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.

DOUBLE LAYER POTENTIALS ON THREE-DIMENSIONAL

WEDGES AND PSEUDODIFFERENTIAL OPERATORS ON LIE

GROUPOIDS

YU QIAO

Abstract. Let W be a three-dimensional wedge, and K be the double layer
potential operator associated to W and the Laplacian. We show that 1

2
˘ K

are isomorphisms between suitable weighted Sobolev spaces, which implies a
solvability result in weighted Sobolev spaces for the Dirichlet problem on W.
Furthermore, we show that the double layer potential operator K is an element
in C˚pGq b M2pCq, where G is the action (transformation) groupoid M � G,

with G “
"ˆ

1 0
a b

˙
: a P R, b P R`,

*
, which is a Lie group, and M is a kind

of compactification of G. This result can be used to prove the Fredholmness
of 1

2
` KΩ, where Ω is “a domain with edge singularities” and KΩ the double

layer potential operator associated to the Laplacian and Ω.
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1. Introduction

Potential theory can be dated back to the works of Lagrange, Laplace, Poisson,
Gauss, and others [38], and plays a fundamental role in physics. Many works are
dedicated to the method of layer potentials, such as Courant and Hilbert [16],
Folland [22], Hsiao and Wendland [24], Kress [29], McLean [38], and Taylor [57].
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2 YU QIAO

These results give a complete account of the classical theory on smooth bounded
domains.

Let us give a quick review of the method of double layer potentials. Suppose Ω Ă
R

n is a (regular) open bounded domain. Consider the interior Dirichlet boundary
value problem

(1)

"
Δu “ 0 in Ω
u|BΩ “ φ on BΩ,

and the exterior Dirichlet problem

(2)

"
Δu “ 0 in Ωc

u|BΩ “ φ on BΩ,
where Ωc denotes the complement of Ω, i.e., Ωc “ R

nzΩ.
For ψ P C8

c pBΩq, define the double layer potential

upxq “ ´ωn

ż
BΩ

px ´ yq ¨ νpyq
|x ´ y|n ψpyqdσpyq, px P R

nzBΩq,
where νpyq is the exterior unit normal to a point y P BΩ and ωn is the area of
the unit sphere in R

n. Let u´pxq and u`pxq denote the limits of upzq as z Ñ x P
BΩ nontangentially from z P Ω and z P R

nzΩ, respectively. The classical results
[15, 22, 57] on double layer potentials state that for (a.e.) x P BΩ, we have

(1) u´pxq “ 1
2 ψpxq ` Kψpxq, i.e., u´ “ p 1

2 ` Kqψ;
(2) u`pxq “ ´1

2 ψpxq ` Kψpxq, i.e., u` “ p´ 1
2 ` Kqψ, where

Kψpxq “
ż

BΩ
kpx, yqψpyqdσpyq,

with kpx, yq “ ´ωn
px ´ yq ¨ νpyq

|x ´ y|n .

Hence, the interior and exterior Dirichlet problems are reduced to solving boundary
integral equations p1{2 ` Kqψ “ φ and p´1{2 ` Kqψ “ φ, respectively, where φ is
the given function, and ψ is the unknown function, both on BΩ.

In [22, 57], it is shown that if the domain Ω Ă R
n has C2 boundary BΩ, then the

double layer potential operator K is compact on L2pBΩq. Hence operators 1{2˘K
are Fredholm of index zero. Therefore, the solvability of the interior and exterior
Dirichlet problems is equivalent to injectivity or surjectivity of 1{2˘K. The paper
[19] deals with the case of C1-domains.

By contrast, if the boundary BΩ is not C1, the operator K may not be compact
any more (see [18, 22, 27, 29, 32, 58]). However, we can still expect that 1{2 ˘ K
are Fredholm operators on appropriate function spaces on the boundary. The case
of Lipschitz domains is by far the most studied among the class of non-smooth
domains, hence is well understood. See Verchota [58] for related results on Lipschitz
domains. Costabel’s paper [14] gives a good introduction to the method of layer
potentials via more elementary methods.

We are concerned with boundary value problems on domains with singulari-
ties. There are a plenty of works and several different methods dealing with such
problems.

First of all, boundary value problems on domains with conical points were ex-
tensively studied by many authors. We would like to mention in this aspect the
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work of Kondratiev [27], Kapanadze and Schulze [26], Li, Mazzucato and Nistor
[33], Mazzeo and Melrose [37] and Melrose [39], and Schrohe and Schulze [49, 50].

Meanwhile, boundary value problems on domains with edge singularities also
attract a lot of attention. Ammann, Ionescu, and Nistor use Lie manifold to study
Sobolev spaces, elliptic regularity, and mapping properties of pseudodifferential
operators on polyhedral domains of R3 in [3]. Furthermore, we mention the work
of Fabes, Jodeit, and Lewis [18], the paper of Mazzeo [36], and the works of Schulze
with his collaborators [20, 23, 25, 51, 52, 53, 54]. Schulze and his collaborators
have developed an extensive theory of boundary value problems in the framework
of Boutet de Monvel pseudodifferential calculus [9]. (A study of the layer potentials
complements this theory.) Most of these works are devoted to constructing suitable
algebras of pseudodifferential operators on manifolds with singularities. See also
the papers [1, 6, 7, 17] using groupoids to construct algebras of pseudodifferential
operators on singular spaces, and [4, 44, 55] for some related constructions.

In addition, many works are dedicated to the study of other analysis problems on
manifolds with edge singularities. For instance, Albin and Gell-Redman consider
index theory of Dirac operators on incomplete edge spaces [2]. Krainer and Men-
doza construct a theory of elliptic boundary value problems for wedge operators on
general manifolds with edges [28].

Our long term interest lies in the method of layer potentials on domains with
singularities. From the pseudodifferential operator point of view, if the boundary
BΩ is smooth, then the double layer potential operator K is a pseudodifferential
operator of order ´1 on the boundary, i.e., K P Ψ´1pBΩq [57]. If the boundary has
singularities, there is a natural question to ask:

Does there exist a canonical way to construct a pseudodifferential operator
algebra on the boundary such that
(a) the double layer potential operatorK belongs to this pseudodifferential

operator algebra;
(b) the Fredholmness of 1{2˘K (on certain function spaces on the bound-

ary) can be proved in the context of this pseudodifferential operator
algebra?

The survey [35] stresses the importance of understanding the algebra of pseu-
dodifferential operators on spaces with singularities. For the case where Ω is a
simply connected polygon on R

2, Lewis and Parenti constructed a pseudodifferen-
tial algebra on the boundary to settle the invertibility of 1{2 ˘ K on the spaces
LppBΩq [32]. In the papers [13, 45, 46], motivated by the study of the method of
layer potentials on domains with conical points, the author and collaborators have
constructed pseudodifferential algebras on the boundary, and investigated the in-
vertibility of operators 1{2˘K on weighted Sobolev spaces on the boundary, which
implies a solvability result in weighted Sobolev spaces for the interior and exterior
Dirichlet problems on Ω. It is possible to extend our method to solve interior and
exterior Neumann problems.

In general, Bacuta, Mazzucato, Nistor, and Zikatanov presented a general desin-
gularization procedure for polyhedral domains in [8]. The construction of the desin-
gularization of a polyhedron gives us so-called “Lie manifold with boundary”. If
we confine ourselves on the boundary of a polyhedral domain, we obtain “Lie man-
ifold” (or Lie algebroid). Then integrating this Lie manifold (or Lie algebroid)
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leads to a Lie groupoid. (Hence, the entire construction is motivated by boundary
value problems and comes from the nature of the singularities.) By the works of
Nistor-Weinstein-Xu [44] and Monthubert-Pierrot [43], there is a pseudodifferential
calculus on a Lie groupoid. Then we can identify the double layer potential opera-
tor K (associated to a singular domain) with a pseudodifferential operator on this
Lie groupoid. Finally, combining some general results of pseudodifferential calculus
on Lie groupoids and groupoid C˚-algebras, we are able to show that 1{2 ˘ K are
Fredholm operators on suitable weighted Sobolev spaces on the boundary, even the
invertibility of 1{2 ˘ K.

To be able to handle double layer potentials on “manifolds with edge singulari-
ties”, we find it necessary to investigate the behavior of the double layer potential
operator K near each edge singularity, and to examine the analytic properties of
1{2˘K on suitable function spaces. It is exactly the purpose of this paper to study
the case of three-dimensional wedges and to prove invertibility results.

In the present paper, we focus on the double layer potential operator K asso-
ciated with the Laplacian on a three-dimensional wedge. Denote such a wedge by
W, i.e.,

(3) W :“ tpr cos θ, r sin θ, zq : r ą 0, 0 ă θ ă α, z P Ru,
where 0 ă α ă 2π, α ‰ π. The double layer potential operator K associated to W
and the Laplace operator is of the form

K “
˜

0 rKrK 0

¸
,

where rK is a convolution operator on the Lie group

G :“
! ˆ

1 0
u r

˙ ˇ̌̌
u P R, r ą 0

)
,

which is not unimodular.
Denote by Km

a pBWq the m-th weighted Sobolev space with weight function r and
index a P R on BW (see Section 2 for definitions). Denote by Mra the multiplication

operator by ra. Then the operators rKa :“ Mra
rKMr´a are still (bounded linear)

convolution operators on the Lie group G for an appropriate range of a, so the
operators Ka :“ MraKMr´a act on Km

a pBWq for a suitable range of a. More
explicitly, define

Ξ :“ ta P R :
| sin apπ ´ αq|

| sin aπ| ă 1u.
We have the following theorem.

Theorem 1.1. For all m P Z and a P Ξ, the operators

1

2
˘ K “

˜
1
2 ˘ rK

˘ rK 1
2

¸
: Km

1`apBWq Ñ Km
1`apBWq

are isomorphisms.

Applying the general procedure discussed above to the special case W, we finally
get a Lie groupoid over the (desingularized) boundary BW. Our general strategy
is that certain boundary convolution integral operators (such as Ka) are in fact in
the groupoid C˚-algebra. Furthermore, from this fact and among other things, we
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will be able to show that these integral operators are Fredholm between suitable
weighted Sobolev spaces for domains with edge singularities.

As an application of the above discussion, let M be a sort of compactification
of G such that G acts on M . Then we can form the action groupoid G :“ M �G.
Thus, we obtain the following theorem.

Theorem 1.2. For a P p´1, 1q, Ka P C˚pGq b M2pCq;
The paper is structured in the following way. Section 2 recalls desingularization

procedures and definitions of weighted Sobolev spaces on W and BW. Then in Sec-
tion 3, we review some basic knowledge of Lie groupoids, define pseudo-differential
operators on a Lie groupoid and, from this, we define the C˚-algebra of a Lie
groupoid. In Section 4, we investigate explicitly the properties of the double layer
potential operator K associated to W and the Laplace operator. Lastly, Section
5 investigates the connection between the operator K with a pseudo-differential
operator algebra on some Lie groupoid.

Acknowledgments We would like to thank Victor Nistor and Xiang Tang for
helpful comments and enlightening discussions, and the anonymous referee for pro-
viding a simple proof of Theorem 4.7, and suggestions which really improve the
readability of the paper.

2. Desingularization and weighted Sobolev spaces on
three-dimensional wedges

Consider a three-dimensional wedge

W :“ tpr cos θ, r sin θ, zq : r ą 0, 0 ă θ ă α, z P Ru,
where 0 ă α ă 2π, α ‰ π, and x “ r cos θ and y “ r sin θ define the usual cylindrical
coordinates pr, θ, zq, with pr, θ, zq P r0,8q ˆ r0, 2πq ˆ R. Following the work in [8,
Example 2.10], we see that the manifold of generalized cylindrical coordinates is,
in this case, just the domain of the cylindrical coordinates on W:

ΣpWq “ r0,8s ˆ r0, αs ˆ R.

The desingularization map is κpr, θ, zq “ pr sin θ, r cos θ, zq and the structural Lie
algebra VpWq of vector fields of ΣpWq is

arpr, θ, zqrBr ` aθpr, θ, zqBθ ` azpr, θ, zqrBz,
where ar, aθ and az are smooth functions on ΣpWq. Note that the vector fields in
VpWq may not extend to the closure W.

Let m P Z`, and α P Zn` be a multi-index. We define the m-th Sobolev space
on W with weight r and index a by

Km
a pWq “ tu P L2

locpW, dxq | r|α|´aBαu P L2pW, dxq, for all |α| ď mu.
The norm on Km

a pWq is }u}2Km
a pWq :“

ř
|α|ďm }r|α|´aBαu}2L2pW,dxq. By Theorem

5.6 in [8], this norm is equivalent to

}u}2m,a :“
ÿ

|α|ďm

}r´aprBqαu}2L2pW,dxq,

where prBqα “ prB1qα1prB2qα2prB3qα3 . Clearly, we have that rtKm
a pWq – Km

a`tpWq.
In general, this isomorphism may not be an isometry.
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Proposition 2.1. We have, for all m P Z,

Km
3
2

pWq – HmpW, gq, and Km
1 pBWq – HmpBW, gq,

where the metric g “ r´2ge with ge the standard Euclidean metric.

Proof. The result essentially follows from Proposition 5.7 in [8]. Here are the details
for the benefit of the reader. We only deal with the first case.

Let us consider the vector fields X “ rBr, Y “ Bθ, Z “ rBz. Then X, Y , Z
form an orthonormal basis (at every point of W) with respect to the metric g.
Moreover, their Lie brackets are bounded, their Levi-Civita covariant derivatives
are also bounded, and X, Y , Z are bounded vector fields (again with respect to
the metric g!). We thus obtain

HmpW, gq “ tu P L2
locpW, gq | XiY jZku P L2pW, gq, i ` j ` k ď mu

“ tu P L2
locpW, gq | ri`j`kBi

xBj
yBk

zu P L2pW, gq, i ` j ` k ď mu
“ tu P L2

locpW, geq | ri`j`k´3{2Bi
xBj

yBk
zu P L2pW, geq, i ` j ` k ď mu

“ Km
3
2

pWq
where we have used the expressions of Bx and By in polar coordinates, as well
as the fact that X, Y , Z are bounded with respect to the metric g. The fact
that the Lie brackets of the vector fields X, Y , Z are bounded and that their
covariant (Levi-Civita) connection are bounded, was used in the first equality to
express HmpW, gq in terms of derivatives with respect to X, Y , and Z. Also,
for the last equalities, we used the key observation that the volume element on
pW, gq is r´3dx, where dx is the Euclidean volume element. In particular, we have
f P L2pW, geq ô f P r´3{2L2pW, gq. See [5] for a comprehensive discussion of these
issues in the framework of manifolds with bounded geometry. �

3. Pseudodifferential operators on Lie groupoids

3.1. Lie groupoids and Lie algebroids. In this subsection, we review some basic
facts on Lie groupoids. We begin with the definition of groupoids.

Definition 3.1. A groupoid is a small category G in which each arrow is invertible.

Let us make this definition more precise [10, 31, 40, 48]. A groupoid G consists
of two sets, a set of units G0 and a set of arrows G1. We usually denote the space
of units of G by M :“ G0, identify G with G1, and use the notation G ⇒ M . Each
object of G can be identified with an arrow of G, thus we have an injective map
u : M Ñ G, where upxq is the identity arrow of an object x. For each g P G, we
have tow maps: d, r : G Ñ M . The set of composable pairs is defined by

Gp2q :“ tpg, hq P G ˆ G | dpgq “ rphqu.
The multiplication μ : Gp2q Ñ G is defined by μpg, hq “ gh. The multiplication is

associative. The inverse of an arrow is denoted by g´1 “ ιpgq. The five structural
maps fit into the following diagram (in [40])

Gp2q μ �� G ι �� G d ��
r

�� M
u �� G,
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and satisfy the following properties:

(1) dphgq “ dpgq, rphgq “ rphq,
(2) kphgq “ pkhqg
(3) uprpgqqg “ g “ gupdpgqq, and
(4) dpg´1q “ rpgq, rpg´1q “ dpgq, g´1g “ updpgqq, and gg´1 “ uprpgqq

for any k, h, g P G with dpkq “ rphq and dphq “ rpgq. The following definition is
taken from [31].

Definition 3.2. A Lie groupoid is a groupoid

G “ pG0,G1, d, r, μ, u, ιq
such that M :“ G0 and G1 are smooth manifolds, possibly with corners, with M
Hausdorff, the structural maps d, r, μ, u, and ι are smooth and the domain map d
is a submersion (of manifolds with corners).

Remark 3.3. In general, the space G1 may not be Hausdorff. However, since d is a
submersion, it follows that each fiber Gx is a smooth manifold without corners [31],
hence it is Hausdorff. Note that the groupoids that we construct in Section 5 will
be Hausdorff.

We now recall the definition of a Lie algebroid [31].

Definition 3.4. A Lie algebroid A over a manifold M is a vector bundle A over
M , together with a Lie algebra structure on the space ΓpAq of the smooth sections
of A and a bundle map ρ : A Ñ TM , extended to a map between sections of theses
bundles, such that

(1) ρprX,Y sq “ rρpXq, ρpY qs;
(2) rX, fY s “ f rX,Y s ` pρpXqfqY ,

for all smooth sections X and Y of A and any smooth function f on M . The map
ρ is called the anchor. Usually we shall denote by pA, ρq such a Lie algebroid.

Consider a Lie groupoid G with units M . We can associate a Lie algebroid ApGq
to G as follows. (For more details, one can read [34].) The d-vertical subbundle
of TG for d : G Ñ M is denoted by T dpGq and called simply the d-vertical bundle
for G. It is an involutive distribution on G whose leaves are the components of the
d-fibers of G. (Here involutive distribution means that T dpGq is closed under the
Lie bracket, i.e. if X,Y P XpGq are sections of T dpGq, then the vector field rX,Y s
is also a section T dpGq.) Hence we obtain

T dG “ ker d˚ “
ď
xPM

TGx Ă TG.

The Lie algebroid of G, denoted by ApGq, is defined to be T dpGq|M , the restriction
of the d-vertical tangent bundle to the set of units M . In this case, we say that G
integrates ApGq.
Remark 3.5. In general, the desingularization process (for the boundary) in [8] gives
rise to a Lie algebroid. Then integration of this Lie algebroid leads to a Lie groupoid.
In particular, the desingularization of the boundary of a three-dimensional wedge
in Section 2, give us the Lie algebra generated by the vector fields rBr, Bθ, rBz, and
smooth functions on the boundary, which is in fact the smooth sections of a Lie
algebroid. By integrating this Lie algebroid, we obtain a Lie groupoid.
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3.2. Pseudodifferential operators and groupoid C˚-algebras. We recall here
the construction of the space of pseudodifferential operators associated to a Lie
groupoid G ⇒ M [30, 31, 42, 41, 43, 44].

Let P “ pPxq, x P M be a smooth family of pseudodifferential operators acting
on Gx :“ d´1pxq. We say that P is right invariant if PrpgqUg “ UgPdpgq, for all
g P G, where

Ug : C8pGdpgqq Ñ C8pGrpgqq, pUgfqpg1q “ fpg1gq.
Let kx be the distributional kernel of Px, x P M . Note that the support of the P

supppP q :“
ď
xPM

supppkxq Ă tpg, g1q, dpgq “ dpg1qu Ă G ˆ G

since supppkxq Ă Gx ˆ Gx. Let μ1pg1, gq :“ g1g´1. The family P “ pPxq is called
uniformly supported if its reduced support suppμpP q :“ μ1psupppP qq is a compact
subset of G.
Definition 3.6. The space ΨmpGq of pseudodifferential operators of order m on
a Lie groupoid G with units M consists of smooth families of pseudodifferential
operators P “ pPxq, x P M , with Px P ΨmpGxq, which are uniformly supported and
right invariant.

We also denote Ψ8pGq :“ Ť
mPR ΨmpGq and Ψ´8pGq :“ Ş

mPR ΨmpGq. We then
have a representation π of Ψ8pGq on C8

c pMq (or on C8pMq, on L2pMq, or on
Sobolev spaces), called vector representation uniquely determined by the equation

pπpP qfq ˝ r :“ P pf ˝ rq,
where f P C8

c pMq and P “ pPxq P ΨmpGq.
Recall that kx denotes the distributional kernel of Px, x P M . Then the formula

kP pgq :“ kdpgqpg, dpgqq
defines a distribution on the groupoid G, with suppkp “ suppμpP q compact, smooth
outside M and given by an oscillatory integral on a neighborhood of M . If P P
Ψ´8pGq, then P identifies with the convolution operator with kernel a smooth,
compactly supported function and Ψ´8pGq identifies with the convolution algebra
C8
c pGq. In particular, we can define

}P }L1pGq :“ sup
xPM

! ż
Gx

|kP pg´1q| dμxpgq,
ż
Gx

|kP pgq| dμxpgq
)
.

For each x P M , there is an interesting representation of Ψ8pGq, the regular
representation πx on C8

c pGxq, defined by πxpP q “ Px. It is clear that if P P
Ψ´n´1pGq

}πxpP q}L2pGxq ď }P }L1pGq.
The reduced C˚–norm of P is defined by

}P }r “ sup
xPM

}πxpP q} “ sup
xPM

}Px},
and the full norm of P is defined by

}P } “ sup
ρ

}ρpP q},

where ρ varies over all bounded representations of Ψ0pGq satisfying

}ρpP q} � }P }L1pGq for all P P Ψ´8pGq.
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Definition 3.7. Let G be a Lie groupoid and Ψ8pGq be as above. We define C˚pGq
(respectively, Cr̊ pGq) to be the completion of Ψ´8pGq in the norm }¨} (respectively,
} ¨ }r). If } ¨ }r “ } ¨ }, that is, if C˚pGq – Cr̊ pGq, we call G amenable.

We give some examples of Lie groupoids below.

Example 3.8 (Manifolds with corners). A manifold (with corners) M may be viewed
as a Lie groupoid, by taking both the object and morphism sets to be M , and the
domain and range maps to be the identity map M Ñ M . Then we have ApMq “ 0,
the zero bundle on M , and Ψ8pMq “ C8

c pMq.
Example 3.9 (Lie groups). Every Lie group G can be regarded as a Lie groupoid
G “ G with only one unit M “ teu, the unit of G. In this case, the Lie algebroid
ApGq is the Lie algebra of G, and ΨmpGq is the algebra of properly supported and
invariant pseudodifferential operators on G.

Example 3.10 (Pair groupoid). Let M be a smooth manifold. Let

G “ M ˆ M G0 “ M,

with structure maps dpm1,m2q “ m2, rpm1,m2q “ m1, pm1,m2qpm2,m3q “
pm1,m3q, upmq “ pm,mq, and ιpm1,m2q “ pm2,m1q. Then G is a Lie groupoid,
called the pair groupoid. We have ApGq “ TM . According to the definition, a pseu-
dodifferential operator P belongs to ΨmpGq if and only if the family P “ pPxqxPM
is constant. Hence we obtain ΨmpGq “ Ψm

comppMq. Also, an important result is
that C˚pGq – K, the ideal of compact operators, the isomorphism being given by
the vector representation or by any of the regular representations (together with
Gx – M). If M has dimension 0, say, it is a discrete set with k elements, then
C˚pGq – MkpCq and the convolution product becomes matrix multiplication.

Example 3.11 (The fibered pair groupoid). Let f : M Ñ N be a submersion of
manifolds (with corners). The fiber pair groupoid is defined as

G :“ M ˆN M “ tpm1,m2q| fpm1q “ fpm2q, m1,m2 P Mu,
with the operation induced from the pair groupoid M ˆ M . The space of units
is M . The Lie algebroid ApGq is the kernel of f˚ : TM Ñ TN , i.e., the vertical
tangent bundle to the submersion f : M Ñ N , and ΨmpGq consists of families of
pseudodifferential operators along the fibers M Ñ N so that their reduced kernel
are compactly supported.

Example 3.12 (Transformation (or Action) groupoid). Suppose that a Lie group G
acts on the smooth manifold M from the right. The transformation groupoid over
M ˆ teu – M , denoted by M �G, is the set M ˆG with structure maps dpm, gq “
pm¨g, eq, rpm, gq “ pm, eq, pm, gqpm¨g, hq “ pm, ghq, upm, eq “ pm, eq, and ιpm, gq “
pm ¨ g, g´1q. For more on the action groupoid, one may see [34, 40, 48].

Example 3.13 (Vector bundles). Let E be the total space of a smooth vector bundle
over a manifold M , then we can view E as a groupoid as follows: the domain and
range maps are both equal to the projection from E to the base space M , and
composition of morphisms is addition in the fibers of E. We are therefore viewing
V as a smooth family of additive Lie groups over M . In this way, E is considered
as a Lie groupoid. This is a particular case of bundles of Lie groups in the next
example.
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Example 3.14 (Bundle of Lie groups). If G Ñ M is a bundle of Lie groups, i.e,
d “ r (hence each fiber is a Lie group), then ΨmpGq consists of smooth families
of invariant and properly supported pseudodifferential operators on the fibers of
G Ñ M .

4. Double layer potentials on three-dimensional wedges

In this section, we study explicitly the method of double layer potentials for
solving the Dirichlet problem on the domain

W :“ tpr cos θ, r sin θ, zq : r ą 0, 0 ă θ ă α, z P Ru,

where α P p0, 2πq and α ‰ π.
We denote the boundary of W by BW. Then we have

BW “ tpx, 0, zq : x ą 0, z P Ru
ď

tpr sinα, r cosα, zq : r ą 0, z P Ru
“ B1 Y B2.

We agree from now on that x, r, s ą 0 and u, z, t P R.
Suppose that f1 P CcpB1q and f2 P CcpB2q. So the double layer potential operator

K can be represented as a 2 ˆ 2 matrix acting on CcpB1q ‘ CcpB2q:

K11 “ K22 “ 0,

pK21f1qpr, uq “ 1

4π

ż 8

0

ż 8

´8
´r sinα

rpr cosα ´ xq2 ` pr sinαq2 ` pu ´ zq2s 3
2

f1px, zqdzdx

“ 1

4π

ż 8

0

ż 8

´8
´r sinα

rr2 ´ 2rx cosα ` x2 ` pu ´ zq2s 3
2

f1px, zqdzdx.

pK12f2qpx, uq “ 1

4π

ż 8

0

ż 8

´8
´x sinα

rpr cosα ´ xq2 ` pr sinαq2 ` pu ´ zq2s 3
2

f2pr, zqdzdr

“ 1

4π

ż 8

0

ż 8

´8
´x sinα

rr2 ´ 2rx cosα ` x2 ` pu ´ zq2s 3
2

f1px, zqdzdr.

Let us consider K21f1. Making the changes of variables"
x “ r{s
z “ u ´ tr{s.

gives

Bpx, zq
Bps, tq “

ˇ̌̌̌ ´r{s2 0
ptrq{s2 ´r{s

ˇ̌̌̌
“ r2

s3
.
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We can write

pK21f1qpr, uq(4)

“ 1

4π

ż 8

0

ż 8

´8
´r sinα

rr2 ´ 2rx cosα ` x2 ` pu ´ zq2s 3
2

f1px, zqdzdx

“ 1

4π

ż 8

0

ż 8

´8
´r sinα

rr2 ´ 2rp r
s q cosα ` p r

s q2 ` p rt
s q2s 3

2

ˆ
r2

s3

˙
f1

ˆ
r

s
, u ´ rt

s

˙
dt ds

“ 1

4π

ż 8

0

ż 8

´8
´r sinα

p r
s q3ps2 ´ 2s cosα ` 1 ` t2q 3

2

ˆ
r2

s3

˙
f1

ˆ
r

s
, u ´ rt

s

˙
dt ds

“ 1

4π

ż 8

0

ż 8

´8
´s sinα

ps2 ´ 2s cosα ` 1 ` t2q 3
2

f1

ˆ
r

s
, u ´ rt

s

˙
dt

ds

s
.

Making similar changes of variables, we can rewrite

K12f2px, uq “ 1

4π

ż 8

0

ż 8

´8
´s sinα

ps2 ´ 2s cosα ` 1 ` t2q 3
2

f2

ˆ
x

s
, u ´ xt

s

˙
dt

ds

s
.

Now, let us consider the group G of 2 ˆ 2 matrices

(5) G “
! ˆ

1 0
r u

˙ ˇ̌̌
u P R, r ą 0

)
.

Throughout the rest of the paper, we always use G to denote this group.
Then we haveˆ

1 0
u r

˙ ˆ
1 0
t s

˙´1

“
ˆ
1 0
u r

˙ ˆ
1 0

´t{s 1{s
˙

“
ˆ

1 0
u ´ ptrq{s r{s

˙
.

A right-invariant Haar measure on G is du pdr{rq and a left-variant Haar measure
is du pdr{r2q. So the group G is not unimodular. We need harmonic analysis on
this group. Let us recall that the group G can be identified with the “ax`b group”
of transformations of the form (called affine transformations)

x Ñ ax ` b

on the real line. The “ax ` b group” can be viewed as a semi-product

R�ϕ R
`,

where R is additive, R` is multiplicative, and

ϕpaqb “ ab, a P R
`, b P R.

Therefore, we have G “ R �ϕ R
` [21, 56]. The group G “ R �ϕ R

` is amenable

since it is solvable. In fact, let Gp0q “ G and denote by Gpiq the commutator
subgroup of Gpi´1q, so we have

Gp1q “
! ˆ

1 0
z 1

˙
: z P R

)
,

and

Gp2q “
! ˆ

1 0
0 1

˙ )
.

These imply that G is solvable [21].
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Suppose g, f P CcpGq. The convolution of f and g (with respect to left-invariant
Haar measure dμ “ dtpds{s2q is defined by (for instance, [21, 47])

f ˚ gpr, uq :“
ż 8

0

ż 8

´8
fps, tq g `ps, tq´1pr, uq˘ ds

s2
dt

“
ż 8

0

ż 8

´8
fps, tq g `ps, tq´1pr, uq˘ ´ r

s3

¯ ´s

r

¯
ds dt

“
ż 8

0

ż 8

´8
f

`pr, uqps, tq´1
˘
gps, tq dtds

s
,

where we identify pr, uq with the matrix

ˆ
1 0
u r

˙
.

Therefore, we can realize K21 and K12 as right convolution operators on G on
L2pG, dνq, where dν :“ du pdr{rq is the right invariant Haar measure on G, with
the same convolution kernel:

kpr, uq “ ´ 1

4π

r sinα

pr2 ´ 2r cosα ` 1 ` u2q 3
2

,

More precisely, K12f1 “ f1 ˚ k and K21f2 “ f2 ˚ k with respect to the right Haar
measure dν “ du pdr{rq. We summarize what we have obtained in the following
proposition.

Proposition 4.1. Let G be as above and dν “ du pdr{rq be the right Haar measure
of G. Then the operators K12 and K21 both identify with right convolution operators
(with respect to dν) with the same convolution kernel

kpr, uq “ ´ 1

4π

r sinα

pr2 ´ 2r cosα ` 1 ` u2q 3
2

.

For simplicity, let rK :“ K12 “ K21.

Lemma 4.2. The kernel kpr, uq of the convolution operator rK on G is smooth, and

||kpr, uq||L1pG,dνq “ |π ´ α|
2π

ă 1

2
.

Proof. It is clear that the kernel kpr, uq is a smooth function on G. We need the
following facts ż 8

´8
1

pa2 ` u2q 3
2

du “ 1

a2

ż π
2

´ π
2

cos θ dθ “ 2

a2
,(6)

and ż 8

0

r

r2 ´ 2s cosα ` 1

dr

r
“ π ´ α

sinpπ ´ αq “ |π ´ α|
| sinα| .

In particular, if α “ π, then we haveż 8

0

r

r2 ` 2r ` 1

dr

r
“ 1 “ lim

αÑπ

|π ´ α|
| sinα| .
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Thus, we obtain

||kpr, uq||L1pG,dνq “ 1

4π

ż 8

0

ż 8

´8
r| sinα|

pr2 ´ 2r cosα ` 1 ` u2q 3
2

du
dr

r

“ 1

2π

ż 8

0

r| sinα|
r2 ´ 2r cosα ` 1

dr

r

“ | sinα|
2π

¨ |π ´ α|
| sinα|

“ |π ´ α|
2π

ă 1

2
.

�

Remark 4.3. If f P L2pG, dνq, then by Generalized Young’s inequality ([22]), we
obtain the following estimate (see [47]):

||f ˚ k||L2pG,dνq ď ||f ||L2pG,dνq ||k||L1pG,dνq ă 1

2
||f ||L2pG,dνq,

which implies that the operator ˘1
2 ` rK is invertible on L2pG, dνq.

Denote by Mh the multiplication operator by h. By Equation (4), we see that

pMraW
rKMr´a

W
fqpr, uq

“ ra

4π

ż 8

0

ż 8

´8
´r sinα

rr2 ´ 2rx cosα ` x2 ` pu ´ zq2s 3
2

x´afpx, zqdz dx

“ ra

4π

ż 8

0

ż 8

´8
´r sinα

rr2 ´ 2rp r
s q cosα ` p r

s q2 ` p rt
s q2s 3

2

ˆ
r2

s3

˙ ´r

s

¯´a

f

ˆ
r

s
, u ´ rt

s

˙
dt ds

“ 1

4π

ż 8

0

ż 8

´8
´r sinα

p r
s q3ps2 ´ 2s cosα ` 1 ` t2q 3

2

ˆ
r2

s3

˙ ˆ
1

s

˙´a

f

ˆ
r

s
, u ´ rt

s

˙
dt ds

“ 1

4π

ż 8

0

ż 8

´8
´sa`1 sinα

ps2 ´ 2s cosα ` 1 ` t2q 3
2

f

ˆ
r

s
, u ´ rt

s

˙
dt

ds

s
.

Hence the operator Mra
rKMr´a has convolution kernel

kapr, uq :“ ´ 1

4π

ra`1 sinα

pr2 ´ 2r cosα ` 1 ` u2q 3
2

.

Next we want to calculate the L1-norm of kapr, uq. By Equation (6), we haveż 8

´8
|kapr, uq|dt “ 1

4π

ż 8

´8
ra`1| sinα|

pr2 ´ 2r cosα ` 1 ` u2q 3
2

du

“ 1

2π

ra`1| sinα|
r2 ´ 2r cosα ` 1

.

Lemma 4.4. For a P p´1, 1q and α P p0, 2πq, we haveż 8

0

ra

r2 ´ 2r cosα ` 1
ds “ π

sin aπ
¨ sin apα ´ πq
sinpα ´ πq .
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Proof. This is a consequence of the Residual Theorem in complex analysis. We
sketch the calculation as follows. Let

fpzq “ za

z2 ´ 2z cos z ` 1
“ ea log z

pz ´ eαiqpz ´ ep2π´αqiq .

It is clear that fpzq has two simple poles: eαi and ep2π´αqi. So we have

2πi
´
Respf, eαiq ` Respf, ep2π´αqiq

¯
“ 2πi

´ eaαi

eαi ´ e´αi
` eap2π´αqi

ep2π´αqi ´ eαi

¯
“ 2πi

´ eaαi

2i sinα
` eap2π´αqi

´2i sinα

¯
“ π

sinα

´
eaαi ´ eap2π´αqi

¯
“ π

sinα

´
´ 2 sin aπ sin apα ´ πq ` i 2 cos aπ sin apα ´ πq

¯
.

Moreover, we need the following fact:

1

1 ´ e2aπi
“ 1

2
` i

cos aπ

2 sin aπ
.

Because the numerator of fpzq contains log function, by choosing an appropriate
contour, we obtainż 8

0

sa

s2 ´ 2s cosα ` 1
ds

“ Re
´ 1

1 ´ e2aπi
2πi

´
Respf, eαiq ` Respf, ep2π´αqiq

¯¯
“ π

sinα

´
´ sin aπ sin apα ´ πq ´ cos aπ sin apα ´ πq cos aπ

sin aπ

¯
“ π

sinα

sin apπ ´ αq
sin aπ

“ π

sin aπ

sin apα ´ πq
sinpα ´ πq .

The proof is now complete. �

Proposition 4.5. For a P p´1, 1q and α P p0, 2πq, we have

||kapr, uq||L1pG,dνq “ 1

2

| sin apπ ´ αq|
| sin aπ| .

In particular, if a “ 0, then

||k0pr, uq||L1pG,dνq “ ||kpr, uq||L1pG,dνq “ |π ´ α|
2π

.
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Proof. By the preceding Lemma 4.4, we calculate

||kapr, uq||L1pG,dνq “ 1

4π

ż 8

0

ż 8

´8
ra`1| sinα|

pr2 ´ 2r cosα ` 1 ` u2q 3
2

du
dr

r

“ 1

2π

ż 8

0

ra`1| sinα|
r2 ´ 2r cosα ` 1

dr

r

“ | sinα|
2π

ż 8

0

ra

r2 ´ 2r cosα ` 1
dr

“ 1

2

| sin apπ ´ αq|
| sin aπ| .

This completes the proof. �

Recall that HspG, dνq be the Sobolev spaces defined by the right-invariant mea-

sure ν. Therefore we have the following mapping property for the operator rKa.

Proposition 4.6. For all m, l P Z and a P p´1, 1q, the convolution operator rKa

defines a continuous map rKa : HmpG, dνq Ñ H lpG, dνq.
Proof. It is clear that

HmpG, dνq “ tf | prBrqi Bj
uf P L2pG, dνq, i ` j ď mu.

It is enough to show that rKa maps L2pG, dνq to HmpG, dνq, m ą 0.

By Proposition 4.5, the convolution kernel of rKa

kapr, uq “ ´ 1

4π

ra`1 sinα

pr2 ´ 2r cosα ` 1 ` u2q 3
2

is smooth on G and its L1-norm is finite for a P p´1, 1q. Therefore, it suffices to
show that

prBrqi Bi
u ka P L1pG, dνq.

In fact, in r-direction, after taking derivatives (with respect to rBr), the decay
remains exponential (making the change of variables r “ et if necessary), and
the derivative in u-direction improves the integrability of ka at infinity. Hence we
complete the proof. �

Let us define

Ξ :“ ta :
| sin apπ ´ αq|

| sin aπ| ă 1u.
Clearly, we have p´ 1

2 ,
1
2 q Ă Ξ. To make the L1-norm of kapr, uq less than 1

2 , it is
necessary to assume that a P Ξ. Recall the identifications ([3, 8])

Km
1 pGq – HmpG, dνq “ HmpG, du pdr{rqq,

and

rtKm
1 pGq – Km

1`tpGq.
We summarize the above results in the following theorem.
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Theorem 4.7. Let G “ R� R
` be as above, m P Z, and a P Ξ. The operators

1

2
˘ rK : Km

1`apGq Ñ Km
1`apGq

are both isomorphisms.

Proof. Under the assumption of a, we have ||kapr, uq||L1pG,dνq ă 1
2 . Then we con-

clude that 1
2 ˘ rK are invertible on K0

1`apGq. Therefore, it suffices to show that the

inverse of 1
2 ˘ rK maps Km

1`apGq to itself.

For simplicity, let R :“ 2 rK. By Proposition 4.6, we have the following sequence

Km
1`apGq RÝÝÝÝÑ K0

1`apGq pI˘Rq´1ÝÝÝÝÝÝÑ K0
1`apGq RÝÝÝÝÑ Kl

1`apGq,
for all m, l P Z. As a consequence, we get

¯R ` R pI ˘ Rq´1 R : Km
1`apGq Ñ Kl

1`apGq.
From the equality

pI ˘ Rq´1 “ I ¯ R ` R pI ˘ Rq´1 R,

we obtain an inverse of I ˘R, hence an inverse of 1
2 ˘ rK on Km

1`apGq for all m P Z,
which completes the proof. �

For the double layer potential operator K on W, we have the following commu-
tative diagram

(7)

Km
1 pBWq KÝÝÝÝÑ Km

1 pBWqİ§§Mr´a

§§đMra

Km
1`apBWq KaÝÝÝÝÑ Km

1`apBWq,

where Ka “ MraKMr´a “
˜

0 Mra
rKMr´a

Mra
rKMr´a 0

¸
, i.e., the 2 ˆ 2 matrix

with diagonal zero and off-diagonal Mra
rKMr´a .

Theorem 4.8. For all m P Z and a P Ξ, the operators

1

2
˘ Ka “

˜
1
2 ˘Mra

rKMr´a

˘Mra
rKMr´a

1
2

¸
: Km

1 pBWq Ñ Km
1 pBWq

are isomorphisms. In other words, the operators

1

2
˘ K “

˜
1
2 ˘ rK

˘ rK 1
2

¸
: Km

1`apBWq Ñ Km
1`apBWq

are isomorphisms.

Proof. The invertibility of the matrix 1
2 ˘ K on Km

1`apBWq is equivalent to the

invertibility of 1
4 ´ rK2 on Km

1`apGq. By Theorem 4.7, the result follows. �
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5. Relations to Lie groupoids

We are in position to identify the double layer potential operator K with a
smooth invariant family of operators on some Lie groupoid.

Then we compactify the space G in the following way: first of all, we define

M :“
"ˆ

1 0
z x

˙
| z P R, x P r0,8q

* ď
t8u

Then we define G :“ M �G. The advantage of this compactification is that the
algebraic operation of product of two matrices is preserved and the unit space M
of the groupoid G is compact.

Let us make G more explicit. The interior of the space M of units of G is

M0 “
"ˆ

1 0
u r

˙
| u P R, r P p0,8q

*
,

which is an open dense invariant subset of M . Moreover, we have

BM “ tpz, xq | z P R, x “ 0u
ď

t8u,
and

G|M0
“ G�G – M0 ˆ M0,

where M0 ˆ M0 is the pair groupoid of M0.
For any pz, 0q P BM , d-fiber Gpz,0q is diffeomorphic to G. More precisely, if

z P p´8,8q, then
Gpz,0q “ d´1

ˆ
1 0
z 0

˙
“

"ˆ
1 0
u r

˙
| u P R, r P R

`
*

“ G,

and

Gt8u “ G.

From Section 4, we can think of rK “ K12 “ K21 as right convolution operators
on G. Hence we can construct an invariant family P “ pPmq, m P M0, of (pseu-
dodifferential) operators. Since we can extend kernels of Pm to the boundary of
M , we obtain a family of (pseudodifferential) operator on G, namely, P “ pPmq,
m P M . In this way, we can identify P “ pPmq with rK. Therefore, we obtain the
following theorem:

Proposition 5.1. If a P p´1, 1q, then ka P L1pGq. As a result, we have

Mra
rKMr´a P C˚pGq.

Proof. Because Mra
rKMr´a is a smooth convolution operator on G, it belongs to

the (reduced) group C˚-algebra C˚pGq. Since the unit space M of G is compact,
we have

Mra
rKMr´a P C˚pGq Ă C˚pGq

with the inclusion induced by C Ñ CpMq.
�

Recall that Ka :“ MraKMr´a “
˜

0 Mra
rKMr´a

Mra
rKMr´a 0

¸
. We have the

following theorem:

Theorem 5.2. For a P p´1, 1q, Ka P C˚pGq b M2pCq;
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Proof. This result follows from Proposition 5.1.
�

Remark 5.3. If Ω is “a domain with wedge singularities”, we can associate to Ω
certain Lie groupoid in the spirit of [4, 13, 45, 46], in particular, in the framework of
Fredholm groupoids [11, 12]. More precisely, denote Wi the i-th wedge singularity
and let

Mi :“
"ˆ

1 0
z x

˙
| z P R, x P r0,8q

*
.

Near each wedge singularity Wi, we form Ji “ Mi � G. It is clear that G is an
invariant subset of Ji and Ji|G – G ˆ G. Denote by Ω̊ the interior of Ω. Then

we glue the pair groupoid Ω̊ ˆ Ω̊ with Ji ˆ M2pCq for each Wi. In this way, we
obtain a Lie groupoid and denote it by H. Indeed, H is a Fredholm groupoid (see
[11] for more details). Then we are able to show that the double layer potential
operator KΩ associated to Ω and the Laplace operator belongs to the C˚-algebra
of H. Moreover, we could obtain that the operators 1

2 ˘KΩ are Fredholm between
appropriate weighted Sololev spaces on the boundary BΩ by some theorems in
[11, 31].
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