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We characterize the isometric weighted composition operators on weighted Bergman 
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and characterize the numerical range of isometric weighted composition operators 
on weighted Bergman spaces.
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1. Introduction

Let D denote the open unit disk in the complex plane, and let H(D) be the space of holomorphic, complex 
valued, functions on D. For u, φ ∈ H(D), with a nonconstant φ : D → D, the weighted composition operator 
(WCO) Wu,φ on H(D) is defined by

Wu,φf = u(f ◦ φ).

Choosing φ(z) = z, the weighted composition operator Wu,φ becomes the multiplication operator Mu. In 
the case when u ≡ 1 on D, Wu,φ is the composition operator Cφ on H(D).

In this paper we investigate the isometric weighted composition operators on spaces of holomorphic 
functions, and in particular on the weighted Bergman spaces over the unit disk.

For α > −1, the weighted Bergman space L2
a(dmα) on the unit disk is defined as

L2
a(dmα) = {f ∈ H(D); ‖f‖2

α =
∫
D

|f(z)|2dmα(z) < ∞},
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where m denotes the normalized Lebesgue area measure on D and

dmα(z) = (α + 1)(1 − |z|2)αdm(z).

When α = 0, we get the classical Bergman space L2
a(dm).

Weighted Bergman spaces are reproducing kernel Hilbert spaces with a positive definite kernel K :
D × D → C given by

Kα(w, z) = 1
(1 − zw)α+2 .

We will denote the corresponding point evaluation functions at z by Kα
z , and the normalized point evaluation 

functions by kαz . Since ‖Kα
z ‖2 = Kα(z, z) = 1

(1−|z|2)α+2 ,

kαz (w) = (1 − |z|2)α
2 +1

(1 − zw)α+2 .

The class of weighted composition operators is defined by using the natural operations that one can 
perform on spaces of functions. This class plays a particularly important role when determining the isometric 
operators on some Banach spaces of holomorphic functions. For example, Forelli determined in [7] that the 
isometries of the Hardy spaces Hp, p �= 2, over the unit disk D, are weighted composition operators. 
Similarly, Kolaski’s results from [12] characterize the isometric operators on the Bergman spaces Lp

a, p �= 2, 
over general Runge domains as weighted composition operators.

The cases when p = 2 represent the Hilbert space case, and so there are many other isometries acting on 
these spaces. Such are, for example, all of the unitaries that are defined by a simple change of basis. Still, 
the isometries (unitary, or not) that are also weighted composition operators are of particular interest also 
in the Hilbert space case, and are sometimes referred to as canonical isometries.

There is a vast literature dealing with the properties of weighted composition operators acting on a 
variety of spaces. Their boundedness and compactness on the Hardy spaces was determined in [3], and on 
the Bergman spaces in [5], [6] and [13]. The isometric weighted composition operators on the Hardy space 
H2 were explored in [13] and [16]. The unitary weighted composition operators are of a particular interest, 
and they have been characterized even for some more general classes of reproducing kernel Hilbert spaces, 
including the Hardy and the Bergman spaces. See, for example, [14], [15], [18], and the references therein.

As it was shown in [14], a weighted composition operator on the weighted Bergman spaces is a co-isometry 
if and only if it is unitary. On the other hand, since for a unitary weighted composition operator on the 
Bergman spaces the composition symbol has to be a disk automorphism, the following simple example shows 
the existence of non-unitary isometric weighted composition operators.

Example. Let φ be a finite Blaschke product of degree n, and let u(z) = 1√
n
φ′(z). Then the weighted 

composition operator Wu,φ is isometric on the Bergman space L2
a(dm). This is easy to see since, using the 

change of variable formula and the fact that φ is of constant multiplicity n, we have that for any f ∈ L2
a(dm)

‖Wu,φf‖2 =
∫
D

|f(φ(z))|2 1
n
|φ′(z)|2dm(z) =

∫
D

|f(w)|2dm(w) = ‖f‖2.

Including the introduction, the paper contains three sections. Section 2 deals with the conditions that 
determine the isometric weighted composition operators acting on the weighted Bergman spaces over the 
unit disk.

Section 3 explores the Wold decomposition and some related properties of isometric weighted compo-
sition operators on more general reproducing kernel Hilbert spaces, and the characterization of the Wold 
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decomposition of isometric Wu,φ on the weighted Bergman spaces over the unit disk, in the case when φ
has an interior fixed point. This section also contains the description of the numerical range of isometric 
weighted composition operators acting on weighted Bergman spaces over the unit disk.

2. Characterization of isometric WCO

The characterizations of a number of properties of weighted composition operators on the Bergman spaces 
are usually given through a measure theoretic approach. We will start by exploring this approach also for 
the characterization of isometric weighted composition operators.

For α > −1, u, φ ∈ H(D) with a nonconstant φ : D → D, define Borel measures μα
u and μα

u,φ on D by

μα
u(E) =

∫
E

|u(z)|2dmα(z),

and

μα
u,φ(E) = μα

u(φ−1(E)) =
∫

φ−1(E)

|u(z)|2dmα(z),

for any Borel set E contained in D. Thus, μα
u,φ is a u weighted, φ pull-back measure of dmα. Since φ is a 

nonconstant holomorphic map on D and u is holomorphic, it is not too hard to see that μα
u,φ is a Borel 

measure that is absolutely continuous with respect to mα. We denote by hα
u,φ the Radon–Nikodym derivative 

of μα
u,φ with respect to mα, i.e.

hα
u,φ(z) =

dμα
u,φ

dmα
(z).

Recall that for a measurable function h in L1(dmα) the Toeplitz operator Th on L2
a(dmα) is defined by

Thf(z) =
∫
D

h(w)f(w) 1
(1 − zw)α+2 dmα(z).

The Berezin transform of Th on L2
a(dmα) is defined by

T̃h(z) = h̃(z) =< Thk
α
z , k

α
z >=

∫
D

h(w) (1 − |z|2)α+2

|1 − zw|2α+4 dmα(w).

The characterization of the boundedness and compactness of weighted composition operators on weighted 
Bergman spaces in [5] and [6] was given via a similar Berezin transform formula.

We have the following characterization of isometric weighted composition operators acting on weighted 
Bergman spaces over the unit disk.

Theorem 2.1. Let α > −1, φ a nonconstant holomorphic self-map of D and u ∈ H(D) are such that Wu,φ :
L2
a(dmα) → L2

a(dmα) is bounded. Then:

(i) W ∗
u,φWu,φ = Thα

u,φ
.

(ii) Wu,φ is an isometry if and only if hα
u,φ = 1 almost everywhere on D.

(iii) If Wu,φ is an isometry, then φ is a full map, i.e. m(D \ φ(D)) = 0.
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(iv) Wu,φ is an isometry if and only if for all z ∈ D,

h̃α
u,φ(z) =

∫
D

|u(w)|2 (1 − |z|2)α+2

|1 − zφ(w)|2α+4
dmα(w) = 1.

(v) Wu,φ is an isometry if and only if ‖Wu,φk
α
z ‖α = 1 for every z in D.

Proof. (i) Since hα
u,φ is a non-negative function, Thα

u,φ
is a positive operator. Thus, we need to show that 

∀f ∈ L2
a(dmα), we have < W ∗

u,φWu,φf, f >=< Thα
u,φ

f, f >. This holds since

‖Wu,φf‖2 =
∫
D

|u(z)|2|f(φ(z))|2dmα(z)

=
∫
D

|f(w)|2dμα
u,φ(w)

=
∫
D

|f(w)|2hα
u,φ(w)dmα(w)

= < Thα
u,φ

f, f > .

(ii) The operator Wu,φ is an isometry if and only if W ∗
u,φWu,φ is the identity operator on L2

a(dmα). By (i), 
this is equivalent to Thα

u,φ
= I. It is easy to see that then hα

u,φ − 1 is orthogonal to every polynomial in z
and z. Since the set of such polynomials is dense in L2(dmα), we get that hα

u,φ = 1 almost everywhere on D.
(iii) If Wu,φ is an isometry, then it follows from (ii) that hα

u,φ = 1 almost everywhere on D, and so 
μα
u,φ(E) = mα(E), for every Borel set E. If E ⊂ D \ φ(D), then mα(φ−1(E)) = 0 and so

μα
u,φ(E) =

∫
φ−1(E)

|u(z)|2dmα(z) = 0.

But then mα(E) = μα
u,φ(E) = 0 and so m(E) = 0. Since the Lebesgue measure is inner regular, it follows 

that m(E) = 0 also for every Lebesgue measurable subset of D \ φ(D).
(iv) This follows from the fact that the Berezin transform is an injective map, and since the Berezin 

transform of the identity operator is the constant function 1. Furthermore, using that hα
u,φ = dμα

u,φ/dmα, 
we have that for any z ∈ D

h̃α
u,φ(z) =

∫
D

hα
u,φ(w) (1 − |z|2)α+2

|1 − zw|2α+4 dmα(w)

=
∫
D

(1 − |z|2)α+2

|1 − zw|2α+4 dμ
α
u,φ(w)

=
∫
D

|u(w)|2 (1 − |z|2)α+2

|1 − zφ(w)|2α+4
dmα(w) = 1.

Part (v) follows from part (iv) since h̃α
u,φ(z) = ‖Wu,φk

α
z ‖2

α. �
Note that the isometric weighted composition operators on the Hardy space H2 have a slightly more 

explicit characterization. Namely, as was shown in [16], Wu,φ is an isometry on H2 iff φ is an inner function 
and u ∈ H2 is such that
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∫
φ−1(E)

|u(ξ)|2dσ(ξ) =
∫

φ−1(E)

1
(Pφ(0) ◦ φ)(ξ)dσ(ξ),

for every measurable E ⊂ ∂D, where dσ denotes the normalized Lebesgue measure on the unit circle ∂D, 
and Pφ(0) is the Poisson kernel function at φ(0).

It is interesting to see why this happens, and what exactly are the nuances in the Bergman space case. 
One way to explain these differences is by noting that, first of all, the Radon–Nikodym derivative dσφ−1/dσ

in the Hardy space case, where σφ−1(E) = σ(φ−1(E)), is easily describable. Namely, it is the Poisson 
kernel function at φ(0). This can be seen directly, by comparing the Fourier coefficients of the measures 
corresponding to dσφ−1 and to Pφ(0)dσ.

The rest of the argument follows since in the Hardy space case it is also true that Wu,φ is an isometry 
if and only if φ is inner and dσu,φ/dσ is equal to 1, and since furthermore dσu,φ/dσφ−1 = |u|2. Here, dσu,φ

denotes the u weighted φ pull-back of dσ.
The other difference is that in the Hardy space case the Radon–Nikodym derivative dσφ−1/dσ, i.e. the 

Poisson kernel function, is a harmonic function and, in general, a Berezin transform of a harmonic function 
is the function itself. The explicit formula and the harmonicity of the Radon–Nikodym derivative are non-
existent in general in the Bergman space case. Still, using the previous theorem and adjusting the discussion 
above to the weighted Bergman spaces by replacing the measure σ on ∂D with the measure mα on D, and 
the measures σu,φ with μα

u,φ and σφ−1 with mα,φ−1 , we have the following.

Proposition 2.1. Let Wu,φ be bounded on L2
a(dmα) and let gφ be the Radon–Nikodym derivative dmα,φ−1/

dmα. Then Wu,φ is an isometry on L2
a(dmα) if and only if φ is a full map and

∫
φ−1(E)

|u(z)|2dmα(z) =
∫

φ−1(E)

1
(gφ ◦ φ)(z)dmα(z),

for every measurable E ⊂ D.

We can come closer to “a formula” for the Radon–Nikodym derivative dμα
u,φ/dmα in the case when φ is 

of bounded multiplicity. In particular, when φ is univalent and Wu,φ is an isometry on L2
a(dmα), this gives 

us a characterization of u in terms of φ and φ′, as described in the next result.

Theorem 2.2. Let α > −1, φ a non-constant holomorphic self-map of D and u ∈ H(D) are such that 
Wu,φ : L2

a(dmα) → L2
a(dmα) is bounded. Then:

(i) If φ is of multiplicity bounded by N , then the Radon–Nikodym derivative of μα
u,φ with respect to mα is 

given by hα
u,φ(z) = 0, if z /∈ φ(D), and otherwise

hα
u,φ(z) =

N∑
n=1

|u(zn)|2(1 − |zn|2)α
|φ′(zn)|2(1 − |φ(zn)|2)α ,

where for each n, φ(zn) = z and φ′(zn) �= 0.
(ii) If φ is univalent and Wu,φ is an isometry on L2

a(dmα), then φ is a full map, u is never zero, and

u(z) = φ′(0)
φ′(z)(1 − φ(0)φ(z))α,
u(0)
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with |u(0)| = |φ′(0)|(1 − |φ(0)|2)α/2. In particular, if α = 0, then u = cφ′, |c| = 1. Furthermore, if 
∃a ∈ D such that φ(a) = 0, then

u(z) = cφ′(z) (1 − |a|2)α/2
(1 − az)α , |c| = 1.

(iii) If φ is a disk automorphism and Wu,φ is an isometry on L2
a(dmα), then

u = ckαφ−1(0), |c| = 1,

and so Wu,φ is a unitary.

Proof. (i) First of all, it is easy to see that hα
u,φ = 0 on any measurable subset E of D \ φ(D), using 

that mα(φ−1(E)) = 0. Since φ is non-constant holomorphic function, the set Z ′ of zeroes of φ′ is at most 
countable, i.e. Z ′ is a set of measure zero. Also, φ maps sets of measure zero into sets of measure zero. Thus, 
we consider an almost everywhere definition of hα

u,φ on φ(D \Z ′). Using the change of variable formula, we 
have that for every f ∈ L2

a(dmα)

‖Wu,φf‖2 =
∫
D

|u(z)|2|f(φ(z))|2dmα(z)

=
∫

D\Z′

|u(z)|2|f(φ(z))|2 |φ
′(z)|2

|φ′(z)|2 dmα(z)

=
∫

φ(D\Z′)

|f(w))|2
N∑

n=1

|u(wn)|2(1 − |wn|2)α
|φ′(wn)|2(1 − |φ(wn)|2)α dmα(w)

But, as was shown in the proof of Theorem 2.1, ‖Wu,φf‖2 =< Thα
u,φ

f, f >, and so the (almost everywhere) 
definition of hα

u,φ follows.
(ii) If φ is univalent we get from (i) that hu,φ(z) = 0, if z /∈ φ(D), or otherwise, if also z /∈ φ(Z ′), we have 

that

hu,φ(z) = |u(φ−1(z))|2(1 − |φ−1(z)|2)α
|φ′(φ−1(z))|2(1 − |z|2)α .

But if Wu,φ is an isometry on L2
a(dmα), then by parts (ii) and (iii) of Theorem 2.1, m(D \ φ(D)) = 0 and 

hu,φ(z) = 1 almost everywhere on D. Since u, φ and φ′ are holomorphic on D and

|u(w)|2 = |φ′(w)|2 (1 − |φ(w)|2)α
(1 − |w|2)α

almost everywhere on D, we can view this equation as a diagonal equality for two functions of two complex 
variables, both analytic in the first variable, and conjugate analytic in the second variable. By a standard 
argument, this implies that the two function are equal on D ×D, i.e. that

u(z)u(w) = φ′(z)φ′(w) (1 − φ(z)φ(w))α

(1 − zw)α .

Since φ is univalent and maps the unit disk into itself, the right hand side is never zero, and so neither can 
be the left hand side, i.e. u is never zero. Now, taking w = 0, we get the claimed equation.
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In the case when φ(a) = 0 for some a ∈ D, we can instead take w = a, which gives us u(z) =
φ′(a)
u(a) φ

′(z) 1
(1−az)α . Since |u(a)| = |φ′(a)| 1

(1−|a|2)α/2 , we get that

u(z) = cφ′(z) (1 − |a|2)α/2
(1 − az)α , |c| = 1.

(iii) The proof follows by using the last formula from part (ii), and the fact that when φ is a disk 

automorphism with φ−1(0) = a, then |φ′(z)| = (1−|a|2)
|1−az|2 . Thus, we have that |u(z)| = |φ′(z)|1+α/2. Since 

furthermore |kαa (z)| = |φ′(z)|1+α/2 and u and kαa are holomorphic functions, we conclude that u = ckαa , with 
|c| = 1. But then by results proven in [14] (or [18]), it follows that Wu,φ is a unitary weighted composition 
operator. �

When α = 0, i.e. when the space is the classical Bergman space on the unit disk, part (ii) of Theorem 2.2
(or a direct change of variable formula) shows that Wu,φ with univalent φ is an isometry if and only if 
u = cφ′(z), |c| = 1. Thus, here is a simple example of a non-unitary isometry Wu,φ on L2

a(dm) with 
univalent composition symbol φ.

Example. Let φ be the Riemann map from D onto D \ [0, 1), and let u = φ′. Then the weighted composition 
operator Wu,φ is a non-unitary isometry on the classical Bergman space L2(dm).

If φ is of unbounded multiplicity, but the series

∞∑
n=1

|u(zn)|2(1 − |zn|2)α
|φ′(zn)|2(1 − |φ(zn)|2)α ,

with φ(zn) = z and φ′(zn) �= 0, converges for every z in φ(D), the formula for the Radon–Nikodym derivative 
hα
u,φ in part (ii) of Theorem 2.2 can also be extended to this case. It would be nice to know exactly when 

does this happen, and have an analytic and geometric characterization of such cases.
Similarly, the result from [5] states that the operator Wu,φ is bounded on L2

a(dmα) if and only if the 
Berezin transform of hα

u,φ is bounded. Nevertheless, it is not clear in general what is the geometric meaning 
of this condition.

These are two interesting problems for which we would like to add few more remarks and make some 
connections to the geometric behaviour of the symbols u and φ of Wu,φ.

Remarks. Recall that the local hyperbolic distortion of φ, a holomorphic selfmap of D, is defined by

τφ(z) = |φ′(z)|(1 − |z|2)
1 − |φ(z)|2 ,

and that by the Schwarz–Pick lemma τφ(z) ≤ 1, for all z in D. Thus, assuming the convergence of the series,

hα
u,φ(z) =

∞∑
n=1

|u(zn)|2(1 − |zn|2)α
|φ′(zn)|2(1 − |φ(zn)|2)α

=
∞∑

n=1

|u(zn)|2
τφ(zn)2

‖Kα
φ(zn)‖2

‖Kα
(zn)‖2

=
∞∑

n=1

‖W ∗
u,φk

α
zn‖2

τφ(zn)2

≥
∞∑

‖W ∗
u,φk

α
zn‖

2.

n=1
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Hence, if the series converges we have that ‖W
∗
u,φk

α
zn

‖
τφ(zn) → 0, as n → ∞, and also

‖W ∗
u,φk

α
zn‖

2 = |u(zn)|2(1 − |zn|2)2+α

(1 − |φ(zn)|2)2+α
→ 0,

as n → ∞. Now the last condition is definitely satisfied if u and φ are such that

lim
|z|→1

|u(z)|(1 − |z|2)1+α/2

(1 − |φ(z)|2)1+α/2 = 0.

Consider the seemingly natural choice of u = φ′. In this case the last condition means that φ belongs to the 
so called little, hyperbolic (1 + α/2)-Bloch space Bh

0,(1+α/2).
An example of this kind for α = 0 was used in [5] to support the claim that the condition itself is not 

sufficient either for compactness, or even for boundedness of Wu,φ. Namely, if φ is an infinite Blaschke 
product in the little hyperbolic 1-Bloch space Bh

0 and u = φ′, the corresponding weighted composition 

operator Wu,φ is unbounded on the Bergman space L2
a(dm), even though lim|z|→1

|u(z)|(1−|z|2)
(1−|φ(z)|2) = 0.

The example suggests two possible conclusions. One is that for the chosen infinite Blaschke product φ
in the previous example, u = φ′ is a bad choice if we want to have boundedness (or compactness) of the 
weighted composition operator with composition symbol φ. Moreover, when α = 0 and φ is an infinite 
Blaschke product, it is clear that u = φ′ is a bad choice also since then u is not in the Bergman space. 
Hence, Wu,φ can not be bounded on the Bergman space. Note also that in this case hα

u,φ(z) can not be 
well defined through the infinite series. The second possible conclusion is that the inequality showing in 
the above series of formulas is essential and can not be overlooked, i.e. that we have to also include the 
hyperbolic distortion τφ in the conditions that guaranty that Wu,φ is bounded, compact, or an isometry.

For example, recall that lim|z|→1 τφ(z) = 1 if and only if φ is a finite Blaschke product, and so the fact 
that in the example above φ is an infinite Blaschke product is essential.

The boundary behaviour of the local hyperbolic distortion is also closely related to the geometric proper-
ties of the map φ and its “boundary smoothness”, given through the existence (or nonexistence) of angular 
derivatives of the map φ. Namely, note that the condition

lim
|z|→1

|u(z)|(1 − |z|2)1+α/2

(1 − |φ(z)|2)1+α/2 = 0

implies that whenever φ has an angular derivative at ξ ∈ ∂D, u(z) converges to 0 as z → ξ in an angular 
region at ξ, but this is not sufficient for the compactness of Wu,φ on the weighted Bergman spaces. On 
the other hand, it is easy to see that the condition is necessary for the compactness of Wu,φ, since the 
normalized point evaluations kαz converge weakly to zero, as |z| → 1, and since

|u(z)|(1 − |z|2)1+α/2

(1 − |φ(z)|2)1+α/2 = ‖W ∗
u,φk

α
z ‖α.

We can get analogous conclusions about the boundedness of Wu,φ on the weighted Bergman spaces and the 
condition

sup
z∈D

|u(z)|(1 − |z|2)1+α/2

(1 − |φ(z)|2)1+α/2 < ∞,

which is equivalent to supz∈D
‖W ∗

u,φk
α
z ‖α < ∞, and which implies that whenever φ has an angular derivative 

at ξ ∈ ∂D, then |u(z)| is bounded above by |φ′(ξ)|1+α/2 in any angular region with a corner at ξ.
Similar conclusions were also derived in [8], while exploring the boundedness and compactness of weighted 

composition operators on the Hardy spaces. �
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We summarize the last part of the remarks in a slightly more general statement by using the hyperbolic 
distortion τφ. Recall that if φ has an angular derivative at ξ ∈ ∂D, then τφ(z) → 1, as z → ξ in any angular 
region with a corner at ξ, and that φ is a disk automorphism if and only if ∃z0 ∈ D such that τφ(z0) = 1, 
which is further equivalent to τφ(z) = 1, ∀z ∈ D. Also, as it was already mentioned before, lim|z|→1 τφ(z) = 1
if and only if φ is a finite Blaschke product.

Using these few facts as a motivation, we also introduce the following notation: for δ ∈ (0, 1],

Ωδ(φ) = {z ∈ D; τφ(z) ≥ δ}.

Proposition 2.2. Let Wu,φ be bounded on L2
a(dmα) and δ ∈ (0, 1]. Then ∀z ∈ Ωδ

|u(z)| ≤ ‖Wu,φ‖
δ1+α/2 |φ′(z)|1+α/2,

and moreover:

(i) If φ has angular derivative at ξ ∈ ∂D, then u is bounded in every angular region in D with a corner 
at ξ.

(ii) If φ is a finite Blaschke product and Wu,φ is a contraction on L2
a(dmα), then ∀ε > 0, ∃rε ∈ [0, 1) such 

that whenever |z| ≥ rε, |u(z)| ≤ 1
(1−ε)1+α/2 |φ′(z)|1+α/2.

(iii) If φ is a disk automorphism and Wu,φ is a contraction on L2
a(dmα), then |u(z)| ≤ |φ′(z)|1+α/2, ∀z ∈ D.

Proof. When Wu,φ is bounded, then W ∗
u,φ has the same norm and so ∀z ∈ D

‖W ∗
u,φk

α
z ‖α = ‖u(z)

Kα
φ(z)

‖Kα
z ‖α

‖α = |u(z)|(1 − |z|2)1+α/2

(1 − |φ(z)|2)1+α/2

= |u(z)|
|φ′(z)|1+α/2 (τφ(z))1+α/2 ≤ ‖Wu,φ‖.

Thus, the required inequality follows whenever z ∈ Ωδ.
The parts (i), (ii) and (iii) follow directly by using the main inequality proven above, and using the 

behaviour of τφ in each of the three special cases. �
Note that part (iii) of the previous proposition, together with the equations in the proof, gives a short proof 

of the fact that if Wu,φ is a co-isometry on L2
a(dmα) and φ is a disk automorphism, then |u(z)| = |φ′(z)|1+α/2, 

which furthermore implies that Wu,φ is a unitary. Actually, it is not too hard to see that if Wu,φ is a 
co-isometry on L2

a(dmα) over the unit disk then φ must be a disk automorphism, and so Wu,φ is a co-isometry 
if and only if it is a unitary. This has also been shown in [14] for WCO’ on weighted Bergman spaces over 
the unit ball, by using different methods.

We end this section by also posing two specific questions related to the discussion in the remarks.

Question 2.1. Does the condition

lim
|z|→1

|u(z)|(1 − |z|2)1+α/2

τφ(z)(1 − |φ(z)|2)1+α/2 = 0

imply boundedness, or even compactness of the weighted composition operator Wu,φ on L2
a(dmα)? If not, 

then what is the largest class of functions u and φ for which this might be true?
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Question 2.2. Does the boundedness of Wu,φ on L2
a(dmα) imply the convergence of the series

∞∑
n=1

|u(zn)|2(1 − |zn|2)α
|φ′(zn)|2(1 − |φ(zn)|2)α ,

φ(zn) = z and φ′(zn) �= 0, for almost every z in φ(D)? If not, then what is the largest class of functions u
and φ for which this might be true and what is the geometric meaning of the convergence of this series?

3. Wold decomposition and numerical range of isometric WCO

In this section we determine the Wold decomposition of isometric weighted composition operators Wu,φ

when φ has an interior fixed point, and determine the numerical range of isometric weighted composition 
operators acting on the weighted Bergman spaces.

We start with few results on isometric weighted composition operators in a slightly more general context, 
namely in the context of general reproducing kernel Hilbert spaces of holomorphic functions, with particular 
interest in their Wold decomposition. A good reference with more details on the topic of reproducing kernel 
Hilbert spaces is, for example, [1].

Let Ω be a domain in Cn, and let HK be a reproducing kernel Hilbert space (RKHS) of functions 
holomorphic on Ω with a positive definite kernel function K : Ω × Ω → C. The point evaluation function 
at z ∈ Ω will be denoted by Kz, and the corresponding normalized point evaluation function by kz. We 
assume that ∃z0 ∈ Ω such that Kz0(z) = 1, ∀z ∈ Ω, and that the kernel K is never zero.

The following proposition includes few very general results about WCO on RKHS’ of holomorphic func-
tions. We will use them when showing the main results of this section, but they also connect nicely to the 
characterizations of isometric WCO on the weighted Bergman spaces from the previous section.

Proposition 3.1. Let HK be a RKHS’ of holomorphic functions on Ω, let φ be a nonconstant holomorphic 
self-map of Ω, and let u ∈ HK . Then:

(i) If u is such that ‖u‖ = 1 and |u(z0)| = 1, then u(z) ≡ c, |c| = 1.
(ii) If Wu,φ is an isometry on HK and |u(z0)| = 1, then u(z) ≡ c, |c| = 1, and φ(z0) = (z0).
(iii) Let φ(a) = a for some a ∈ Ω. If Wu,φ is an isometry on HK then |u(a)| ≤ 1, and if furthermore 

|u(a)| = 1, then u(z) is never zero and

u = u(a) ka
ka ◦ φ

.

Proof. (i) By the assumptions on u and by the Cauchy–Schwarz inequality,

1 = |u(z0)| = | < u,Kz0 > | ≤ ‖u‖‖Kz0‖ = 1.

Thus, | < u, Kz0 > | = ‖u‖‖Kz0‖, and so u = cKz0 = c with |c| = 1.
(ii) If Wu,φ is an isometry on HK , then ‖u‖ = ‖Wu,φKz0‖ = ‖Kz0‖ = 1. But then by part (i), u(z) ≡ c

with |c| = 1, and so Wu,φ = c Cφ, i.e. the WCO is a unimodular constant multiple of the composition 
operator Cφ. Since then Cφ is also an isometry on HK , we have that C∗

φCφ = I. But then, using the 
function e1(z) = z, we get that

z0 =< e1,Kz0 >=< C∗
φCφe1,Kz0 >=< Cφe1, CφKz0 >=< φ,Kz0 >= φ(z0).

(iii) Note that if a = z0, the conclusions on u follow directly from parts (i) and (ii), even without assuming 
that φ(z0) = z0.
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In general, if φ(a) = a for a general a ∈ Ω, we have that if Wu,φ is an isometry on HK , then

|u(a)| = | < ka, u(a)ka > | = | < ka,W
∗
u,φka > |

= | < Wu,φka, ka > | ≤ ‖Wu,φka‖‖ka‖ = ‖ka‖2 = 1.

Thus, if |u(a)| = 1 we get that | < Wu,φka, ka > | = ‖Wu,φka‖‖ka‖, and so Wu,φka = cka, with |c| = 1. But 
then u(ka ◦ φ) = cka, and so u = u(a) ka

ka◦φ , which furthermore implies that u(z) is never zero since ka(z) is 
never zero. �

Note that parts (ii) and (iii) from Proposition 3.1 give the following corollary when applied to the 
weighted Bergman spaces, thus extending the characterizations of special classes of isometric WCO’ from 
Theorem 2.2.

Corollary 3.1. Let α > −1, φ a non-constant holomorphic self-map of D and u ∈ H(D) are such that 
Wu,φ : L2

a(dmα) → L2
a(dmα) is bounded. Then:

(i) If Wu,φ is an isometry on L2
a(dmα) and |u(0)| = 1, then u(z) ≡ c, |c| = 1, and φ(0) = (0).

(ii) If Wu,φ is an isometry on L2
a(dmα) and φ(a) = a for some a ∈ D, then |u(a)| ≤ 1. In the case when 

|u(a)| = 1, then u(z) is never zero and

u(z) = u(a) (1 − aφ(z))α+2

(1 − az)α+2 .

If furthermore φ is also univalent, then a = 0, and so u(z) ≡ c, |c| = 1.

Proof. The only part that requires some explanation is the last statement of part (ii): when φ is univalent, 
combining the formula for u from part (ii) of Theorem 2.2 and the above formula for u when |u(a)| = 1 we 
get that

φ′(z) = φ′(a)(1 − φ(0)a)α (1 − aφ(z))α+2

(1 − az)α+2 .

Evaluating at a and using that φ(a) = a gives (1 − φ(0)a)α = 1. But then either a = 0, or φ(0) = 0 which 
again implies that the (unique) interior fixed point a of φ must be 0. �

Next we turn to the characterization of Wold decomposition of WCO on RKHS’ of holomorphic functions. 
Recall that if the operator T is an isometry on a separable, infinite dimensional Hilbert space H, then the 
Wold decomposition for T states that there exist orthogonal reducing subspaces HU and HS of H, such 
that H = HU ⊕ HS , U = T/HU is unitary, and S = T/HS is a forward shift. Recall that S is a forward 
shift on HS if and only if 

⋂∞
m=1 S

m(HS) = {0}, or equivalently if (S∗)m → 0 in the strong operator 
topology.

The following result generalizes the results from [16] on the Wold decomposition of weighted composition 
operators on the Hardy space H2, in the case when the composition symbol has an interior fixed point.

Theorem 3.1. Let HK be a separable RKHS of holomorphic functions on the unit disk D, let φ be a noncon-
stant holomorphic self-map of D with a fixed point a in D, and let u ∈ HK be such that Wu,φ is an isometry 
on HK . Then
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(i) Wu,φ is a forward shift if and only if |u(a)| < 1.
(ii) If |u(a)| = 1 and φ is not a disk automorphism, then the Wold decomposition for Wu,φ is

HK = Cka
⊕

{ka}⊥.

(iii) If |u(a)| = 1 and φ is a disk automorphism, and Wka,ψa
is a bounded operator on HK for ψa the 

involutive disk automorphism with ψa(0) = a, then Wu,φ is a unitary operator on HK .

Proof. (i) If Wu,φ is a forward shift, then |u(a)| < 1 even if the RKHS HK is over a general domain Ω ⊂ C
n. 

Namely, since φ(a) = a, W ∗
u,φKa = u(a)Ka,

(W ∗
u,φ)mKa = u(a)

m
Ka

for every m ≥ 1, and so ‖(W ∗
u,φ)mKa‖ → 0, as m → ∞, implies that |u(a)| < 1.

The other direction follows as in [10], where the result was obtained for HK = H2, the classical Hardy 
space on the unit disk. The proof uses the properties of the pseudo-hyperbolic metric ρ on D, and the 
Schwarz–Pick lemma for φ. We provide the details here for completeness.

Namely, if |u(a)| < 1, there exists 0 < r < 1 is such that |u(z)| < δ < 1, ∀z ∈ D(a, r), where D(a, r) is the 
pseudo-hyperbolic disk centred at a, with radius r. By the Schwartz–Pick lemma φ(m)(D(a, r)) ⊂ D(a, r), 
for all m ≥ 1, and since the map z → ‖Kz‖ is continuous, ∃Cr > 0 such that ‖Kφ(m)(z)‖ ≤ Cr‖Kφ(m)(a)‖ =
Cr‖Ka‖ for all z ∈ D(a, r). Now if f ∈

⋂∞
m=1 W

m
u,φ(HK), then for every m, ∃fm ∈ HK such that f = Wm

u,φfm. 
But then for every m ≥ 1 and every z ∈ D(a, r)

|f(z)| ≤ δm‖fm‖‖Kφ(m)(z)‖ ≤ Crδ
m‖f‖‖Ka‖.

Taking m → ∞, we see that f(z) = 0 for all z ∈ D(a, r). But then f ≡ 0 on D, and so Wu,φ is a forward 
shift.

(ii) As was shown in the proof of Proposition 3.1, part (iii), if |u(a)| = 1, then Wu,φka = cka, with |c| = 1. 
Using again that φ(a) = a, we also have that W ∗

u,φka = u(a)ka, and so ka ∈ HU , the unitary part of the 
Wold decomposition of HK .

Next, we will show that Wu,φ is a shift on K = {ka}⊥, by showing that

∞⋂
m=1

(Wu,φ/K)m(K) = {0}.

So, assume that for every m ∈ N, ∃fm ∈ K such that f = Wm
u,φfm. The goal is to show that then f ≡ 0.

For any z ∈ D,

f(z) = Wm
u,φfm(z)

= u(z)u(φ(z))...u(φ(m−1)(z))fm(φ(m)(z))

= (u(a))m ka(z)
ka ◦ φ(m)(z)

fm(φ(m)(z)),

since by Proposition 3.1, part (iii), u = u(a) ka

ka◦φ .
By the Denjoy–Wolff Theorem φ(m)(z) → a as m → ∞. Since the map z → Kz is continuous, we also have 

that ‖Kφ(m)(z) −Ka‖ → 0, as m → ∞. Also, note that ‖f‖ = ‖fm‖ for all m ∈ N since Wu,φ is an isometry, 
and that fm(a) = 0, ∀m ∈ N, since each fm ∈ K = {ka}⊥. Thus, as m → ∞, ka ◦ φ(m)(z) → ka(a) = ‖Ka‖, 
and
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|fm(φ(m)(z))| = | < fm,Kφ(m)(z) > |

≤ ‖f‖‖Kφ(m)(z) −Ka‖ + | < fm,Ka > | → 0.

Since also |u(a)m| = 1, ∀m ∈ N and |ka(z)| does not depend on m, taking m → ∞ gives that |f(z)| = 0 for 
any fixed z, i.e. that f ≡ 0. Hence, K = HS , the forward shift part of the Wold decomposition of HK for 
the isometry Wu,φ.

(iii) Under the given assumptions, using also Proposition 3.1, part (iii), we can see that the isometry Wu,φ

is unitary equivalent, via the self-adjoint unitary Wka,ψa
, to the operator Wua,φa

, where ua = u(a)ka(ka◦ψa), 
and φa = ψa ◦ φ ◦ ψa.

Since then |ua(0)| = 1, by Proposition 3.1, part (ii), ua(z) ≡ c, |c| = 1, and so Wua,φa
= c Cφa

. But φa

is a disk automorphism with φa(0) = 0, and so φa is a rotation and Cφa
is unitary. Thus, Wua,φa

and Wu,φ

are both unitary operators on HK . �
In the case when the RKHS is a weighted Bergman space over the unit disk we get the following char-

acterization of the Wold decomposition of isometric weighted composition operators whose composition 
symbol has an interior fixed point.

Theorem 3.2. Let φ be a holomorphic nonconstant self-map of D with a fixed point a in D, and let u ∈
L2
a(dmα) be such that Wu,φ is an isometry on L2

a(dmα). Then

(i) If φ is univalent, either Wu,φ is unitary in the case when φ is a disk automorphism, or otherwise Wu,φ

is a forward shift.
(ii) If Wu,φ is not a forward shift, then u = u(a) ka

ka◦φ . If φ is univalent then φ is a rotation and Wu,φ is 
unitary. If φ is not univalent, then Wu,φ has nontrivial unitary and forward shift parts, and following 
the previously determined general Wold decomposition:

L2
a(dmα) = Ckαa

⊕
{kαa }⊥.

(iii) If a = 0 and Wu,φ is not a shift, then u is a unimodular constant and φ is a rotation. Thus, Wu,φ is 
unitary.

Proof. (i) If φ is an automorphism of D and Wu,φ is an isometry then by Theorem 2.2, part (iii), Wu,φ is a 
unitary operator. If φ is not an automorphism, since φ has a fixed point in D, φ is an elliptic non-automorphic 
selfmap of D and so by the Schwarz–Pick lemma |φ′(a)| < 1. Since φ is univalent and Wu,φ is an isometry, 
from the proof of part (ii) of Theorem 2.2 we have that |u(w)|2 = |φ′(w)|2 (1−|φ(w)|2)α

(1−|w|2)α for all w in φ−1(D). 
Taking w = a, we get that |u(a)| = |φ′(a)| < 1 and so by Theorem 3.1, part (i), Wu,φ is a forward shift.

(ii) If Wu,φ is not a shift then by Theorem 3.1, part (i), |u(a)| = 1. Hence, by Proposition 3.1, part (iii), 
u = u(a) ka

ka◦φ .
In case φ is univalent, as in the proof of part (i), |u(a)| = |φ′(a)|, and since |u(a)| = 1, and φ(a) = a, 

φ must be an elliptic disk automorphism. Furthermore, a = 0 by part (ii) of Corollary 3.1, and so φ is a 
rotation. Hence, Wu,φ is unitary.

If φ is not univalent then Wu,φ can not be unitary. The rest follows since Wu,φ is also not a forward shift.
(iii) If φ(0) = 0 and Wu,φ is not a shift, by Theorem 3.1, part (i), |u(0)| = 1. But then, by Proposition 3.1, 

part (ii), u(z) ≡ c, |c| = 1, and so the composition operator Cφ is an isometry on the weighted Bergman 
space L2

a(dmα). Thus, φ must be a rotation, i.e. φ(z) = λz, |λ| = 1 (see for example [14]), Cφ is unitary 
and so Wu,φ is also a unitary operator on L2

a(dmα). �
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The Hardy space Wold decomposition of isometric weighted composition operators Wu,φ with φ a non-
elliptic disk automorphism, i.e. when φ is a disk automorphism with no interior fixed point, was described 
in [16].

This class of examples is also interesting for pointing out the differences between the Wold decomposition 
of isometric weighted composition operators in the Hardy, and in the Bergman space case. While in the 
Hardy space case a parabolic or a hyperbolic disk automorphism can induce a weighted composition operator 
Wu,φ with a nontrivial shift part, or even be a shift (see [16] for more details), in the Bergman space case, by 
Theorem 2.2, part (iii), each such isometric operator Wu,φ must be unitary. Note that the main difference 
here steams from the fact that, while in the Hardy space case a multiplication operator Mu is isometric 
if and only if u is an inner function, the only isometric multiplication operators on the weighted Bergman 
spaces are the unimodular constant multiples of the identity operator. This is a known fact that can be 
shown in many different ways. For example, since Mu = Wu,φ with φ(z) = z (a disk automorphism with 
φ(0) = 0), by Theorem 2.2, part (iii), u = ckα0 , |c| = 1. But kα0 ≡ 1, and so u is a unimodular constant.

There are also many other (non-unitary) examples of isometric weighted composition operators on the 
weighted Bergman spaces where the composition symbol has no interior fixed point. For example, as shown 
before, if φ is any univalent non-automorphic selfmap of D with no interior fixed point, and u = φ′, then 
Wu,φ is an isometry on the Bergman space.

On the other hand, under some additional conditions, an isometric Wu,φ must be such that φ has an 
interior fixed point. For example, it was shown in [17] that if Wu,φ is a unitary operator (on a general 
Bergman space over a bounded simply connected domain in Cn) which has an eigenvector, then φ must be 
an automorphism of the domain with an interior fixed point.

We have a similar characterization for general isometric weighted composition operators on weighted 
Bergman spaces over the unit disk.

Proposition 3.2. Let φ be a non-constant holomorphic self-map of D and let u ∈ L2
a(dmα) be such that Wu,φ

is an isometry on L2
a(dmα). Then if Wu,φ has an eigenvector, φ must have a fixed point in D.

Proof. In general, if φ is a self-map of D that is not an elliptic automorphism, the orbit of φ at any point 
a in D converges to the Denjoy–Wolff point of φ, which is either an interior fixed point of φ, or a point on 
the unit circle. So, if φ has no interior fixed point, |φ(n)(a)| → 1, for any a in D.

Let f ∈ L2
a(dmα) be a non-zero eigenvector of the isometry Wu,φ, i.e. Wu,φf = λf , for some unimodular 

constant λ. Suppose that φ has no interior fixed point, and let a ∈ D, and 0 < r < 1. For the pseudo-
hyperbolic disk D(a, r) we have that

∫
D(a,r)

|f(z)|2dmα(z) =
∫

D(a,r)

|u(z)|2|f(φ(z))|2dmα(z)

=
∫
D

|u(z)|2|f(φ(z))|2χD(a,r)(z)dmα(z)

≤
∫
D

|u(z)|2|f(φ(z))|2χφ(D(a,r))(φ(z))dmα(z)

=
∫
D

|f(w)|2χφ(D(a,r))(w)dμα
u,φ(w)

=
∫

|f(w)|2dμα
u,φ(w)
φ(D(a,r))
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=
∫

φ(D(a,r))

|f(w)|2dmα(w)

≤
∫

D(φ(a),r))

|f(w)|2dmα(w),

where in the last equality we used that Wu,φ is an isometry, i.e. that dμα
u,φ = dmα. The last inequality follows 

by the Schwarz–Pick lemma, since the pseudo-hyperbolic distance ρ is such that ρ(φ(a), φ(z)) ≤ ρ(a, z) and 
so φ(D(a, r)) ⊂ D(φ(a), r).

Now every power of Wu,φ is also an isometry with the same eigenvector f , and Wn
u,φ = Wun,φ(n) for 

appropriately chosen un. Thus, similarly as above, replacing φ with φ(n) and u with un we get that for 
every n, ∫

D(a,r)

|f(z)|2dmα(z) ≤
∫

D(φ(n)(a),r))

|f(w)|2dmα(w).

Next, since |φ(n)(a)| → 1 as n → ∞, there is a subsequence {φ(nk)(a)} such that the corresponding 
pseudo-hyperbolic disks Dk = D(φ(nk)(a), r) are disjoint. But then

‖f‖2 =
∫
D

|f(z)|2dmα(z) ≥
∫

⋃∞
k=1 Dk

|f(z)|2dmα(z)

=
∞∑
k=1

∫
Dk

|f(w)|2dmα(w) ≥
∞∑
k=1

∫
D(a,r)

|f(w)|2dmα(w) = ∞,

and we get a contradiction to f ∈ L2
a(dmα). Hence, φ must have an interior fixed point. �

Note that the last proposition together with the previous results on the Wold decomposition of isometric 
Wu,φ implies the following.

Corollary 3.2. Let Wu,φ be an isometry on L2
a(dmα) that is neither unitary nor a shift. Then:

(i) Wu,φ has a single one dimensional eigenspace if and only if φ has an interior fixed point.
(ii) Wu,φ has no eigenvalues if and only if φ does not have an interior fixed point.

The spectrum of weighted composition operators has been investigated in several different settings (see 
[2], [4], [9], [10], [11]). A closely related topic is also the determination of the numerical range of weighted 
composition operators, in particular when the operator is an isometry (see [10] and [16] for this type of 
results on the Hardy space). Using our previous conclusions on the Wold decomposition and eigenvectors 
of isometric weighted composition operators, we present next few results on the point spectrum, spectrum 
and numerical range of isometric WCO’ on the weighted Bergman spaces.

For a bounded operator T on a Hilbert space H, we denote by σ(T ) and σp(T ) the spectrum and the 
point spectrum of T . Recall also that

W (T ) = {< Tf, f >; f ∈ H, ‖f‖ = 1}

is the numerical range of T . The standard well know facts about the spectrum and the numerical range of 
an operator, some of which will be used in the proof of the next results, can be found in most basic operator 
theory textbooks.
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We will also use the following folk results, also mentioned and/or proven in a slightly different form in 
[10] and [16]:

• If λ ∈ W (T ) is a boundary point of the numerical range of T and is not contained in a closed disk in 
W (T ), or if |λ| = ‖T‖, then λ ∈ σp(T ).

• If T is an isometry on a separable Hilbert space that is a forward shift, then W (T ) = D.
• If T is an isometry on a separable Hilbert space that is not unitary, then W (T ) = D ∪ σp(T ).
• If T is a unitary operator on a separable Hilbert space, then σp(T ) is at most countable.

We need first the following lemma describing the point spectrum of unitary weighted composition op-
erators on weighted Bergman spaces. The proof uses standard methods in determining the parts of the 
spectrum of such operators, with the ideas coming mostly from the Hardy space case. We provide the proof 
for completeness, and cite the relevant references for more details on the main ideas. Note that the general 
spectrum of weighted composition operators with automorphic composition symbols acting on weighted 
Bergman spaces was determined in [11].

Lemma 3.1. Let φ be a holomorphic disk automorphism and let u ∈ L2
a(dmα) be such that Wu,φ is an 

isometry on L2
a(dmα). Then:

(i) If φ is an elliptic disk automorphism with a fixed point a, then

σp(Wu,φ) = {u(a)φ′(a)n;n = 0, 1, 2...}.

(ii) If φ is a parabolic or hyperbolic disk automorphism, then σp(Wu,φ) = ∅.

Proof. The main idea of the proof is to use the fact that the point spectrum of two unitary equivalent, or 
two similar operators is the same, thus simplifying the work to a case which is easy to handle directly.

(i) Since φ is an elliptic automorphism with a fixed point a, it is easy to see that Wu,φ is unitary 
equivalent to Wũ,φ̃ with φ̃(z) = φ′(a)z, and such that ũ(0) = u(a). The equivalence is achieved via the 
selfadjoint unitary Wkα

a
, ψa where ψa is the unique involutive disk automorphism with ψa(0) = a. Hence 

φ̃ = ψa ◦ φ ◦ ψa, it maps 0 into 0, and so it must be a rotation. But then by Theorem 3.2, ũ must be the 
constant function u(a) with |u(a)| = 1, and so Wũ,φ̃ = u(a)Cφ̃.

Since φ̃ is a rotation and the weighted Bergman spaces contain the functions en(z) = zn for any non-
negative integer n, a standard proof shows that

σp(Cφ̃) = {φ′(a)n;n = 0, 1, 2...}.

Now σp(Wu,φ) = σp(Wũ,φ̃) = u(a)σp(Cφ̃), which completes the proof of (i).
(ii) We will show first that in the parabolic and the hyperbolic case, σp(Wu,φ) must have circular sym-

metry. Since the operator is unitary, the point spectrum is either the unit circle, or it is empty. But the 
point spectrum can not be the unit circle since the weighted Bergman spaces are separable Hilbert spaces, 
and so it must be empty.

If φ is a parabolic disk automorphism, we show the circular symmetry of σp(Wu,φ) by first using the fact 
that Wu,φ is similar to Wũ,φ̃ with φ̃(z) = ((1 + i)z − 1)/(z + i − 1) or φ̃(z) = ((1 − i)z − 1)/(z − i − 1) (see 
[9, Lemma 3.0.6.]).

If λ ∈ σp(Wũ,φ̃) then, as was shown in the proof of [10, Theorem 4.7, part (2)], we can use the inner 
functions

fr(z) = er
z+1
z−1 , r > 0
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to show that then each e−2irλ is also in the point spectrum of Wũ,φ̃. Hence, the point spectrum is the 
unit circle, which is a contradiction. Note that the proof for the Hardy space from [10] works also in this 
case since each fr is in H∞, the multiplier algebra for the Hardy space and also for the weighted Bergman 
spaces.

If φ is hyperbolic, then we can use the idea from the proof of [4, Theorem 4.3.]. Namely, for every real 
θ there is a function fθ such that f and 1/f are in H∞ and such that M−1

fθ
CφMfθ = eiθCφ over the 

polynomials, and so also on each weighted Bergman space (see [4] for more details). But then it is easy to 
see that M−1

fθ
Wu,φMfθ = eiθWu,φ, and so σp(Wu,φ) has a circular symmetry.

As before, the proof for the Hardy space works also for the weighted Bergman spaces since the multiplier 
algebra for both types of spaces is H∞. �

Next we describe the numerical range of isometric weighted composition operators acting on weighted 
Bergman spaces, and determine the spectrum of isometric Wu,φ when φ is not automorphic. As mentioned 
before, the spectrum of Wu,φ with automorphic φ has been determined in [11].

Theorem 3.3. Let φ be a holomorphic self-map of D and let u ∈ L2
a(dmα) be such that Wu,φ is an isometry 

on L2
a(dmα). Then:

a) If φ is a disk automorphism, then σ(Wu,φ) ⊆ ∂D and:
(i) If φ is an elliptic disk automorphism with a fixed point a ∈ D, then either

(W (Wu,φ)) = D ∪ {u(a)φ′(a)n;n = 0, 1, 2...}

when φ′(a) is not a root of unity, or (W (Wu,φ)) is a polygon with vertex points in {u(a)φ′(a)n;
n = 0, 1, 2..., n − 1} if φ′(a) is an n-th root of unity.

(ii) If φ is a parabolic or a hyperbolic disk automorphism then (W (Wu,φ)) = D.
b) If φ is not a disk automorphism, then σ(Wu,φ) = D. Furthermore:

(i) If ∃a ∈ D such that φ(a) = a, then either W (Wu,φ) = D if |u(a)| < 1, or W (Wu,φ) = D ∪ {u(a)} if 
|u(a)| = 1.

(ii) If φ has no interior fixed point then W (Wu,φ) = D.

Proof. a) It is trivial that when φ is a disk automorphism, i.e. when Wu,φ is unitary, then σ(Wu,φ) ⊆ ∂D. 
To further determine the numerical range of Wu,φ we use the description of the spectrum of Wu,φ from [11]
and the characterization of the point spectrum from Lemma 3.1.

(i) If φ is an elliptic disk automorphism with fixed point a ∈ D and φ′(a) is not a root of unity by 
Lemma 3.1, part (i), σp(Wu,φ) = {u(a)φ′(a)n; n = 0, 1, 2...}. The spectrum is a closed set and so σ(Wu,φ) =
∂D. Since Wu,φ is unitary, it is also normal and so

D = convhull(σ(Wu,φ)) ⊆ cl(W (Wu,φ)) ⊆ D.

On the other hand, any point on the unit circle is in the boundary of the numerical range, and so it has to 
be in the point spectrum of Wu,φ. Thus, as claimed

(W (Wu,φ)) = D ∪ {u(a)φ′(a)n;n = 0, 1, 2...}.

If φ′(a) is an n-th root of unity, then by [11] and Lemma 3.1, part (i),

σ(Wu,φ) = {u(a)φ′(a)n;n = 0, 1, 2..., n− 1} = σp(Wu,φ).
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We get the needed conclusion by the same discussion as in the first part, and by using the fact that the 
numerical range is a convex set.

(ii) If φ is a parabolic or a hyperbolic disk automorphism by [11], σ(Wu,φ) = ∂D. By Lemma 3.1, 
part (ii), σp(Wu,φ) = ∅. Using the same general facts about the spectrum and the numerical range of a 
normal operator, and the relation between the boundary of the numerical range and the point spectrum as 
in the first part of the proof of part (i), we get that cl(W (Wu,φ)) = D, and so W (Wu,φ) = D.

b) If φ is not a disk automorphism, then Wu,φ is a non-unitary isometry. Hence, the forward shift part 
in the Wold decomposition of Wu,φ is non-trivial, D ⊂ σ(Wu,φ) and since the spectrum is a closed set 
σ(Wu,φ) = D. Recall also that since Wu,φ is not unitary, W (Wu,φ) = D ∪ σp(Wu,φ). Thus:

(i) If a is an interior fixed point of φ by Proposition 3.1, part (iii), |u(a)| ≤ 1. If |u(a)| < 1, by Theorem 3.1, 
part (i), Wu,φ is a shift, and so W (Wu,φ) = D. If |u(a)| = 1, since φ is not a disk automorphism by 
the Wold decomposition described in Theorem 3.1, part (iii), σp(Wu,φ) = {u(a)} and so W (Wu,φ) =
D ∪ {u(a)}.

(ii) If φ has no interior fixed point and φ is not a disk automorphism then either Wu,φ is a forward shift, 
in which case W (Wu,φ) = D, or Wu,φ is neither unitary nor a forward shift. But in the latter case by 
Corollary 3.1, Wu,φ has no eigenvalues, i.e. σp(Wu,φ) = ∅. Hence, in this case again W (Wu,φ) = D. �

We add the following two general questions for future investigations of isometric weighted composition 
operators within this context:

Question 3.1. Are Theorem 3.1 and Theorem 3.2 true for more general RKHS HK over more general domains 
in Cn?

Question 3.2. What more can be said about the Wold decomposition of isometric weighted composition 
operators on the weighted Bergman spaces, or on the Hardy space, when the composition symbol has no 
interior fixed point?
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