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DOUBLE LAYER POTENTIALS ON THREE-DIMENSIONAL
WEDGES AND PSEUDODIFFERENTIAL OPERATORS ON LIE
GROUPOIDS

YU QIAO

ABSTRACT. Let W be a three-dimensional wedge, and K be the double layer
potential operator associated to W and the Laplacian. We show that % + K
are isomorphisms between suitable weighted Sobolev spaces, which implies a
solvability result in weighted Sobolev spaces for the Dirichlet problem on W.
Furthermore, we show that the double layer potential operator K is an element
in C*(G) ® M2(C), where G is the action (transformation) groupoid M x G,
. 1 Lo . . .
with G = {( a 2 ) caeR,beRT, }, which is a Lie group, and M is a kind
of compactification of G. This result can be used to prove the Fredholmness
of L + Ko, where Q is “a domain with edge singularities” and K¢ the double

2
layer potential operator associated to the Laplacian and 2.
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1. INTRODUCTION

Potential theory can be dated back to the works of Lagrange, Laplace, Poisson,
Gauss, and others [38], and plays a fundamental role in physics. Many works are
dedicated to the method of layer potentials, such as Courant and Hilbert [16],
Folland [22], Hsiao and Wendland [24], Kress [29], McLean [38], and Taylor [57].
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2 YU QIAO

These results give a complete account of the classical theory on smooth bounded
domains.

Let us give a quick review of the method of double layer potentials. Suppose 2 <
R"™ is a (regular) open bounded domain. Consider the interior Dirichlet boundary

value problem
(1) Au=0 in
u|0Q = ¢ on aQa

and the exterior Dirichlet problem

Au=0 in Q°
(2) { ulpgo =¢ on 09,

where Q¢ denotes the complement of Q, i.e., Q¢ = R™\(.
For ¢ € C(052), define the double layer potential

ue) = —on [ DD )an), (werM0D)
oo T —yl

where v(y) is the exterior unit normal to a point y € 092 and w, is the area of
the unit sphere in R™. Let u_(z) and u4 (z) denote the limits of u(z) as z — = €
0 nontangentially from z € Q and z € R™\Q, respectively. The classical results
[15, 22, 57] on double layer potentials state that for (a.e.) x € 0£2, we have

(1) u_(z) = L ¢(2) + K¢(x),i.e.,u = (3 + K)i;

(2) uy(z) = —39¢(x) + K(a),i.e.,uy = (—5 + K), where

Ki(a) = L bl )bl)do ()

(z—y)-v(y)

|z —y[»

Hence, the interior and exterior Dirichlet problems are reduced to solving boundary
integral equations (1/2 + K)u = ¢ and (—1/2 + K)i = ¢, respectively, where ¢ is
the given function, and % is the unknown function, both on 0.

In [22, 57], it is shown that if the domain Q = R™ has C? boundary S, then the
double layer potential operator K is compact on L?(0€)). Hence operators 1/2 + K
are Fredholm of index zero. Therefore, the solvability of the interior and exterior
Dirichlet problems is equivalent to injectivity or surjectivity of 1/2+ K. The paper
[19] deals with the case of C'-domains.

By contrast, if the boundary 052 is not C!, the operator K may not be compact
any more (see [18, 22, 27, 29, 32, 58]). However, we can still expect that 1/2 + K
are Fredholm operators on appropriate function spaces on the boundary. The case
of Lipschitz domains is by far the most studied among the class of non-smooth
domains, hence is well understood. See Verchota [58] for related results on Lipschitz
domains. Costabel’s paper [14] gives a good introduction to the method of layer
potentials via more elementary methods.

with k(z,y) = —wy,

We are concerned with boundary value problems on domains with singulari-
ties. There are a plenty of works and several different methods dealing with such
problems.

First of all, boundary value problems on domains with conical points were ex-
tensively studied by many authors. We would like to mention in this aspect the
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work of Kondratiev [27], Kapanadze and Schulze [26], Li, Mazzucato and Nistor
[33], Mazzeo and Melrose [37] and Melrose [39], and Schrohe and Schulze [49, 50].

Meanwhile, boundary value problems on domains with edge singularities also
attract a lot of attention. Ammann, Ionescu, and Nistor use Lie manifold to study
Sobolev spaces, elliptic regularity, and mapping properties of pseudodifferential
operators on polyhedral domains of R? in [3]. Furthermore, we mention the work
of Fabes, Jodeit, and Lewis [18], the paper of Mazzeo [36], and the works of Schulze
with his collaborators [20, 23, 25, 51, 52, 53, 54]. Schulze and his collaborators
have developed an extensive theory of boundary value problems in the framework
of Boutet de Monvel pseudodifferential calculus [9]. (A study of the layer potentials
complements this theory.) Most of these works are devoted to constructing suitable
algebras of pseudodifferential operators on manifolds with singularities. See also
the papers [1, 6, 7, 17] using groupoids to construct algebras of pseudodifferential
operators on singular spaces, and [4, 44, 55] for some related constructions.

In addition, many works are dedicated to the study of other analysis problems on
manifolds with edge singularities. For instance, Albin and Gell-Redman consider
index theory of Dirac operators on incomplete edge spaces [2]. Krainer and Men-
doza construct a theory of elliptic boundary value problems for wedge operators on
general manifolds with edges [28].

Our long term interest lies in the method of layer potentials on domains with
singularities. From the pseudodifferential operator point of view, if the boundary
092 is smooth, then the double layer potential operator K is a pseudodifferential
operator of order —1 on the boundary, i.e., K € ¥=1(0€2) [57]. If the boundary has
singularities, there is a natural question to ask:

Does there exist a canonical way to construct a pseudodifferential operator
algebra on the boundary such that
(a) the double layer potential operator K belongs to this pseudodifferential
operator algebra;
(b) the Fredholmness of 1/2+ K (on certain function spaces on the bound-
ary) can be proved in the context of this pseudodifferential operator
algebra?

The survey [35] stresses the importance of understanding the algebra of pseu-
dodifferential operators on spaces with singularities. For the case where Q2 is a
simply connected polygon on R?, Lewis and Parenti constructed a pseudodifferen-
tial algebra on the boundary to settle the invertibility of 1/2 + K on the spaces
LP(0Q) [32]. In the papers [13, 45, 46], motivated by the study of the method of
layer potentials on domains with conical points, the author and collaborators have
constructed pseudodifferential algebras on the boundary, and investigated the in-
vertibility of operators 1/2 + K on weighted Sobolev spaces on the boundary, which
implies a solvability result in weighted Sobolev spaces for the interior and exterior
Dirichlet problems on 2. It is possible to extend our method to solve interior and
exterior Neumann problems.

In general, Bacuta, Mazzucato, Nistor, and Zikatanov presented a general desin-
gularization procedure for polyhedral domains in [8]. The construction of the desin-
gularization of a polyhedron gives us so-called “Lie manifold with boundary”. If
we confine ourselves on the boundary of a polyhedral domain, we obtain “Lie man-
ifold” (or Lie algebroid). Then integrating this Lie manifold (or Lie algebroid)
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leads to a Lie groupoid. (Hence, the entire construction is motivated by boundary
value problems and comes from the nature of the singularities.) By the works of
Nistor-Weinstein-Xu [44] and Monthubert-Pierrot [43], there is a pseudodifferential
calculus on a Lie groupoid. Then we can identify the double layer potential opera-
tor K (associated to a singular domain) with a pseudodifferential operator on this
Lie groupoid. Finally, combining some general results of pseudodifferential calculus
on Lie groupoids and groupoid C*-algebras, we are able to show that 1/2 + K are
Fredholm operators on suitable weighted Sobolev spaces on the boundary, even the
invertibility of 1/2 + K.

To be able to handle double layer potentials on “manifolds with edge singulari-
ties”, we find it necessary to investigate the behavior of the double layer potential
operator K near each edge singularity, and to examine the analytic properties of
1/2+ K on suitable function spaces. It is exactly the purpose of this paper to study
the case of three-dimensional wedges and to prove invertibility results.

In the present paper, we focus on the double layer potential operator K asso-

ciated with the Laplacian on a three-dimensional wedge. Denote such a wedge by
W, i.e.,

(3) W= {(rcosf,rsinf,z):r>0,0<6 < «, z€ R},

where 0 < « < 27, o # 7. The double layer potential operator K associated to W
and the Laplace operator is of the form

K_<9 K>,
E 0

where K is a convolution operator on the Lie group

Gi~{(, V) [uerr=o}.

which is not unimodular.

Denote by K7 (0W) the m-th weighted Sobolev space with weight function r and
index a € R on W (see Section 2 for definitions). Denote by M.« the multiplication
operator by r*. Then the operators IN(Q = Mya IN(MT_G, are still (bounded linear)
convolution operators on the Lie group G for an appropriate range of a, so the
operators K, := M, KM,-. act on KI'(0W) for a suitable range of a. More
explicitly, define

[sina(m — a)|

E:={aeR: < 1}

| sin ar|
We have the following theorem.
Theorem 1.1. For allm e Z and a € =, the operators

1
K i

DN | =

AR m
+K:< 2 ) Ta(@W) = KT, (0W)

are isomorphisms.

Applying the general procedure discussed above to the special case W, we finally
get a Lie groupoid over the (desingularized) boundary ¢W. Our general strategy
is that certain boundary convolution integral operators (such as K,) are in fact in
the groupoid C*-algebra. Furthermore, from this fact and among other things, we
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will be able to show that these integral operators are Fredholm between suitable
weighted Sobolev spaces for domains with edge singularities.

As an application of the above discussion, let M be a sort of compactification
of G such that G acts on M. Then we can form the action groupoid G := M x G.
Thus, we obtain the following theorem.

Theorem 1.2. Forae (—1,1), K, € C*(G) ® M>(C);

The paper is structured in the following way. Section 2 recalls desingularization
procedures and definitions of weighted Sobolev spaces on W and dW. Then in Sec-
tion 3, we review some basic knowledge of Lie groupoids, define pseudo-differential
operators on a Lie groupoid and, from this, we define the C*-algebra of a Lie
groupoid. In Section 4, we investigate explicitly the properties of the double layer
potential operator K associated to VW and the Laplace operator. Lastly, Section
5 investigates the connection between the operator K with a pseudo-differential
operator algebra on some Lie groupoid.

Acknowledgments We would like to thank Victor Nistor and Xiang Tang for
helpful comments and enlightening discussions, and the anonymous referee for pro-
viding a simple proof of Theorem 4.7, and suggestions which really improve the
readability of the paper.

2. DESINGULARIZATION AND WEIGHTED SOBOLEV SPACES ON
THREE-DIMENSIONAL WEDGES

Consider a three-dimensional wedge
W= {(rcosf,rsinf,z): r>0,0<6 < a, z€ R},

where 0 < o < 27, a # 7, and = r cos # and y = rsin  define the usual cylindrical
coordinates (r, 6, z), with (r,0,z) € [0,00) x [0,27) x R. Following the work in [8,
Example 2.10], we see that the manifold of generalized cylindrical coordinates is,
in this case, just the domain of the cylindrical coordinates on W:

E(W) =[0,0] x [0,a] x R.
The desingularization map is k(r, 0, z) = (rsinf, r cos 6, z) and the structural Lie
algebra V(W) of vector fields of S(W) is
ar(r,0,2)ro. + ag(r,0,2)0p + a.(r,0,2)ro.,
where a,, ag and a, are smooth functions on X(W). Note that the vector fields in
V(W) may not extend to the closure W.

Let m € Z, and o € Z7} be a multi-index. We define the m-th Sobolev space
on W with weight r and index a by

KiOV) = {ue L, (W, dx) | r1*1=*0%u e L*(W, dx), for all |a| < m}.
The norm on K™(W) is Hu”IQc;n(W) 1= Dlaj<m ||r|a|’a6°‘u\|%2(w,dw). By Theorem
5.6 in [8], this norm is equivalent to
lula =25 I () ulEe .o
laf<m

where (r0)* = (rdy)* (rdz)*2(rds)*s. Clearly, we have that r'K"(W) = K7, (V).
In general, this isomorphism may not be an isometry.
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Proposition 2.1. We have, for all m € Z,

IC%”(W) ~ H™(W,g), and K7'(0W)=x= H™(OW,g),
where the metric g = r~2g. with g. the standard Euclidean metric.

Proof. The result essentially follows from Proposition 5.7 in [8]. Here are the details
for the benefit of the reader. We only deal with the first case.

Let us consider the vector fields X = rd,, Y = 0y, Z = r0,. Then X, Y, Z
form an orthonormal basis (at every point of W) with respect to the metric g.
Moreover, their Lie brackets are bounded, their Levi-Civita covariant derivatives
are also bounded, and X, Y, Z are bounded vector fields (again with respect to
the metric g!). We thus obtain

H™W,g) = {ue LL, W, 9)| XY Z*ue L>(W,g),i +j+ k <m}
={ue L}, (W,g)| r'titroiolotue L2 W, g),i+ j + k < m}
={ue L}, W, gc) | r'ITF320L 00 0ku e L*(W, ge), i+ j + k < m}
= Kg(W)

where we have used the expressions of d, and 0, in polar coordinates, as well
as the fact that X, Y, Z are bounded with respect to the metric g. The fact
that the Lie brackets of the vector fields X, Y, Z are bounded and that their
covariant (Levi-Civita) connection are bounded, was used in the first equality to
express H™(W,g) in terms of derivatives with respect to X, Y, and Z. Also,
for the last equalities, we used the key observation that the volume element on
(W, g) is r—3dx, where dx is the Euclidean volume element. In particular, we have
feL?W,g.) < fer 32L2(W,g). See [5] for a comprehensive discussion of these
issues in the framework of manifolds with bounded geometry. O

3. PSEUDODIFFERENTIAL OPERATORS ON LIE GROUPOIDS

3.1. Lie groupoids and Lie algebroids. In this subsection, we review some basic
facts on Lie groupoids. We begin with the definition of groupoids.

Definition 3.1. A groupoid is a small category G in which each arrow is invertible.

Let us make this definition more precise [10, 31, 40, 48]. A groupoid G consists
of two sets, a set of units Gy and a set of arrows G;. We usually denote the space
of units of G by M := G, identify G with Gy, and use the notation G = M. Each
object of G can be identified with an arrow of G, thus we have an injective map
u: M — G, where u(x) is the identity arrow of an object z. For each g € G, we
have tow maps: d, 7 : G — M. The set of composable pairs is defined by

G :={(g,h) € G x G|d(g) = r(h)}.

The multiplication p : G — G is defined by (g, h) = gh. The multiplication is
associative. The inverse of an arrow is denoted by g~! = 1(g). The five structural
maps fit into the following diagram (in [40])

14

GO Mg tog—ry_t.g,
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and satisfy the following properties:

(1) d(hg) = d(g), r(hg) = r(h),

(2) k(hg) = (kh)g

(3) u(r(g))g = g = gu(d(g)), and

4) dlg™") =r(9). r(¢7") = d(g), 9~'g = u(d(g)), and gg~' = u(r(9g))

for any k,h,g € G with d(k) = r(h) and d(h) = r(g). The following definition is
taken from [31].

Definition 3.2. A Lie groupoid is a groupoid
g = (g07 g17 d7 T, u, L)

such that M := Gy and G; are smooth manifolds, possibly with corners, with M
Hausdorff, the structural maps d,r, i, u, and ¢ are smooth and the domain map d
is a submersion (of manifolds with corners).

Remark 3.3. In general, the space G; may not be Hausdorff. However, since d is a
submersion, it follows that each fiber G, is a smooth manifold without corners [31],
hence it is Hausdorff. Note that the groupoids that we construct in Section 5 will
be Hausdorff.

We now recall the definition of a Lie algebroid [31].

Definition 3.4. A Lie algebroid A over a manifold M is a vector bundle A over
M, together with a Lie algebra structure on the space I'(A) of the smooth sections
of A and a bundle map p: A — T'M, extended to a map between sections of theses
bundles, such that

(1) p([X,Y]) = [p(X), p(Y)];

2) [X, /Y] = fIX, Y]+ (p(X)[)Y,
for all smooth sections X and Y of A and any smooth function f on M. The map
p is called the anchor. Usually we shall denote by (A4, p) such a Lie algebroid.

Consider a Lie groupoid G with units M. We can associate a Lie algebroid A(G)
to G as follows. (For more details, one can read [34].) The d-vertical subbundle
of TG for d : G — M is denoted by T%(G) and called simply the d-vertical bundle
for G. It is an involutive distribution on G whose leaves are the components of the
d-fibers of G. (Here involutive distribution means that 7%(G) is closed under the
Lie bracket, i.e. if X,Y € X(G) are sections of T(G), then the vector field [X,Y]
is also a section 7%(G).) Hence we obtain

TG = ker dy = U TG, < TG.
xzeM
The Lie algebroid of G, denoted by A(G), is defined to be T%(G)|s, the restriction
of the d-vertical tangent bundle to the set of units M. In this case, we say that G
integrates A(G).

Remark 3.5. In general, the desingularization process (for the boundary) in [8] gives
rise to a Lie algebroid. Then integration of this Lie algebroid leads to a Lie groupoid.
In particular, the desingularization of the boundary of a three-dimensional wedge
in Section 2, give us the Lie algebra generated by the vector fields ror, dy, r0,, and
smooth functions on the boundary, which is in fact the smooth sections of a Lie
algebroid. By integrating this Lie algebroid, we obtain a Lie groupoid.
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3.2. Pseudodifferential operators and groupoid C*-algebras. We recall here
the construction of the space of pseudodifferential operators associated to a Lie
groupoid G = M [30, 31, 42, 41, 43, 44].

Let P = (P,), v € M be a smooth family of pseudodifferential operators acting
on G, := d~!(x). We say that P is right invariant if P, Uy = UyPy ), for all
g € G, where

UQ : Coo(gd(g)) - Coo(gr(g))’ (Ugf)(g/) = f(g/g)'

Let k, be the distributional kernel of P,, x € M. Note that the support of the P
supp(P) := | supp(kz) = {(9,9), d(9) = d(¢)} =G x G
zeM

since supp(kz) < Gu x G, Let ui(g’,g) := ¢’g~ L. The family P = (P,) is called
uniformly supported if its reduced support supp,,(P) := p1(supp(P)) is a compact
subset of G.

Definition 3.6. The space ¥ (G) of pseudodifferential operators of order m on
a Lie groupoid G with units M consists of smooth families of pseudodifferential
operators P = (P,), x € M, with P, € U™ (G, ), which are uniformly supported and
right invariant.

We also denote ¥*(G) :=J,,cg ¥ (G) and U~*(G) :=,,cg Y"(G). We then
have a representation 7 of U*(G) on CX(M) (or on C*(M), on L*(M), or on
Sobolev spaces), called vector representation uniquely determined by the equation

(w(P)f)or:=P(for),
where f e C*(M) and P = (P,) € ¥"(G).
Recall that k, denotes the distributional kernel of P,., x € M. Then the formula

kp(g) := kag)(9,d(g))

defines a distribution on the groupoid G, with suppk, = suppM(P) compact, smooth
outside M and given by an oscillatory integral on a neighborhood of M. If P €
U~%(G), then P identifies with the convolution operator with kernel a smooth,
compactly supported function and U~*(G) identifies with the convolution algebra
CX(G). In particular, we can define

Pl = sup { [ ket N disto). [ Ikelo)lducto) }

For each 2 € M, there is an interesting representation of ¥*(G), the regular
representation m, on CP(G,), defined by m,(P) = P,. It is clear that if P €
L a(%)

I (P)]L2(g.) < [PlL1(g)-
The reduced C* -norm of P is defined by
|Pllr = sup 7o (P)| = sup | Py,
xeM zeM
and the full norm of P is defined by

| Pl = sup [p(P)],
p

where p varies over all bounded representations of W°(G) satisfying
[o(P) < PlLig) forall PeWw™(G).



DOUBLE LAYER POTENTIALS ON 3-DIMENSIONAL WEDGES AND LIE GROUPOIDS 9

Definition 3.7. Let G be a Lie groupoid and ¥*(G) be as above. We define C*(G)
(respectively, C*(G)) to be the completion of U~*(G) in the norm |- | (respectively,
[ 0r). I - |- =], that is, if C*(G) = C*(G), we call G amenable.

We give some examples of Lie groupoids below.

Ezample 3.8 (Manifolds with corners). A manifold (with corners) M may be viewed
as a Lie groupoid, by taking both the object and morphism sets to be M, and the
domain and range maps to be the identity map M — M. Then we have A(M) = 0,
the zero bundle on M, and ¥*(M) = CL(M).

Ezample 3.9 (Lie groups). Every Lie group G can be regarded as a Lie groupoid
G = G with only one unit M = {e}, the unit of G. In this case, the Lie algebroid
A(Q) is the Lie algebra of G, and U™ (G) is the algebra of properly supported and
invariant pseudodifferential operators on G.

Ezample 3.10 (Pair groupoid). Let M be a smooth manifold. Let
g = M X M go = M7

with structure maps d(mi,ms) = ma, r(mi,me) = my, (my,ma)(me,ms) =
(m1,m3), u(m) = (m,m), and ¢(mq,ma) = (ma,m1). Then G is a Lie groupoid,
called the pair groupoid. We have A(G) = TM. According to the definition, a pseu-
dodifferential operator P belongs to ¥"*(G) if and only if the family P = (Py)zens
is constant. Hence we obtain W™(G) = Wit (M). Also, an important result is
that C*(G) >~ K, the ideal of compact operators, the isomorphism being given by
the vector representation or by any of the regular representations (together with
G, = M). If M has dimension 0, say, it is a discrete set with k elements, then
C*(G) = My(C) and the convolution product becomes matrix multiplication.

Ezample 3.11 (The fibered pair groupoid). Let f : M — N be a submersion of
manifolds (with corners). The fiber pair groupoid is defined as

G:=M xn M ={(my,m2)| f(m1) = f(ma), m1,ma € M},

with the operation induced from the pair groupoid M x M. The space of units
is M. The Lie algebroid A(G) is the kernel of fyx : TM — TN, i.e., the vertical
tangent bundle to the submersion f : M — N, and U™ (G) consists of families of
pseudodifferential operators along the fibers M — N so that their reduced kernel
are compactly supported.

Ezample 3.12 (Transformation (or Action) groupoid). Suppose that a Lie group G
acts on the smooth manifold M from the right. The transformation groupoid over
M x {e} =~ M, denoted by M x G, is the set M x G with structure maps d(m, g) =
(meg,€),r(m,g) = (m,e), (m, g)(m-g,h) = (m, gh), u(m, e) = (m,e), and 1(m, g) =
(m-g,g~"'). For more on the action groupoid, one may see [34, 40, 48].

Ezample 3.13 (Vector bundles). Let E be the total space of a smooth vector bundle
over a manifold M, then we can view E as a groupoid as follows: the domain and
range maps are both equal to the projection from E to the base space M, and
composition of morphisms is addition in the fibers of E. We are therefore viewing
V' as a smooth family of additive Lie groups over M. In this way, E is considered
as a Lie groupoid. This is a particular case of bundles of Lie groups in the next
example.
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Ezample 3.14 (Bundle of Lie groups). If G — M is a bundle of Lie groups, i.e,
d = r (hence each fiber is a Lie group), then U™ (G) consists of smooth families

of invariant and properly supported pseudodifferential operators on the fibers of
g— M.

4. DOUBLE LAYER POTENTIALS ON THREE-DIMENSIONAL WEDGES
In this section, we study explicitly the method of double layer potentials for
solving the Dirichlet problem on the domain

W = {(rcosf,rsinf,z): r>0,0<6 <a, z€R},

where a € (0,27) and « # 7.
We denote the boundary of W by dWW. Then we have

oW = {(z,0,z):2>0,zeR} U{(rsina,rcosa,z) cr>0,zeR}
= B]_ UBQ.
We agree from now on that x,7,s > 0 and u, z,t € R.

Suppose that f1 € C.(B1) and f2 € C.(Bs). So the double layer potential operator
K can be represented as a 2 x 2 matrix acting on C.(By) ® C.(Bs):

K1 = Ko =0,
o0

—7rsina

(Ko1f1)(r,u) =

1
yr- fi(z, z)dzdx
1 —rsina

o] o0
4 z,z)dzdx.
47TJ0 J‘—w 7’2f2rzcosa+x2+(u—z)2]%fl( )

L —o [(reosa —2)? + (rsine)? + (u—2)2]2
[

I e —rsina
(Hrzf)le, 0)s EJ;) —w [(reosa —2)2 + (rsina)? + (u— 2)2]2 falr, 2)dzdr

1 0 0 _ :
= — J J rema = f1(x, z)dzdr.
am Jo Jowo [r?2 — 2rzcosa + 22 + (u — 2)?]2

Let us consider Ksq f1. Making the changes of variables

v

gives

a(x,z) _ —T/52 0 _ ﬁ
(tr)/s* —r/s s3°
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We can write

(4) K21f1)(7“au

Q0
- Jo —oo [r2 = 2rzcosa + 22 + (u— 2)2]3

0 o e 2
_ j J rsina i (r >f1 (r u—-) it O
0 Jooo [r2—2r(L)cosa+ (£)2 + (2£)?]2 5 5
0 o o 2
_ J J rsina i ( > < u—~> -5
0 w (£)3(s? —2scosa + 1 +12)2 s3

—ssina r Tt ds
- (=S
dr Jo J_oo (82 —2scosa + 1 +t2)2 s’ s s

Making similar changes of variables, we can rewrite

1 (*[* —ssina x xt ds
Ko fo(z,u) = EL f ( )%fg <,u— s) dt—.
—00

—7rsina

fi(z, z)dzdx

ﬁ

s2 —2scosa+ 1+ t2

Now, let us consider the group G of 2 x 2 matrices

(5) G—{(i 2)‘ u€eR, 7~>0}.

Throughout the rest of the paper, we always use G to denote this group.
Then we have

G ) I o | G B PR SAA

A right-invariant Haar measure on G is du (dr/r) and a left-variant Haar measure
is du (dr/r?). So the group G is not unimodular. We need harmonic analysis on
this group. Let us recall that the group G can be identified with the “ax + b group”
of transformations of the form (called affine transformations)

xr— ar+b
on the real line. The “ax + b group” can be viewed as a semi-product
R x, R,
where R is additive, R™ is multiplicative, and
ola)b =ab, aeRT, beR.

Therefore, we have G = R x, RT [21, 56]. The group G = R x, R" is amenable
since it is solvable. In fact, let G(©) = G and denote by G the commutator
subgroup of GG~V so we have

G — { (i (1)> :zeR},
{3 )

These imply that G is solvable [21].

and
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Suppose g, f € C.(G). The convolution of f and g (with respect to left-invariant
Haar measure dy = dt(ds/s?) is defined by (for instance, [21, 47])

ds

K g(r7 u) = JO f_oo f(s,t)g ((s,t)_l(r, u)) 2 dt

_ LOO fi (509 (5,07 () (55) (2) dsat
= LOC Ji@f ((r,w)(s,t)7") gls,t) dtﬁ,

S

where we identify (r,u) with the matrix

Therefore, we can realize Ko7 and Kio as right convolution operators on G on
L?(G,dv), where dv := du (dr/r) is the right invariant Haar measure on G, with
the same convolution kernel:

1 rsin o

k(r,u) = ——
(rw) AT (12 — 2rcosa + 1 + u?)

3
2

More precisely, K1sf1 = f1 = k and Ko fo = fo x k with respect to the right Haar
measure dv = du (dr/r). We summarize what we have obtained in the following
proposition.

Proposition 4.1. Let G be as above and dv = du (dr/r) be the right Haar measure
of G. Then the operators K15 and Koy both identify with right convolution operators
(with respect to dv) with the same convolution kernel

1 rsin o

E(’/‘Q —2rcosa+1+u2)?

k(r,u) = —

For simplicity, let K = Ki9 = Ko.

Lemma 4.2. The kernel k(r,u) of the convolution operator K onG is smooth, and

lm—a] 1

21 2

Proof. It is clear that the kernel k(r,u) is a smooth function on G. We need the
following facts

* 1 1 (2 2
(6) J 7du=ﬁf cosfdf = —

||k(7", u)HLl(G,du) =

—ow (a2 +u?)? _z a?’
and
Jw r dr m—a  |t—aq
o 2 —2scosa+1 r sin(r—a) |sinal’

In particular, if a = 7, then we have

« r dr . T —aq]
- — =1=lim — :
o TP+2r+1r a—7 |sin |
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Thus, we obtain

7| sin dr

k(r,w)||p: vy = f f e

[k (r, )l L2 (G av) (r2—2rcosa+1+u2)z T
7| sin o dr

27 Jo 2 —2rcosa+1 7
|sina| |7 —«f

27 | sin o
[m —a
<=,
2m 2

Remark 4.3. If f € L?>(G,dv), then by Generalized Young’s inequality ([22]), we
obtain the following estimate (see [47]):

1
1f * kllzz6.a) < [1flle2@.am 1Kl L1 @avy < 5 1 fllz26a0),
which implies that the operator +1 + K is invertible on L3(G, dv).

Denote by M), the multiplication operator by h. By Equation (4), we see that
(Myg, KM _af)(r u)

a

= T—f f RS w2 f(x,z)dz dx

am [r2 —2rzcosa + a2 + (u — 2)?]

re —rsina r2 N —a - t
B 7J J 2 —2r( )cosa+( )2 +(rt)2]g <53> (g) f(sau_3> dtds
- J j —rsina 3 (r) <1>af<7a’u_) o
(£)3(s%2 —2scosa +1+12)2 \s s s s

S

- JJ —s"Tsina 3f(T,u”>dtds.
s2—2scosa+1+12)2 s S s

Hence the operator M.« K M,.—« has convolution kernel

o (1) 1 r¢*lsin o
rou) = ——
¢ AT (12 — 2rcosa + 1 4 u2)?

Next we want to calculate the L'-norm of k. (r,u). By Equation (6), we have

o0 1 0 a+1| o3

J o () dt 1 r® T sin o

—0 dm ) (r2 = 2rcosa + 1+ u?)
1 r%*lsinql

2772 — 2rcosa+ 1°

du

3
2

Lemma 4.4. Forac (—1,1) and a € (0,27), we have

J'OC re 7 sina(a—m)

s = — - — .
o T2 —2rcosa+1 sinar  sin(a — )
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Proof. This is a consequence of the Residual Theorem in complex analysis. We
sketch the calculation as follows. Let

pe e log z

f(z) =

22 9 cosz+1 (z — e™)(z — e@T—a)i)’
It is clear that f(z) has two simple poles: e** and e?"=®)?, So we have

2mi (Res(f, e®) + Res(f, e(zﬂ_o‘)i)>

a(2m—a)i
= 2772'( € + ° )

eql _ p—ai e(2m—a)i _ pai

aai a(2mr—a)i
= 27Ti( c + c )

2isina —2isina
T . Y
_ : (eaaz _ ea(27'r OL)’L)
S111 ¢
s

= — (—2sina7r sina(a —7) + i2cosarm sina(oz—w)).
sin «v

Moreover, we need the following fact:

1 1 . cosam

— = 4 )
1 —e2am 9 2sin am

Because the numerator of f(z) contains log function, by choosing an appropriate
contour, we obtain

o] Sa
J- 2 Gecosa 1%
o s°—2scosa+1

= Re (ﬁ 2771‘(]%63(]”7 eai) + Res(f,e(zﬂ_a)i)))

™ _ , .
= - ( —sinar sina(a — w) — cosar sina(a — )
sin a

m  sina(rm — @)

cos am )
sin am

sin av sin am
7w sina(a—m7)

sinam sin(a — )

The proof is now complete. (I

Proposition 4.5. For ae (—1,1) and a € (0,27), we have

1]sina(r — )]
ke (r, )T 97 lsinan|
ko (r, w)l[Lr (G av) 2 |sinan|

In particular, if a = 0, then

[m —a

ko (7, Wl L1y = INk(r, w)ll L@ an) = o
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Proof. By the preceding Lemma 4.4, we calculate

1 [ * a+l] o d
[|ka(r, u)ll LGy = 7J J r |sinal - dul
7 A Jo J_oo (r2 —2rcosa + 1+ u2)2 r

1 (*  retlsinagl dr

21 Jy 2 —2rcosa+1r

|sina| [ re

2t Jy 2 —2rcosa+1
1|sina(r — )|
2 |sinan|

This completes the proof. O

Recall that H*(G, dv) be the Sobolev spaces defined by the right-invariant mea-
sure v. Therefore we have the following mapping property for the operator K.

Proposition 4.6. For all m,l € Z and a € (—1,1), the convolution operator IN(a
defines a continuous map

Ko : H™(G,dv) — H\(G, dv).
Proof. Tt is clear that
H™(G,dv) = {f]| (ro,)" &% f € L*(G,dv),i+j <m}.
It is enough to show that K, maps L?(G,dv) to {fm(G, dv), m > 0.
By Proposition 4.5, the convolution kernel of K,

1 7o+l sin o

Z7;(7‘2 —2rcosa + 1+ u2)?2

ko(ryu) = —

is smooth on G and its L'-norm is finite for a € (—1,1). Therefore, it suffices to
show that

(ro,) 0% ke € LG, dv).

In fact, in r-direction, after taking derivatives (with respect to r0,), the decay
remains exponential (making the change of variables r = e! if necessary), and
the derivative in wu-direction improves the integrability of k, at infinity. Hence we
complete the proof. O

Let us define
 |sina(m — a)

= {a :

< E. To make the L'-norm of k,(r,u) less than 1, it is
a € 2. Recall the identifications ([3, 8])

(1]

< 1.
| sin arr| ;
Clearly, we have (—3, 1)

necessary to assume that
KT(G) =~ H™(G,dv) = H™(G, du (dr/r)),

and
rtK;n(G) = K744 (G).

We summarize the above results in the following theorem.
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Theorem 4.7. Let G =R x RT be as above, m € Z, and a € 2. The operators

+ K : K7, (G) = KT,(G)

M| =

are both isomorphisms.

Proof. Under the assumption of a, we have ||kq(r,u)||11(c,aq) < % Then we con-
clude that % + K are invertible on K{, .(G). Therefore, it suffices to show that the
inverse of £ + K maps KT o (G) to itself.

For simplicity, let R := 2K. By Proposition 4.6, we have the following sequence

R, K9, (G) —F KL (6),

m R
1+a(G) - IC[l)Jra (G)
for all m,l € Z. As a consequence, we get
FR+R(I+R) ™ R: K" ,(G) = K\, (G).
From the equality
(I+R'=IFR+R(I+R)'R,

we obtain an inverse of  + R, hence an inverse of 1 + K on K o(G) for all m € Z,
which completes the proof. ([

For the double layer potential operator K on W, we have the following commu-
tative diagram

Kmew) —E - kmow)

(7) [Mr,a era
(W)~ KT (W),

0 Mya KM,
Mya KM, - 0
with diagonal zero and off-diagonal M,.a K M, —a.

where K, = M.« KM, o = ( >, i.e., the 2 x 2 matrix

Theorem 4.8. For allm € Z and a € =, the operators

N =

1 + M, KM, .
t Ko = % T " : m —
D N (+MTQKMT._Q 1 ) K" (0W) — K" (o)

are isomorphisms. In other words, the operators

SHK = (;k 1 ) KT (OW) = KT (W)
are isomorphisms.

Proof. The invertibility of the matrix 3 + K on K[".,(0W) is equivalent to the
invertibility of § — K? on K1 o(G). By Theorem 4.7, the result follows. O
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5. RELATIONS TO LIE GROUPOIDS

We are in position to identify the double layer potential operator K with a
smooth invariant family of operators on some Lie groupoid.
Then we compactify the space G in the following way: first of all, we define

M:—{(i g)|zeR,xe[0,oo)}U{oo}

Then we define G := M x G. The advantage of this compactification is that the
algebraic operation of product of two matrices is preserved and the unit space M
of the groupoid G is compact.

Let us make G more explicit. The interior of the space M of units of G is

M0={<i 2)|ueR,re(0,oo)},

which is an open dense invariant subset of M. Moreover, we have
oM = {(2,2)| z € R,z — 0} | J{ee),

and
Glm, = Gx G = My x My,
where My x My is the pair groupoid of Mj.
For any (2,0) € 0M, d-fiber G ) is diffeomorphic to G. More precisely, if
z € (—o0, ), then

g(270)=d1<i 8)={<,th 2) ’LLER,TERJr}:G,

g{oo} =G.

From Section 4, we can think of K=K 12 = Ko as right convolution operators
on G. Hence we can construct an invariant family P = (P,,), m € My, of (pseu-
dodifferential) operators. Since we can extend kernels of P,, to the boundary of
M, we obtain a family of (pseudodifferential) operator on G, namely, P = (P,,),
m € M. In this way, we can identify P = (P,,) with K. Therefore, we obtain the
following theorem:

and

Proposition 5.1. Ifa € (—1,1), then k, € L*(G). As a result, we have
Mo KM, - € C*(G).

Proof. Because M, K M,-a is a smooth convolution operator on G, it belongs to
the (reduced) group C*-algebra C*(G). Since the unit space M of G is compact,
we have N
M.« KM,-a € C*(G) « C*(G)
with the inclusion induced by C — C'(M).
O

~

0 M, KM, .

Recall that K, := Mo KM,-a = ~
Myoa KM, -a 0

). We have the

following theorem:

Theorem 5.2. Forae (—1,1), K, € C*(G) ® M>(C);
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Proof. This result follows from Proposition 5.1.
O

Remark 5.3. If Q is “a domain with wedge singularities”, we can associate to (2
certain Lie groupoid in the spirit of [4, 13, 45, 46], in particular, in the framework of
Fredholm groupoids [11, 12]. More precisely, denote W; the i-th wedge singularity

and let
1 0
Mi:={< >|zeR,xe[0,oo)}.
z T

Near each wedge singularity W;, we form J; = M; x G. It is clear that G is an
invariant subset of J; and J;|¢ = G x G. Denote by () the interior of . Then
we glue the pair groupoid QO x Q with J; x M5(C) for each W;. In this way, we
obtain a Lie groupoid and denote it by H. Indeed, H is a Fredholm groupoid (see
[11] for more details). Then we are able to show that the double layer potential
operator Kq associated to € and the Laplace operator belongs to the C*-algebra
of H. Moreover, we could obtain that the operators % + Kq are Fredholm between

appropriate weighted Sololev spaces on the boundary 02 by some theorems in
[11, 31].
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