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Abstract

Necessary and sufficient conditions for a general reverse of Schwarz’s inequality in inner product spaces are given.
Results are applied to the triangle inequality and Gruss’ type inequality.
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1. Introduction and motivation

Let (V, {-,-)) be an inner product space over the real or complex number field F (F = R or C). The inequality

@y | < llzllllyll, =,y €V, (1)

is known in the literature as Schwarz’s (or Cauchy-Schwarz or Cauchy-Bunyakovsky-Schwarz) inequality, where
|v]|? = (v,v), veV.

In 1925 Pdlya and Szegd [20] proved probably the first reverse of Schwarz’s inequality: if z;,y;, i =1,...,n
are positive numbers such that 0 < a < x; < A< ooand 0 < b <y; < B < oo for some constants a, A, b, B, then

2
Y - (ab + AB)?
; ; = 4abAB (Z wzyz> )

Dragomir [7, Theorem 2.2] obtained the following result

Jally) < T2l e, oy eV ©)
if scalars T,y satisfy Re(Ty) > 0 and
Re(l'y —z,z —yy) > 0 (3)
or, equivalently,
o= 55 < 5 =l @

. (ab+AB)? [T+~ . . . " .
The expressions ~— ==~ and e R’ apparent on the right in two inequalities above, are called Kantorovich

type constants. It is because of Kantorovich inequality [17] that relates to both mentioned ones.

In moving towards the trigonometric interpretation of the inequality (2) on the assumption (4), 2“;4\/% is
e(I'y

I+
Iy

the secant of an angle in a right triangle with the length of the hypotenuse equals and the opposite side

equal to @Hy”

Presently, there is a lot of reverses of the Schwarz inequality under various conditions in the literature. We
give some examples. For discrete variants of the inequality see [5]. Counterparts for integrals, isotone functionals
and other extensions in the context of inner product spaces are considered in [1],[2],[8],[9],[10] and references
therein. Some improvements, complements of Dragomir’s result and other classical references the reader can find
in [11]. Moreover, there exist many generalizations of the inequality in more abstract structures, see [12],[13],[14],
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[15],[16],[18],[19] and references therein. As a continuation of this research, inspired by the classic Pélya and
Szego inequality, we will obtain a natural generalization of Dragomir’s result.
It is easily seen that for fixed C' > 1 and real A and B:

AgBC@A—BS%Ag(O—l)B. (5)

By (5) the equivalent reformulation of (2) is as follows
-] 15
]Iy <

*’7‘2 2
ﬁ |<:Cay>| 7$7yEV (6)

= 4Re(T9)

Iyl = [ (z, ) |7 <

The inequality between the first and last term in the above, see e.g. [7, Corollary 2.4].

Our interest are inequalities of the form (2) with an other constant § > 1 instead of the Kantorovich type
[P+7]

24/Re(I'7)’

constant i.e.

Iz (l[lyll < 6l {z,9) |, z,y €V, (7)

or, by (5), in the following equivalent form

6% -1
Izl llyl® = €z, ) 2 < ===l ly]* < (6% = Dl @) [*, @y € V. ®)

Notice, if § = sec o, 6251 =sin® & and 62 — 1 = tan? . This remark will be useful for the presentation of some

results in this paper.

The first inequality in (8) is an additive form while the second one is called a multiplicative form of the
reverse Schwarz inequality.

It is known that

H H
lyll? — e

”xHQ RGNS _ H

< Hx_yH2v 07513’96‘/

Hence we obtain the following general additive-multiplicative version of reverse Schwarz’s inequality

2

_ _ 2
min { V2, L2 o2y <

VAN

2l lyl1* = |z, y) |2

[zl (9)

i 2=yl (B 2
min T .
a e —Te 3T Tole—Te—oT= [ | (&> 9) |

A

The multiplicative part of the inequality under the additional assumption ||z — y|| < min{||z]], ||y||}. It is worth
noting, if (3) or, equivalently, (4) is met, then by the inequality (9) we can directly derive the inequality (6).

A brief presentation of our results is below.

Firstly, in Theorem 1 we show that conditions similar to (3) or (4) are sufficient and with small modifications
also necessary for the reverse of Schwarz inequality (7) and (8) to hold. In addition, some new necessary and
sufficient conditions of the type are given. The theorem generalizes the important Dragomir’s result (3) or
(4)=(2) and gives the possibility to obtain an extended version of the inequality (9) (see Corollary 2).

Secondly, we present strengthened versions of the both mentioned inequalities (see Theorem 3 and Corol-
lary 6).

Finally, some new versions of Griiss’ type inequalities (Theorem 2, Proposition 1) and reverses of the triangle
inequality ( Theorem 4, Proposition 2) in inner product space settings are obtained. Moreover, known results in
the subject are complemented or rediscovered (see Corollaries 1,3,7).

Few adequate examples support the main results in the paper.

2. Reverses of Schwarz inequality

For given a,b € V with Re (a,b) > 0 we define two real quantities

woe oMbl o fla—bll
‘= Ra,b = , T I= Ta,b = .
Re (a, b) Re {a, b)



If a = ~yv and b =T for 7, T € F with Re(T') > 0 and v € V' \ {0}, then we get

K=K F:—\’Y-i-l—‘\ T =T F:—"V_F‘
T T 2yRelly T 2y/Rely

It is clear that 72 + 1 = k% and x > 1, 7 > 0. The quantity » is known as Kantorovich type constant.
Given a nonzero vector v € V and 7 > 0, we define

Cor={c(v+h):cecF\{0},heV, (vh)=0,]|hl|<7|v|}

Theorem 1. Let 7; > 0 and k; > 1, i = 1,2 be arbitrary with /i% = ’7',L»2 +1 and Ty < 1.
For nonzero vectors x,y € V the below conditions are mutually equivalent:

(i) the following equivalent inequalities hold true

R1K2
lllliyll < T——— e [z, ) |, (10)
+7‘2)2 (11 —|—7’2)2
20,12 _ 2 (11 201112 < 2 11
IolPIyl® | (o, < 2Pyl < (T ) P (1)

(ii) there ewxist nonzero scalars c1,co € F and a nonzero vector v € V- such that

T1 T2
[erz — vl < ,;lllvll and [leay — || < K—2llvll, (12)

(iii) there exist nonzero scalars c1,co € F and a nonzero vector v € V' such that

lerr = vl < s llev +ol] and fleay — vl < = lleay + ol (13)

(iv) there exist a,b,d,g € V with Re (a,b) ,Re(d,g) > 0 and a+b,d+ b € span{v} for a certain nonzero vector
v € V such that
Re(b—z,z —a) >0 and Re(g—y,y—d) >0, (14)

and Ty = Tap, K1 = Kab, T2 = Td,g, K2 = Kd,g,
(v) there exists a nonzero vector v € V such that x € Cy, -, y € Cy 1, .
To prove the theorem we need three auxiliary lemmas.

Lemma 1. Fora,beV and a >0,

<
la— 50l ] = 2208, 0<a<1,
>
< >
la =bl|¢ = alla+?d| <~ Re{a,b)< = 0, a=1, (15)
> <
>
la— 220§ = 2%, a>1.
<
Particularly, for K > 1 and 7 > 0 such that K? = 72 + 1 we have:
T
la=bll < —T<lla+bl = fla—nbl < bl (16)

Proor. Taking the square and rearranging the terms, the inequality/equality on the left in (15) is equivalent to

(1 —a)all® + (1 = a®)[Ibl]* = 2(1 + o) Re (a, b) (17)

VA
o



For o« = 1 it reduces to the second inequality /equality on the right in (15).
If 0 < a < 1, then dividing both of sides of (17) by 1 —a? > 0 and adding the same quantity uf@%HbHQ, we
obtain

<
1 + « 2 ]. =+ CY2 - 4@2 9
ol + ( ) bl - 225 Re (@) { = 2
l—a 1—a2 ’ > (1—a?)? ’
or, equivalently,
RS
a— = — .
1— a2 > (1—a?)?
This is the first inequality /equality on the right in (15).
In the similar way, one can obtain the third variant of (15), i.e. if a > 1.
The particular case we get by simple computations. O

Lemma 2. Fiz a nonzero vector s € V and 0 < o < ||s||. If ||z — s|| < o, then there exist vectors v,h € V such
that v € span{s} \ {0}, x =v+h, (v, h) =0 and

92

= sl - e

PROOF. Given z € V, we define v := ?ﬁlfgs h :=x —v. It is clear that (v,h) = 0 and ||v||* = KHT’ |h|? =

In])* < 2 [l (18)

llz)|? — <|T ﬁ” For such v and h the inequality (18) takes the form

Allll® + 1 {s,x) [ = |*[Is]]* > 0 (19)
If || — s|| < g, then = s + r for a certain vector r with ||r|| < g and
z[* = IsI* + I7[|* + 2Re (s, ) and [ {s,2) [* = [|s|* + ] (s,7) |* + 2| *Re (s, 7).

Substituting the above to the left hand side of (19) and replacing (s,r) by a + i3, (i* = —1), for any a, 3 € R
we have:

| {s,7) |2+2922Re<8 r) + o°(s ||2+H7”|| )= IIs HzHTHz =
4 P40k glol ) - o~
(ot g 57+ (2 - 2)(e? ~ ) >
(Is* = 0*)(e® = lI7lI*) >0,
if ||7|| < o < ||s]|- It proves that (18) is valid.
Moreover, vector v must be nonzero. Otherwise, (z,s) = 0 and ||z — s||> = (x — s,z — 8) = ||=]|* + [|s]|* —
2Re (z,5) = ||z||*> + ||s]|?. Then o* < ||s||* < ||z||* + ||s]|*> = ||z — s||* < 0. This contradiction finishes the proof.
[
Lemma 3. (see [4, Lemma 2.1], c.f. [7, Theorem 2.2]) Let x,y,a,b € V and ',y € F. Then
b 1
Re(b—z,0—a) >0 Hx—”‘; H§§||a—b, (20)
Re(Ty —z,2—yy) 20 = |z - —yH < 2|F Myl (21)
In particular, the equations on the left are equivalent responsible equations on the right. O

PrOOF OF THEOREM 1. The layout of the proof is as follows:
(v) = (i) = (ii) = (v), (iii)) & (ii) & (iv).

Let us start from the observation, the inequalities (10) and (11) are specifications of (7) and (8), respectively,
for = ;%2 Therefore they are equivalent, by (5).

(v)=(i). Let c1z = v+ hy and coy = v + ha, where (v, h;) =0, ||hi]| < 7il|v]l, ¢ € F\ {0}, i =1,2. Observe,
the classic Schwarz inequality (1) gives |Re (h1, ha) | < | (h1, ha) | < ||h1]|[|h2]| < 7172]|v]|? and consequently,

Re(h17h2> Z —7'17'2”'[}”2. (22)



We have [ey [*[|2[|* = [Jv]|* + 7o [* < (1 + 78)[lv]|* and |ea[lyl* = [[v][* + [Ih2]|* < (1 + 73)[Jv]|*. Hence
e PleaPlllPllyl® < (1 +72) (1 + ) o]l *. (23)

On the other hand 12 (z,y) = (v + h1,v + ha) = ||v]|? + (h1, h2). Tt implies that
len[2[e2l?| (2, y) |2 = (0] + Re (h1, ha))? 4 Im? (hy, hy) . Hence, making use of (22) leads to

le1Pleal?| (2, 9) 2 > ([0l + Re (b, ho))? > ([[v]]* = mimallol®)? = (1 = mm)? o], (24)

Now, combining inequalities (23) and (24) yields (10) and, equivalently, (11).
(i)=(ii). The function (71, 72) 1'117':";2 0 < 7,7 and 772 < 1 is increasing w.r.t. both variables. Thus,

for nonzero vectors z,y, fulfilling (7) with 6 = ;=72 ~ there exist 0 < 7/ < 7,0 = 1,2 that

, 1 _
[EIIE KKy
where, as before, /@éz = 7'{2 +1,k;>1,0=1,2.
Note (z,y) # 0 and let
P R T S B
| (z, ) []]]] lyll T+ T+ T
Since (25), we obtain
(2 yy=(,2") =1—71]75, (26)
moreover,
Jo'I* = 5 and [1y/]|* = w5° (27)
and, consequently,
" =y |* = (1 +73)% (28)
Now, we are ready to define
vi=ax' + By, hy =B — ), hy = aly —2').
By (26), (27) and (28) one can easy verify
¥ =v+hy, vy =v+ ho; (29)
(v,h1) =0= <’U ha); (30)
o =1, [[ha]? = 7{%, |ha|® = 75" (31)

Regarding (29),(30) and (31) we obtain

1 12 1 ? 2
— ' —o|| = % || =5y —v|| = Z5ll?
K1 K1 Ra Ra
or, equivalently,
/2 12
2 T
ler —v))* = =5 [lol|?, and [Je2y — v]|* = 25 v]|?,
“1 Ko

where ¢; = (y,x) /| (z,y) |||z]| and ¢z = 1/k}]|y|l. To this end, we notice that 7/%/x*> < 7:2/k;2, whenever
I <7, i=1,2.

(ii)=(v). It suffices making use of Lemma 2.

(i)« (iii). It follows from the particular case of Lemma 1.

(iv)=-(ii). Re(a,b),Re(d,g) > 0 ensures that ||a + b||, ||d + ¢|| # 0. Since a + b,d + g € span{v} and v # 0,
there exist nonzero scalars ¢y, ¢y such that

a+b d+g
¢l =v=0— and ||v]| = |e

|||a+b\|
2

|||d+9||




Now, if (14), then by (20) we have

a+b 1 d+g
T — < glla=bll and |y — —-= < 2ld—gl
2 2
or, equivalently,
lla = b ld — gl
lere — ol < ol and [eay — vl < [[o]]-
lla + 0] 14+ g
i i ; la=bll _ Tap ld=gll _ Taq
This is nothing but (12), because s == e

(ii)=(iv). Define a,b,d, g € V as follows

cla = (1—&—1)0, b= <1—l>v, and cod = <1+2>v, Cog = <1—E>v.
R1 K1 K2 R2

It is easy to see that

a+b_ 1 Gt d+g_
c1 5 =, §|Cl|||a—bH—H—1||vH and ¢y 5

1 T2
Zleallld = gll = =2 |v].
pleallid =gl = ~v]

By the above, (12) can be expressed in the form

a+b
2

d+
2

C1x —C1

C2Y — C2

1
| < il - o) and

g 1
| < Jiealla- .

By (20) it is equivalent to (14). Clearly, a + b,d + g € span{v} and v # 0 (by the hypothesis), moreover,
Re (a,b) = ||v||?/k? > 0 and Re (d, g) = ||v]|*/x3 > 0 and 74 p = 71, Tag = T2
The proof is completely finished. U
Now, we shall present some consequences of Theorem 1. Let us start from the example that illustrates how
our theorem works.

Example 1. Consider [2, the space of all complex sequences z = (z1, 22, ...) such that > |2]? < oo, with the
inner product (x,y) = Y. x;7; and norm ||z|| = \/(x,z),z,y € 1%

Fiz v = (v1,vs,...) € [ with nonzero entries, z1,202 € C\ {0} and choose g; > 0 with o; < |z;|. For the
interpretation, é;l is assumed to be equal sincy, i = 1,2, where 0 < a; < /2.

Given x,y € 12, let

< 01 < |z, and %_ZQ <oy <z, i=1,2,....
(2

i
S
i

Multiplying the above inequalities by |v;|/|z1] > 0 and |v;|/|z2| > 0, respectively, taking the square, summing over
1 and extracting the square Toot of both of sides gives

E
—xr—v
21 |21\ | |

2 2
Applying (ii)=(i) of Theorem 1 with = = 2%, i = 1,2 simultaneously assuming IZQTlIQ + ‘572‘2 < 1, we obtain

[z ]

01 1
< | and H—y—v LNV
22

||33||2||y||2 < sec? (a1 + az)| (z,9) I,
or, equivalently,
[y 1* = |z, y) [* < sin® (e + az)|[2]?[ly]* < tan® (a1 + az)| (2. y) [ (32)
We omit the details. O
Analysing the proof of Theorem 1, especially the part (ii)<(iv), we conclude
Remark 1. Condition (iv) in Theorem 1 can be equivalently replaced by the following one:

(iv’) there exist nonzero scalars v,I',\, A € F with Re(y') > 0, Re(AA) > 0 and a nonzero vector v € V such
that

Re(Tv —xz,x —yv) >0 and Re(Av—y,y —Av) >0 (33)

and Ty = Ty T, K1 = Ky, T2 = TAA, K2 = KA A-



Theorem 1 together with Remark 1 lead to the following supplement of Dragomir’s result [7, Theorem 2.2].

Corollary 1. Fiz 7> 0 and £ > 1 with k? = 72 4+ 1. For nonzero vectors x,y € V the following conditions are
mutually equivalent:

(1) the following equivalent inequalities hold true
2
-
l=lllyll < &l Gy} | and [lz]*y]* = | (z,9) [* < Sl Pllyl* < 72| (@, 9) P,

(ii) there exists c € F\ {0} such that [[cx —y[| < Z|lyl,
(iii) there exists c € F\ {0} such that |[cx — y|| < Ty llcx +y,

(iv) there exist a,b € V with Re(a,b) > 0 and a + b € span{y} such that Re (b —z,x —a) > 0, and 71 = T4,
R1 = Ra,b,

(iv’) there exist I',y € F with Re(I'y) > 0 such that Re (I'y — cx,cx —yy) > 0 and 7 = 7y and Kk = Ky 1,
(v) there exist c € F\ {0} and h € V such that cx =y + h, (y,h) =0 and ||| < 7]y]|.

PRrROOF. Make use Theorem 1 together with Remark 1 for v = y. Then youcanset o =0, 1 =c; = ko = A=A
and d = g = y. Observe, in this situation we have 71 = 7y, = 0 and K11 = Ky, = 1. O
Theorem 1 also allows us to generalize the inequality (9) as follows.

Corollary 2. Let x,y,v € V, where v # 0. If |z — v, ||y — o[ < [|v|| and ||z — v|]?|ly — v||* < (||[v]|* — ||z —
v|2)(||v]|? = |ly — v||?), then we have

Jlv]l?

|z {[[lyll <
VIRl = llz = vI2V/Il? = {ly — vl = [l = vllly — ||

| (@9, (34)

or, equivalently,

2
[ = vllVIvlIZ = lly = vl + [ly = vllVI[ol* = [l = v]?
1 yll* = | (2, 9) [* < ( [ lyl*. (35)

[o]]?
PROOF. Let | 2 ) I 2 )
r—v o2 2 y—v T2 2 2
= —, Ry = +1 = 5, kg = + 1
[ S R M
Hence
o 2 llz—v] Ky = llvll
VivlZ=llz—v]?’ Vivlz—llz—v]?’
8 ly—vll _ [lvll
o= —— Tl gy =——
BRI R P e/ T ER P
Now enough to apply Theorem 1, (ii)=-(1). O
Remark 2. For ||z —y| < min{||z|, |y||}, setting consecutively v = = and v = y in (34) and (35) we derive
(9). O
Remark 3. On the assumption as in Corollary 2, inequalities (34) and (35) can be jointly expressed in the clear
form (32), where oy = arcsin ”m‘l;ﬂju and oy = arcsin % O
The inequality
Ky TEXA
T < AR e
Jellyl < A ()|
Ky, DRXA

is sharp in the sense that the constant ;== oo cannot be improved multiplying it by any scalar smaller than
~, N

1. In other words, there exist vectors x,y € V fulfilling (14) (in practice (33)) such that

R~y TRX A

[yl = 5 [ (z,9) |- (36)

— T4, I'TAA

The suitable vectors of the type are specified in the following example.



Example 2. Fiz a vector v € V and scalars v,T',\,A € F as in condition (iv’) (see Remark 1). Denote
T = Tyr, T2 = Taa and set k7 = 1+ 72, i = 1,2. Choose arbitrary w € V \ {0} with (v,w) = 0 (in this

moment, V is assumed to be at least 2-dimensional).
We define

v+T A+A

2= gy (lwllv + miflvllw), ¥ = S (([w]lv — 2[jv[|w).
’ 263w

263w
One can easy verify that:

lz[l = \/ReyT[[vl and [yl = VReAA[v]],

hence
lz[llyll = \/ReryTReAA lv]|?,
and next A
|@w>=li£%§Ja—nmmw,
7+F |y — F| A+ A A — Al
[l — vl = loll and ly — ——vll = [[o]l-

By virtue of (21) the above is equwalent to
Re(T'v —xz,x —yv) =0 and Re(Av—y,y—Av)=0
and (37) and (38) lead to (36).

3. Applications to Griiss’ inequality

Let x,y and z # 0 be vectors in an inner vectors space V. Griiss’ type inequalities state upper bounds for

(x,2)(

the quantity | (z,y) — B {2:2)29)| - Usually but not necessarily ||z = 1.

Applying classic Schwarz’s inequality for the vectors x — %z and y — ﬂ’HZQ z and taking into account that

<1:— (o:,z)z . <y,z>z> g (2.2 (2.3

[E2 Y 1 Iz

2
_ lylPl=1? =

-4

1211

we have the initial estimate

2
ZJWWW—H%@Pad‘P_@JQ
[ B

12117

<l’,y> -
21> [l 2]I*

Basing on Theorem 1 we obtain the following Griiss’ type inequalities.

{z,2) (2 y) ‘2 < Ul = e 2) PYAylPll=P ~ 1y, =) 1)

(39)

Theorem 2. Letv € V\{0} and 7; > 0,k; > 1, i =0,1,2, be such scalars that 72 + 1 = k2 and 1179, 7270 < 1.

For x,y,z € V, where z # 0, the inequality

(11 +70)(m2 +70) [{x,2)(2,9)|

_(z,2) (z,9) (11 + 70)(72 + 70) .
(z,y) Bk ‘ < K1R2ko [yl < (1 —7170)(1 — 7270)

holds true whenever

(@) llz =oll < Sllvlls flz=oll < Zllvlls ly = ol < Zllll,

— ko - k1 - k2

(ii) [lz —vll <

mgzllz ol llz =vll < g lle +oll, lly = ol < FEglly + ol

(iii) Re(bg — z,z —ag) > 0, Re(by —x,x —ay) >0, Re(by — y,y —az) >0,

where a;,b; € V, 1 =0,1,2 with Re (a;,b;) > 0, a; +b; € span{v} and 7, := 74, p,,

(iii’) Re(Tgv — z,2 —yv) > 0, Re (I'1v — x, 2 — y1v) > 0, Re (I'2v — y,y — y2v) > 0,
where I';,v; € F, i =0, 1,2 with Re(I';7;) > 0 and 7; := Ty, 1,, Ki = Ky, 1,



(iv) 2€Cyry, 2€Chry, Y€ Cyry.

PROOF. Apply Theorem 1 together with Remark 1 for triples of vectors z, z,v and y, z,v and make use of
the estimate (39). 0

Analogously, (39) and Corollary 1 used for pairs of vectors z, z and y, z or specification of the above theorem
for v = z gives

Corollary 3. Let z € V\ {0} and 7; > 0,k; > 1, i =0,1,2, be such scalars that 77 + 1 = k2.
If for x,y € V one of the following conditions holds:

(1) [lz =zl < 2=l and [y — 2| < Z |-

- k1 — K2

(ii) [l — =]l <

el + 2l and [ly — 2| < 25 lly + =],

(iii) Re (by —x,x —a1) > 0 and Re (by — y,y — az) > 0,
where a;,b; € V, i = 1,2 with Re (a;,b;) > 0, a; +b; € span{z} and 7; := T4, b,y Ki = Ka; b s

(iii’) Re(I'iz — 2,2 —y12) > 0 and Re (I'az — y,y — y22) > 0,

where T';,~y; € F with Re(L';7,;) > 0 and 7; 1= Ty, r,, Ki = K~ 10 @ = 1,2,

7

(iV) T e CZ,T17 y € 0277'27

e (@.2) (2.9) a2} (2.0)|
z,2) {2,y T1T2 2,y
(z,y) — < [z llllyll < Time ==
21> K1k2 2%
O
The above corollary covers Dragomir’s results [7, Theorem 4.1-4.2].
Similarly, combining inequalities (39) with Corollary 2 and taking into account Remark 3 we can state
Proposition 1. Let x,y,z,v € V', provided v,z # 0.
If
Hx_vHaHy_U!a”Z_UH < IIUH,2 R ,
IIilC*’UlIQIIZ*vIl2 < (Ilv\lzfHJS*UHQ)(II’UHQ*HZ*UII2),
ly = ol*llz —olI* < (lvll* = lly = vlIF)Uv]* = llz = ©ll%),
then
x,z) (7, . ) €T,z)\7,
(x,y) — % < sin(ag + ag) sin(as + ao) ||z||||ly|l < tan(ag + ap) tan(as + ao)%,
where ap = arcsin 2= o) = arcsin 2= oy = arcsin 1¥=21 O
Il 1ol 1]l

Substituting v := z and changing of roles = <+ z and y <+ z in the above gives

Corollary 4. Given nonzero vectors x,y,z € V. If ||z — z|| < min{||z||, ||z]|} and ||y — z|| < min{||y||, |z||}, then

@ la—= | [ly—=]
| (z,) | S el e max e 2y <
===y~ =] @2 zul o
max{y/|z[2—[e—2[12, 4/l 21— lz—2[12} max{y/lly[2—lly—212./ 12— ly—=12} 1=l

Remark 4. The above inequality can also be obtained directly by (39) and (9). O

4. A strengthening of reverse Schwarz’s inequality

A straight specification of the conditions (ii)-(v) included in Theorem 1 yields stronger inequalities than (10)
and (11).
For v € V\ {0} and 7 > 0 let

{av: a > 0},
{c(v+h):0<ceR eV (v,h) =0,|h] < 7v[}.

cone{v}
Cr,



Theorem 3. Fiz 7, >0, k> 1, k=1,2 with k3 =77 + 1 and 1172 < 1 and let z,y,v € V \ {0}.
The following equivalent inequalities

R1K2

< — 4
Il < T2 Re (x.9) (40)

7'1’7'24—/431:“&2—]. T1T2+K)1I<62—1

-R < < Re (x 41
Jally] — Re fa.g) < 22222 Dy < DRI Spe g, (41)
hold true, if one of the below conditions is met
(i) there exist c1,ca > 0 such that (12) holds, i.e.
lerz — || < —Ilvll and [lcay — v]| < = ||U||
(ii) there ewist c1,co > 0 such that (13) holds, i.e.
lerw = v} < —"—lerz + v]| and [leay — vl < ——[leay + o]
; 1 T Rt

(iii) there exist a,b,d,g € V with Re (a,b) > 0,Re{(d,g) > 0 and a+b,d+ g € cone{v} such that (14) holds, i.e.
Re(b—z,x —a) >0 and Re(g—y,y—d) >0,
and Ty = Tap, K1 = Kab, T2 = Td,g, K2 = Kd,g,
(iii’) there exist v,I'; \, A > 0 such that (33) holds, i.e.
Re(Tv —xz,x —yv) >0 and Re(Av—y,y —Av) >0
and Ty = Ty 1, K1 = Ky, T2 = TAA, K2 = KA,
(iv) z € Cj"ﬁ, yeCy,,.

PROOF. It is clear that (iii’)=-(iii) and inequalities (40), (41) are equivalent by virtue of (5). Moreover, the
particular case of Lemma 1 and (20) ensure that either (ii) or (iii) implies (i). Thus, it is sufficient to show that
(1),(iv) implies (40).

(i)=(40). Condition (i) gives

2 ,7_2
cillzll* + [[v]|* — 2e1Re @, v) < 2 5lvl? and Syl + [[v]]* - 2c2Re (v, y) < K—Z’QHUHQ.
2

On making use of the elementary inequality 2ab < a? + b%,a,b € R and dividing both sides of the above
inequalities by c1,co > 0 we get

1 1
—lz[l[lv]l < Re (z,v) and —|ly[lllv]] < Re (v, y).
K1 K2

Hence ) Re (2. 0) Re (0, y)
e{x,v)Re(v,y
— ||z < 42
el < = (42)
and
[z[l[[oll < ril(z,v) | and [jy[[lv]] < K] (z, 0} |,
or, equivalently (c.f. (7)<(8)),
2
.
V)] = |z, v) > < I’leHSCIIQHUII2 and [ly|?[lol* — | (y,v) |* < %Hyll [l (43)
1 Ky

On the other hand, utilizing the estimate (39) for vectors z,y and v and taking into consideration (43) we
deduce

Re(z,v) (v, T,v)(v,
Re (a,y) - B2 | < (o) — et <
Iz |12 [[v |2 =[{z,v) llyll2llvl2={y,v)|? T
< VPP eI PyVIPRRT0o? o n gy,
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It leads to

< Re (z,y) + (44)

If V is an inner product space over R, i.e. Re(:,-) = (-,-), then linking (42) and (44) we obtain (40).
For the general case, let us note that every (complex) vector space V with a (complex) inner product can be
simultaneously considered as a real inner product space, where the (real) inner product is equal to the real part
of the previous one. Moreover, the respective norms are equal. Now, it is sufficient to use the real case which
has already been proved.

(iv)=-(40). If (iv), then there exist 0 < ¢; € R and h; € V, i = 1,2 such that cyz = v+ hy, coy =
v+ ho and ||| < 7||v|l, (v,h;) = 0. Next, proceeding as in the proof of Theorem 1 (part (v)=-(i)) we easy
obtain
[

crea|lzlllyll < mikal|v]* and creaRe (@, y) > (1= 7am2)v]*.

Linking the above inequalities gives (40). Thus the proof is completely finished. O
The below usage of Theorem 3 will be useful in the sequel.

Corollary 5. Fiz 7 >0 and k > 1 with k? =72 + 1 and let z,y € V \ {0}.
The following equivalent inequalities
lzll[[yll < xRe (z,y),

K—1

[z llllyll = Re (z,y) | < lzll[lyll < (k= 1)Re (z,y)
hold true, if one of the below conditions is met

(i) there exists ¢ > 0 such that ||cx —y|| < Tyl

(ii) there exists ¢ > 0 such that |cx —y| < T [lex +yll,

(iii) there exist a,b € V with Re{a,b) > 0 and a +b € cone{y} such that Re(b—z,x—a) > 0 and T = 74,
R = KRa,b,

(iii’) there exist v,I' > 0 such that Re (I'y —x,x —~vy) > 0 and T = 7y r, K = Ky 1,
(iv) there exist ¢ >0 and h € V' such that cx =y + h, (y,h) =0 and ||h| < 7|y].

PRrOOF. Apply Theorem 3 for v = y. Then one can take 75 =0, 1 = ¢y = ko = A=A and d = g = y. Moreover
we have 71 =7y, =0 and k11 = Ky, = 1. O

Applying Theorem 3, (1)=(40),(41) instead of Theorem 1, (ii)=-(i) (see Corollary 2) we can improve the
inequality (34) and (35) as follows.

Corollary 6. Let x,y,v € V\{O} If ||JI—U||’ Hy—y” < Hv” and Hx—v||2||y—v||2 < (||U||2 _ ||IIJ—’UH2)(||’UH2 .
ly —v||?), then we have
lv]l?

lzllllyll <
VIRl = llz = vIPV/Il? = Iy = vl = [l = vllly — ||

Re(z,y), (45)

or, equivalently,

|z = vlllly — ol + [[v]1* = V/Toll2 — [lz — ol /ol — [ly — v[|?

[l

[z llllyll = Re (e, y) < llllyll.O (46)

Remark 5. On the assumption as in Corollary 6, inequalities (45) and (46) can be presented in the compact
llz—vll lly— ||

trigonometric form, where a;y = arcsin o and ag = arcsin o v a8 follows
1 —cos(ag + as)
R 1-— R .O
ol )~ Re () < (1 cos(on +an))lyl) < —0” “ oS Re (a.0)
Iill{z

The inequality (40) is sharp in the sense that the constant 2 cannot be improved multiplying it by any
scalar smaller than 1. To show it we could adjust Example 2 takmg ‘scalars ~, ', A, A positive but more interesting
is the following one.
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Example 3. Let 74, k5, k = 1,2 be as in Theorem 3 and V > v = v + vg, where (v1,v2) = 0 and ||v|? =
|lv1]|? + [|v2]|? > 0. Without loss of generality we can assume that 7, = tanay, 0 < ap < 7/2. Then Ky =
secak, Tg/kKr = sinayg and % = sec(ay + az). Denote ¢, = cosay, +isinay, k= 1,2, i = —1 and define

x = (crv1 + Crvg) cosaq, y = (Cav1 + cava) COS aa.

Elementary calculations give

[zl = [lv]| cos au,
(@,v) = cos®ar(fJvr]®+ ||v2]|?) +isinon cosan([loa]* — [[o2]?),
Re(z,v) = cos®aq([oa]|® + [Jv2]?) = [[v]]* cos® o,
lz —ol* = |]* = 2Re (z,v) + [[o]* = [[o]|* sin® o,
lyll = [lv]| cos az,
(y,v) = cos?ay([[oa]” + [[va]?) + i sin ap cos as([|vr[|* = [va]|),
Re(y,v) = cos?as(Jua]® + [|v2]|*) = [[v]|” cos® 02,
ly —vl* = llyl* = 2Re (y,v) + [Jv[|* = [|v]|?sin® az,
(z,y) = cosaycosasfcos(ar + az)(vr]|* + [[vz]?) +isin(en + az)([Jor]* — [lv2]|*)],
Re(w,y) = cosaicosazcos(ar +az)(ui]? + [lv2]?) = [lz[ly]l cos(o + az).
Therefore
R1K2
fnd 7R s
el = 1252 Re (z, )
and x,y €V fulfil condition (i) of Theorem 3. In fact, ||z —v|| = Z|lv[| and [ly —v| = Z2|lv]|.
. . 1 K2
It is worth noting, ||lz(||ly|l < {22 | (z,y) | whenever [jv1|| # ||v2]|- O

5. Applications to the triangle inequality

If z and y are vectors in a norm space V, then the triangle inequality ||x + y|| < ||z|| + ||y|| holds. In this
section we are interested in reverses of this inequality in inner product spaces. The key tools for this purpose
are reverse Schwarz inequalities of the form
0—1

0

where 6 > 1 is a known constant. If (47) holds for fixed # > 1 and vectors z,y, then

[z l[l[yll = Re (z,y) < lzlllyll < (0 = DRe (z,y), z,yeV, (47)

0—1
0

0 < (2l + llylD? = llz + ylI* = 2(ll= Iy - Re (z,)) <2 Iz lllyll < 2(6 — 1)Re (z,y) .

Hence 0_1
0 < (ll+ lwl)? = llz + ylI* < 2——llzllllyll < 2(6 — 1)Re (z,y) .

Applying the elementary inequalities \/a — Vb < vVa—b < /¢, if 0 <a—b<¢, b> 0, leads to

0—1
0 < lll + llyll = llz + il < 4/ 2=—5=llzllllyll < v2(6 = 1)Re {z,y). (48)

In this way, consecutively using Theorem 3, Corollary 5 and Corollary 6, the following three results on reverses
of the triangle inequality can be easy established. We omit the details.
The first.

Theorem 4. Fiz 7, >0, v, > 1, k=1,2 with k3 =77 + 1 and 1172 < 1 and let z,y,v € V \ {0}.
The following inequalities

-1 -1
MR = Ly < |2 R
R1K2 1 — T17T2

0< el + llyll ~ e + 4l < 42 Ro (r.4).

hold true whenever one of the below conditions is met

(i) there exist 0 < c1,c2 € R such that (12) holds, i.e.

T1 T2
[erz —v| < —|lv]| and [lcay — v[| < —=[v]],
K1 R2
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(ii) there exist 0 < c1,co € R such that (13) holds, i.e.

T2
Ko+ 1

T1
+1

lere —of < lere +of| and [legy — v < lleay + vll,

(iii) there exist a,b,d,g € V with Re (a,b) > 0,Re(d,g) > 0 and a+b,d+ g € cone{v} such that (14) holds, i.e.
Re(b—z,x —a) >0 and Re(g—y,y—d) >0,
and Ty = Tab, K1 = Ka,bs T2 = Td,g, K2 = Kd.g;
(iii’) there exist v,I'; \, A > 0 such that (33) holds, i.e.
Re(T'v —z,x —yv) >0 and Re(Av—y,y —Av) >0

and T1L = Ty K1 = Ky T, T2 = TA\ A, K2 = KX A,

(iv) z € CF

v,717

ye CF

v, T2 "

The second one.

Corollary 7. Fiz 7> 0 and k > 1 with k> = 72 + 1 and let z,y € V' \ {0}.
The following inequalities

k—1
0 < flzff +llyll = llz +yll < /2= llllllyll < V2(k — DRe (z,y) (49)

hold true whenever one of the below conditions is met

(i) there exists ¢ > 0 such that ||cx —y|| < Tyl
(ii) there exists ¢ > 0 such that ||cx — y[| < T llex +y,

(iii) there exist a,b € V with Re{a,b) > 0 and a + b € cone{y} such that Re(b—z,x —a) > 0 and T = 74,
R = KRa,b,

(iii*) there exist v,I' > 0 such that Re(I'y —x,2 —yy) >0 and T = 7y r, K = Ky 1,
(iv) there exist ¢ >0 and h € V such that cx =y + h, (y,h) =0 and ||h|| < 7|y]| O

Remark 6. Observe, if (iii’) holds for T' > v > 0, then inequalities (49) take the form

0 < el + Iyl — e ol < V3T T < YT Rty

The implication (iii’)=(49) is due to S.S. Dragomir [7, Proposition 3.2]. O
And the foretold third result.

Proposition 2. Let x,y,v € V be as in Corollary 6.
Then

—v|[ly=vll+llv]I2=+/lv]|2=lz—v]? 2 |[y—v]2

vl

le=vlllly=vll+lol2=/Ivl2=llz—v]2y/][v[I> = [[y—v|1®
ViIlE=llz—v]2y/llvllP=lly=vl2 =z —v] [yl

<

Re (z,y),

or, equivalently, setting oy = arcsin w and a = arcsin 1221

(]

—cos(ay + ag)
cos(ag + aw)

(1
0 < [l + [lyll = llz + yll < V1 = cos(ar + az)llz][ly] < \/2 Re (z,y).
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