω)0 endowed with the product topology, with en-
velopes P = minP and P = maxP, which are lower and upper full conditional
prevision functionals on L(Ω) [40].

For every K ∈ ℘(Ω)0, the envelopes P(·|K) and P(·|K) reveal to be a totally
monotone functional and a totally alternating functional on L(Ω), respectively,
i.e., they satisfy (see [10]), for every n ≥ 2 and for every f1, . . . , fn ∈ L(Ω),

(TM’) P (
∨n

i=1 fi|K) ≥ ∑
∅�=I⊆{1,...,n}(−1)|I|+1P

(∧
i∈I fi|K

)
;

(TA’) P (
∧n

i=1 fi|K) ≤ ∑
∅�=I⊆{1,...,n}(−1)|I|+1P

(∨
i∈I fi|K

)
.

In particular, both conditional functionals have a Choquet integral expression as
stated in the following proposition: we focus on P since the characterization of P
follows by duality being, for every f |K ∈ L(Ω)× ℘(Ω)0, P(f |K) = −P(−f |K).

Proposition 5. The lower envelope P(·|·) is such that P(·|K) is a totally mono-
tone functional on L(Ω), for every K ∈ ℘(Ω)0, moreover, for every f ∈ L(Ω) it
holds

P(f |K) = C

∫
f(ω)P (dω|K).

Proof. Let P the set of extensions of P on ℘(Ω)×℘(Ω)0 andP the corresponding
set of extensions of P on L(Ω)×℘(Ω)0. For every f |K ∈ L(Ω)×℘(Ω)0, it holds

P(f |K) = min
P̃∈P

P̃(f |H) = min
P̃∈P

∫
f(ω)P̃ (dω|K) = C

∫
f(ω)P (dω|K),

where the last equality follows by our Proposition 3 and Proposition 3 in [32].
Finally, the total monotonicity of P(·|K) follows by our Proposition 3 and Corol-
lary 6.17 in [37].

Remark 1. The function P defined above is a coherent lower conditional pre-
vision in the sense of Williams since it is the lower envelope of a class P of
full conditional previsions on L(Ω), which are (trivially) coherent conditional
previsions in the sense of Williams [40]. Notice that the function P can be in-
terpreted as the natural extension of P in the jargon of [39], i.e., the pointwise
minimal Williams-coherent lower conditional prevision extending the full con-
ditional prevision P, the latter being (trivially) a coherent conditional prevision
in the sense of Williams.

5. Interpretation of lower and upper full conditional probabilities

The results proven in Section 4 allow to interpret the lower and upper con-
ditional probabilities induced by a multivalued mapping in terms of extensions
of a suitable full conditional probability space, in analogy to the construction
carried on in Section 2.

At this aim, consider a full conditional probability space (X,F ×F0, μ) and
a conditional measurable space (Y,G × G0), where both F and G are algebras
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of subsets of X and Y , respectively, and let Γ be a multivalued mapping from
X to Y satisfying (A1) and (A2).

Let {να : α ∈ I} be a dimensionally ordered class on F representing μ(·|·)
and denote with {να : α ∈ I} and {να : α ∈ I} the corresponding classes of
inner and outer measures on ℘(X).

We define, for every A|B ∈ G × G0, μ∗(A|B) = 1 when A ∩ B = B, and
otherwise

μ∗(A|B) =

⎧⎪⎪⎨⎪⎪⎩
να((A∩B)∗)

να((A∩B)∗)+να((Ac∩B)∗) if there is α ∈ I such that

να((A ∩B)∗) + να((A
c ∩B)∗) ∈ (0,+∞),

0 otherwise,

and μ∗(A|B) = 1− μ∗(Ac|B), where the complements are taken in Y .
The following proposition holds.

Proposition 6. There exists a class M̃ of full conditional probabilities on G
such that μ∗ = minM̃, moreover, for every B ∈ G0, μ∗(·|B) is a normalized
totally monotone capacity on G.
Proof. Let Ω, A and A′ be defined as in Section 2, and set, for every E|H ∈ F×
F0, P ((E×Y )∩Ω|(H×Y )∩Ω) = μ(E|H), obtaining the spaces (Ω,A×A0, P )

and (Ω,A′ × A′0) which are isomorphic to (X,F × F0, μ) and (Y,G × G0),
respectively.

Thus μ(·|·) is in bijection with P (·|·), and the dimensionally ordered class
{να : α ∈ I} on F representing μ(·|·) is in bijection with a dimensionally ordered
class {mα : α ∈ I} on A representing P (·|·). Moreover, for every A|B ∈ G ×G0

and every α ∈ I, it holds να((A ∩B)∗) = mα((X × (A ∩B)) ∩ Ω) and

να((A∩B)∗)+να((A
c∩B)∗) = mα((X×(A∩B))∩Ω)+mα((X×(Ac∩B))∩Ω),

where the complements are taken in Y .
Now, let M and P be, respectively, the set of full conditional probabilities on

℘(X) extending μ and the set of full conditional probabilities on ℘(Ω) extending
P , whose envelopes are μ = minM, μ = maxM, P = minP and P = maxP.

Simple computations show that, for every A|B ∈ G × G0,

μ∗(A|B) = μ((A ∩B)∗|(A ∩B)∗ ∪ (Ac ∩B)∗) = P ((X ×A) ∩ Ω|(X ×B) ∩ Ω),

so μ∗(·|·) defined on (Y,G×G0) coincides with the restriction of P (·|·) on A′×A′0

by Theorem 2.
Hence, for every B ∈ G0, Proposition 3 implies that μ∗(·|B) is a normalized

totally monotone capacity on G. Finally, for every P̃ ∈ P, define the full
conditional probability μ̃ on G setting, for every A|B ∈ G × G0, μ̃(A|B) =

P̃ ((X ×A) ∩Ω|(X ×B) ∩Ω) and denote with M̃ = {μ̃ : P̃ ∈ P}, for which it

holds that μ∗ = minM̃.
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Let us notice that if (X,F × F0, μ) is a countably additive full conditional
probability space and F is a σ-algebra, then μ∗(·|B) is continuous from above
by Proposition 4. Since G is only required to be an algebra of subsets of Y ,
then continuity from above is understood to hold only on decreasing sequences
of elements of G whose limit belongs to G. Actually, by the proof of Propo-
sition 6 we have that μ∗(·|·) can be extended to the whole ℘(Y ) × ℘(Y )0 by
preserving total monotonicity and continuity from above (as is asked in [34] to
unconditional belief functions to be continuous).

The following example shows the construction of μ∗ and μ∗ staring from
(X,F × F0, μ) and Γ : X → ℘(Y ).

Example 5. Let X = Y = N and F = G be the algebra of finite-cofinite subsets
of N. Take (X,F × F , μ) and (Y,G × G0), where μ and {ν0, ν1} coincide with
the full conditional probability P and the dimensionally ordered class {m0,m1}
of Example 2. Let Γ be the multivalued mapping defined, for every n ∈ N, as
Γ(n) = {k ∈ N : k ≥ n}.

For every A ∈ G we have that

A∗ =

{ ∅ if A is finite,
{k ∈ N : k > maxAc} if A is cofinite,

A∗ =

{ {k ∈ N : k ≤ maxA} if A is finite,
N if A is cofinite,

so, it holds

ν0(A∗) = ν0(A
∗) =

{
0 if A is finite,
1 if A is cofinite,

ν1(A∗) =

{
0 if A is finite,
+∞ if A is cofinite,

ν1(A
∗) =

{
card {k ∈ N : k ≤ maxA} if A is finite,
+∞ if A is cofinite.

This implies that, for every A|B ∈ G × G0, we have

μ∗(A|B) =

{
1 if A ∩B = B or A ∩B is cofinite,
0 otherwise,

and μ∗(A|B) = 1− μ∗(Ac|B), where the complements are taken in Y .

The full conditional probability space (X,F × F0, μ) determines a full con-
ditional prevision functional M defined, for every f |A ∈ L(X,F)×F0, as

M(f |A) =

∫
f(x)μ(dx|A).

In turn, M can be transported through Γ to L(Y,G)×G0 obtaining the lower and
upper full conditional prevision functionals M∗ and M∗. The above interpreta-
tion of μ∗ and μ∗ in terms of extensions of the full conditional probability space
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(Ω,A × A0, P ) allows to apply Proposition 5 so, for every B ∈ G0, M∗(·|B)
is a totally monotone functional on L(Y,G) that can be expressed, for every
g ∈ L(Y,G), as

M∗(g|B) = C

∫
g(y)μ∗(dy|B).

An analogous Choquet integral expression holds for M∗(·|B) with respect to
μ∗(·|B).

Figure 2 shows the relationships between the classes {να : α ∈ I}, {να :
α ∈ I} and {να : α ∈ I}, the full conditional probability μ(·|·), the lower
full conditional probability μ∗(·|·), the full conditional prevision M(·|·) and the
lower full conditional prevision M∗(·|·).

{να : α ∈ I} additive
{να : α ∈ I} totally monotone
{να : α ∈ I} totally alternating

μ(·|·) additive μ∗(·|·) totally monotone

M(·|·) linear M∗(·|·) totally monotone

Γ

Γ

Γ

Figure 2: Relationships between the classes {να : α ∈ I}, {να : α ∈ I} and {να : α ∈ I},
μ(·|·), μ∗(·|·), M(·|·) and M∗(·|·)

The following proposition holds.

Proposition 7. There exists a class M̃ of full conditional previsions on L(Y,G)
such that M∗ = min M̃, moreover, for every B ∈ G0, M∗(·|B) is a totally
monotone lower prevision on L(Y,G).
Proof. Consider the full conditional probability space (Ω,A × A, P ) and the

conditional measurable space (Ω,A′ ×A′0) built in the proof of Proposition 6.
We have that, if P is the set of full conditional previsions on L(Ω) extending
the full conditional prevision P on L(Ω,A) determined by (Ω,A×A0, P ), then

M∗ coincides with the restriction of P = minP on L(Ω,A′)×A′0, so, its total
monotonicity follows by Proposition 5. Moreover, the class M̃ of full conditional
previsions on L(Y,G) is determined through the Stieltjes integral from the class

M̃ of full conditional probabilities on G defined in the proof of Proposition 6.

The above results generalize to conditional measurable spaces the well-known
construction due to Dempster [11] and reveal to be particularly relevant in
Bayesian statistics, in random set theory and their applied fields.

6. Preservation of total monotonicity

The lower full conditional probability μ∗(·|·) on G×G0 of Section 5 has been
obtained through a multivalued mapping, starting from the full conditional

20



probability μ(·|·) on F × F0 which is, in particular, a totally monotone lower
full conditional probability. Hence, the discussion carried on in the previous
section highlights that a multivalued mapping satisfying assumptions (A1) and
(A2) is a transformation that preserves total monotonicity in a conditional
framework: this is in line with results presented in [9, 24] for the unconditional
case.

In this section we study the above transportation problem starting from a
totally monotone lower full conditional probability μ∗(·|·), obtained, in turn, by
a previous transportation of a full conditional probability μ(·|·) defined on a
different space.

At this aim, consider three conditional measurable spaces (X,F × F0),
(Y,G × G0) and (Z,H × H0), where F , G and H are algebras of subsets of
X, Y and Z, respectively. Consider two multivalued mappings Γ1 : X → ℘(Y )
and Γ2 : Y → ℘(Z) satisfying (A1) and (A2). The composition of the mul-
tivalued mappings Γ1 and Γ2 is the multivalued mapping Γ2 ◦ Γ1 : X → ℘(Z)
defined, for every x ∈ X, as

(Γ2 ◦ Γ1)(x) :=
⋃

y∈Γ1(x)

Γ2(y).

For every A ∈ ℘(Z) and B ∈ ℘(Y ), denote the lower and upper inverses
determined by Γ1, Γ2 and Γ2 ◦ Γ1 as

A∗,2 := Γ2∗(A) and A∗,2 := Γ2
∗(A),

B∗,1 := Γ1∗(B) and B∗,1 := Γ1
∗(B),

A◦ := (Γ2 ◦ Γ1)∗(A) and A◦ := (Γ2 ◦ Γ1)
∗(A).

The following proposition has an immediate proof that is omitted.

Proposition 8. The composition Γ2 ◦ Γ1 is a multivalued mapping such that:

(i) Γ2 ◦ Γ1 satisfies (A1) and (A2);

(ii) A◦ = (A∗,2)∗,1 and A◦ = (A∗,2)∗,1, for every A ∈ ℘(Z).

Now, consider a full conditional probability μ(·|·) on (X,F×F0) represented
by the dimensionally ordered class {να : α ∈ I} and denote with {να : α ∈ I}
and {να : α ∈ I} the corresponding classes of inner and outer measures on
℘(X). The multivalued mapping Γ1 induces the totally monotone lower full
conditional probability μ∗(·|·) on (Y,G ×G0) that can be further transported to
(Z,H×H0) through the multivalued mapping Γ2.

Denote with {ν
α

: α ∈ I} and {να : α ∈ I} the linearly ordered classes
of possibly unbounded [0,+∞]-valued functions defined on ℘(Y ) obtained by
setting, for every B ∈ ℘(Y ),

ν
α
(B) = να(B∗,1) and να(B) = να(B

∗,1).

Propositions 1 and 2 imply that, for every α ∈ I, ν
α
and να are, respectively,

totally monotone and totally alternating.
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Notice that the totally monotone lower full conditional probability μ∗(·|·)
can be expressed in terms of {ν

α
: α ∈ I} and {να : α ∈ I} setting, for every

A|B ∈ G × G0, μ∗(A|B) = 1 when A ∩B = B, and otherwise

μ∗(A|B) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ν
α
(A∩B)

ν
α
(A∩B)+να(Ac∩B)

if there is α ∈ I such that

ν
α
(A ∩B) + να(A

c ∩B) ∈ (0,+∞),

0 otherwise.

Again we set μ∗(A|B) = 1− μ∗(Ac|B), where the complements are taken in Y .
We define, for every C|D ∈ H × H0, μ∗∗(C|D) = 1 when C ∩D = D, and

otherwise

μ∗∗(C|D) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ν
α
((C∩D)∗,2)

ν
α
((C∩D)∗,2)+να((Cc∩D)∗,2)

if there is α ∈ I such that

ν
α
((C ∩D)∗,2) + να((C

c ∩D)∗,2) ∈ (0,+∞),

0 otherwise,

and μ∗∗(C|D) = 1− μ∗∗(Cc|D), where the complements are taken in Z.
The following proposition holds.

Proposition 9. There exists a class
˜̃M of full conditional probabilities on H

such that μ∗∗ = min
˜̃M, moreover, for every D ∈ H0, μ∗∗(·|D) is a normalized

totally monotone capacity on H.

Proof. Consider the set

Ω = (X×Y×Z)\
⎡⎣ ⋃
x∈X

({x} × (Y \ Γ1(x))× Z) ∪
⋃
y∈Y

(X × {y} × (Z \ Γ2(y)))

⎤⎦ ,

and take the algebras of its subsets A = {(A × Y × Z) ∩ Ω : A ∈ F}, A′ =
{(X × B × Z) ∩ Ω : B ∈ G} and A′′ = {(X × Y × C) ∩ Ω : C ∈ H}, that
under conditions (A1) and (A2) on Γ1 and Γ2 are isomorphic to F , G and H,
respectively.

Setting, for every E|H ∈ F × F0, P ((E × Y × Z) ∩ Ω|(H × Y × Z) ∩ Ω) =

μ(E|H), we obtain the spaces (Ω,A×A0, P ), (Ω,A′ ×A′0) and (Ω,A′′ ×A′′0)
which are isomorphic to (X,F×F0, μ), (Y,G×G0) and (Z,F×F0), respectively.

Thus μ(·|·) is in bijection with P (·|·), and the dimensionally ordered class
{να : α ∈ I} on F representing μ(·|·) is in bijection with a dimensionally ordered
class {mα : α ∈ I} on A representing P (·|·). Moreover, for every C|D ∈ H×H0

and every α ∈ I, it holds

ν
α
((C ∩D)∗,2) + να((C

c ∩D)∗,2) = να(((C ∩D)∗,2)∗,1) + να(((C
c ∩D)∗,2)∗,1)

= να((C ∩D)◦) + να((C
c ∩D)◦)

= mα((X × Y × (C ∩D)) ∩ Ω) +mα((X × Y × (Cc ∩D)) ∩ Ω),
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where the complements are taken in Z, and ν
α
((C ∩ D)∗,2) = mα((X × Y ×

(C ∩D)) ∩ Ω) follows analogously.
Now, let M and P be, respectively, the set of full conditional probabilities on

℘(X) extending μ and the set of full conditional probabilities on ℘(Ω) extending
P , whose envelopes are μ = minM, μ = maxM, P = minP and P = maxP.

Simple computations show that, for every C|D ∈ H ×H0,

μ∗∗(C|D) = μ((C∩D)◦|(C∩D)◦∪(Cc∩D)◦) = P ((X×Y×C)∩Ω|(X×Y×D)∩Ω),

so μ∗∗(·|·) defined on (Z,H × H0) coincides with the restriction of P (·|·) on

A′′ ×A′′0 by Theorem 2.
Hence, for every D ∈ H0, Proposition 3 implies that μ∗∗(·|D) is a normalized

totally monotone capacity on H.
Finally, for every P̃ ∈ P, define the full conditional probability μ̃ on H

setting, for every C|D ∈ H×H0, μ̃(C|D) = P̃ ((X×Y ×C)∩Ω|(X×Y ×D)∩Ω)

and denote with
˜̃M = {μ̃ : P̃ ∈ P}, for which it holds that μ∗∗ = min

˜̃M.

Figure 3 shows the relations between μ(·|·), μ∗(·|·), μ∗∗(·|·) singled out by
Γ1, Γ2 and Γ2 ◦ Γ1.

μ(·|·) additive μ∗(·|·) totally monotone

μ∗∗(·|·) totally monotone

Γ2◦Γ1

Γ1

Γ2

Figure 3: Relationships between μ(·|·), μ∗(·|·) and μ∗∗(·|·)

Since, for every D ∈ H0, μ∗∗(·|D) is a normalized totally monotone capacity
on H then we can define a corresponding conditional functional on L(Z,H)×H0

setting, for every h ∈ L(Z,H),

M∗∗(h|D) = C

∫
h(z)μ∗∗(dz|D).

An analogous Choquet integral expression holds for M∗∗(·|D) with respect to
μ∗∗(·|D).

The following proposition holds.

Proposition 10. There exists a class
˜̃
M of full conditional previsions on L(Z,H)

such that M∗∗ = min
˜̃
M, moreover, for every D ∈ H0, M∗∗(·|D) is a totally

monotone lower prevision on L(Z,H).

Proof. Consider the full conditional probability space (Ω,A × A, P ) and the

conditional measurable space (Ω,A′′ ×A′′0) built in the proof of Proposition 9.
We have that, if P is the set of full conditional previsions on L(Ω) extending
the full conditional prevision P on L(Ω,A) determined by (Ω,A×A0, P ), then

M∗∗ coincides with the restriction of P = minP on L(Ω,A′′)×A′′0, so, its total
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monotonicity follows by Proposition 5. Moreover, the class
˜̃
M of full conditional

previsions on L(Z,H) is determined through the Stieltjes integral by the class
˜̃M

of full conditional probabilities on H defined in the proof of Proposition 9.

The following example shows the construction of μ∗∗(·|·) transporting μ∗(·|·)
through Γ2, the latter being obtained by transporting μ(·|·) through Γ1. The
same example also shows that μ∗∗(·|·) can be directly obtained transporting
μ(·|·) through Γ2 ◦ Γ1.

Example 6. Take X = {x1, x2, x3}, Y = {y1, y2, y3}, Z = {z1, z2, z3}, F =
℘(X), G = ℘(Y ) and H = ℘(Z), and consider the multivalued mappings Γ1 :
X → ℘(Y ) and Γ2 : Y → ℘(Z) such that

Γ1(x1) = {y1, y2}, Γ1(x2) = {y1}, Γ1(x3) = {y3},
Γ2(y1) = {z1, z2}, Γ2(y2) = {z1, z3}, Γ2(y3) = {z2},

that trivially satisfy (A1) and (A2). The composition Γ2 ◦ Γ1 is defined as

(Γ2 ◦ Γ1)(x1) = Z, (Γ2 ◦ Γ1)(x2) = {z1, z2}, (Γ2 ◦ Γ1)(x3) = {z2}.
The lower and upper inverses determined by Γ1, Γ2 and Γ2 ◦ Γ1 are

℘(Z) ∅ {z1} {z2} {z3} {z1, z2} {z1, z3} {z2, z3} Z
(·)∗,2 ∅ ∅ {y3} ∅ {y1, y3} {y2} {y3} Y
(·)∗,2 ∅ {y1, y2} {y1, y3} {y2} Y {y1, y2} Y Y
(·)◦ ∅ ∅ {x3} ∅ {x2, x3} ∅ {x3} X
(·)◦ ∅ {x1, x2} X {x1} X {x1, x2} X X

℘(Y ) ∅ {y1} {y2} {y3} {y1, y2} {y1, y3} {y2, y3} Y
(·)∗,1 ∅ {x2} ∅ {x3} {x1, x2} {x2, x3} {x3} X
(·)∗,1 ∅ {x1, x2} {x1} {x3} {x1, x2} X {x1, x3} X

Consider the full conditional probability μ(·|·) on F ×F0 determined by the
dimensionally ordered class {ν0, ν1} whose distributions on the set of atoms CF
of F are

CF {x1} {x2} {x3}
ν0 5 0 0
ν1 +∞ 3 1

Since F = ℘(X) we have that να = να = να, for α = 0, 1. The totally monotone
lower full conditional probability μ∗(·|·) on G × G0 determined by μ(·|·) is

G ∅ {y1} {y2} {y3} {y1, y2} {y1, y3} {y2, y3} Y
μ∗(·|{y1}) 0 1 0 0 1 1 0 1
μ∗(·|{y2}) 0 0 1 0 1 0 1 1
μ∗(·|{y3}) 0 0 0 1 0 1 1 1

μ∗(·|{y1, y2}) 0 0 0 0 1 0 1 1
μ∗(·|{y1, y3}) 0 3

4 0 0 3
4 1 0 1

μ∗(·|{y2, y3}) 0 0 0 0 1 0 0 1
μ∗(·|Y ) 0 0 0 0 1 0 0 1
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The classes of totally monotone and totally alternating measures {ν
0
, ν

1
}

and {ν0, ν1} defined on ℘(Y ) determined by {ν0, ν1} are

℘(Y ) ∅ {y1} {y2} {y3} {y1, y2} {y1, y3} {y2, y3} Y
ν
0

0 0 0 0 5 0 0 5

ν0 0 5 5 0 5 5 5 5
ν
1

0 3 0 1 +∞ 3 1 +∞
ν1 0 +∞ +∞ 1 +∞ +∞ +∞ +∞

The classes {ν
0
, ν

1
} and {ν0, ν1} induce the totally monotone lower full condi-

tional probability μ∗∗(·|·) on H×H0 below

H ∅ {z1} {z2} {z3} {z1, z2} {z1, z3} {z2, z3} Z
μ∗∗(·|{z1}) 0 1 0 0 1 1 0 1
μ∗∗(·|{z2}) 0 0 1 0 1 0 1 1
μ∗∗(·|{z3}) 0 0 0 1 0 1 1 1

μ∗∗(·|{z1, z2}) 0 0 0 0 1 0 0 1
μ∗∗(·|{z1, z3}) 0 0 0 0 0 1 0 1
μ∗∗(·|{z2, z3}) 0 0 0 0 0 0 1 1

μ∗∗(·|Z) 0 0 0 0 0 0 0 1

Simple computations show that the same conditional measure μ∗∗ is obtained
transporting μ through Γ2 ◦ Γ1

7. Conclusions

The theory of random sets is usually based on topological and measurabil-
ity assumptions and is used to transport unconditional probability measures.
However, in many applications related to economics and statistics such as game
theory, dynamic programming and econometrics, conditional probability spaces
need to be considered.

In this paper, avoiding any measurability and topological assumption, mul-
tivalued mappings are used to transport a full conditional probability space
(X,F ×F0, μ) to another conditional measurable space (Y,G×G0). The result-
ing lower conditional measure μ∗(·|B) is a normalized totally monotone capacity
on G, for every B ∈ G0, which is continuous from above if μ is countably additive
and F is a σ-algebra. The conditional measure μ∗ has a generalized Bayesian
conditioning rule representation in terms of two linearly ordered classes of pos-
sibly unbounded totally monotone and totally alternating capacities on ℘(X).
Moreover, μ∗ determines a lower conditional prevision functional M∗ on the set
of G-continuous conditional gambles L(Y,G) × G0, which is totally monotone
and has a Choquet integral expression in terms of μ∗.

Next we consider the above transportation problem where the starting point
is (Y,G × G0, μ∗) and the target space is (Z,H × H0), with μ∗ obtained by a
previous transportation of the full conditional probability space (X,F ×F0, μ).
We show that also in this case a multivalued mapping from Y to Z determines a
lower conditional measure μ∗∗ that has a generalized Bayesian conditioning rule

25



representation in terms of two linearly ordered classes of possibly unbounded
totally monotone and totally alternating capacities on ℘(Y ). Moreover, μ∗∗ de-
termines a lower conditional prevision functionalM∗∗ on the set ofH-continuous
conditional gambles L(Z,H)×H0, which is totally monotone and has a Choquet
integral expression in terms of μ∗∗.

Both transportation problems can be translated in an extension problem
related to a suitable full conditional probability space (Ω,A×A0, P ), for which
a complete characterization is given.

Both μ∗ and μ∗∗ are the lower envelope of a class of full conditional probabil-
ities, therefore, they are totally monotone Williams-coherent lower conditional
probabilities. This shows that multivalued mappings are transformations that
preserve both Williams-coherence and total monotonicity in a conditional set-
ting: this is in line with results proved in [9, 24] in the unconditional case.

Both μ∗ and μ∗∗ can be obtained by a transportation of a full conditional
probability μ through a multivalued mapping and their properties are essentially
determined by the representation of μ through a dimensionally ordered class of
possibly unbounded finitely additive measures {να : α ∈ I}. An open problem
is to prove if for any totally monotone lower full conditional probability measure
μ∗ on a conditional measurable space (Y,G × G0) there exist a full conditional
probability space (X,F × F0, μ) and a multivalued mapping Γ : X → ℘(Y )
inducing μ∗.
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