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tained in a bounded convex conical set defined by a norm and a concave upper 
semicontinuous functional. A vector version is also given in order to localize com-
ponentwise solutions of variational systems. The technique is then used for the 
localization and multiplicity of Nash-type positive equilibria of nonvariational sys-
tems. Applications are given to periodic problems.
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1. Introduction

Many equations and systems arising from mathematical modeling require positive solutions as acceptable 
states of the investigated real processes. Mathematically, finding positive solutions means to work in the 
positive cone of the space of all possible states. However, a cone is an unbounded set and in many cases 
nonlinear problems have several positive solutions. Thus it is important to localize solutions in bounded 
subsets of a cone. There are known methods for the localization of solutions based on topological fixed 
point theory [6], [8]; Leray–Schauder degree theory [6]; upper and lower solutions, maximum principles 
and differential inequalities [2–4], [21]; and critical point theory [1], [5], [7], [12], [15–17], [20], [22], [23]. 
In case of problems having a variational structure, that is, whose solutions are critical points of an ‘energy’ 
functional, the variational techniques are of particular interest since they are able not only to prove the 
existence of solutions but also to give information about the variational properties of the solutions of a 
physical relevance, for instance, of being a minimizer, a maximizer or a saddle point of the associated energy 
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functional. As known from the classical Fermat’s theorem, local extrema of a differentiable functional in a 
bounded region are not necessarily critical points of that functional. However, this happens if the functional 
has an appropriate behavior on the boundary of the region (see [12], [15], [22] and [23]).

The problem becomes even more interesting in case of a system which has not a variational structure, 
but each of its component equations has, i.e., there exist real functionals E1, E2 such that the system is 
equivalent to the equations

{
E11 (u, v) = 0
E22 (u, v) = 0

where E11 (u, v) is the partial derivative of E1 with respect to u, and E22 (u, v) is the partial derivative of 
E2 with respect to v. How the solutions (u, v) of this system are connected to the variational properties of 
the two functionals? One possible situation, which fits to physical principles, is that a solution (u, v) is a 
Nash-type equilibrium of the pair of functionals (E1, E2) (see, e.g., [9], [13] and [24]), that is

E1 (u, v) = min
w

E1 (w, v)

E2 (u, v) = min
w

E2 (u,w) .

A result in this direction is given in [18] for the case when minw is taken, first over an entire Banach space 
and then, over a ball. Non-smooth analogues of those results, for Szulkin functionals, are presented in [19].

In the present paper the localization of a Nash-type equilibrium (u, v) is obtained in the Cartesian product 
of two conical sets, more exactly u ∈ K1, v ∈ K2 where Ki (i = 1, 2) is a cone of a Hilbert space Xi with 
norm ‖·‖i, and

r1 ≤ l1 (u) , ‖u‖1 ≤ R1,

r2 ≤ l2 (v) , ‖v‖2 ≤ R2,

for some positive numbers ri and Ri, i = 1, 2. Here li : Ki → R+ are two given functionals. Compared to 
our previous papers on the localization of critical points in annular conical sets (see [15–17] and [20]), where 
li were norms, here they are upper semicontinuous concave functionals. In applications, when working in 
spaces of functions, such a functional l (u) can be inf u. If in addition, due to some embedding result, the 
norm ‖u‖ is comparable with supu in the sense that supu ≤ c ‖u‖ for every nonnegative function u and 
some constant c > 0, then the values of any nonnegative function u satisfying r ≤ l (u) and ‖u‖ ≤ R belong 
to the interval [r, cR], which is very convenient for finding multiple solutions located in disjoint annular 
conical sets.

The paper is structured as follows: first in Section 2 we establish the localization of a critical point of 
minimum type in a convex conical set as above and we explain how this result can be used in order to obtain 
finitely or infinitely many solutions. The result can be seen as a variational analogue of some Krasnoselskii’s 
type compression–expansion theorems from fixed point theory (see, e.g., [8], [10] and [11]). The vector 
version of this result for gradient type systems is obtained in Section 3. It allows to localize individually the 
components of a solution. Section 4 is devoted to the existence and localization of Nash-type equilibria for 
nonvariational systems of two equations. An iterative algorithm is used and its convergence is established 
assuming a local matricial contraction condition. The local character of the contraction condition makes 
possible a repeat application of the algorithm to a number of disjoint conical sets and thus the obtainment 
of multiple Nash-type equilibria. The theory developed in Sections 2, 3 and 4 is illustrated in Section 5 on 
the periodic problem.
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2. A localization critical point theorem

Let X be a real Hilbert space with inner product 〈., .〉 and norm ‖.‖ which is identified with its dual, 
let K ⊂ X be a wedge, and l : K → R+ be a concave upper semicontinuous function with l (0) = 0. Let 
E ∈ C1 (X) be a functional and let N : X → X be the operator N (u) := u −E′ (u).

For any two numbers r, R > 0 we consider the conical set

KrR := {u ∈ K : r ≤ l (u) and ‖u‖ ≤ R} .

This set is convex since l is concave, and closed since l is upper semicontinuous.
Assume that KrR 	= ∅ and

N (KrR) ⊂ K.

Lemma 2.1. Let the following conditions be satisfied:

m := inf
u∈KrR

E (u) > −∞; (2.1)

there is ε > 0 such that E (u) ≥ m + ε for (2.2)

all u ∈ KrR which simultaneously satisfy l (u) = r and ‖u‖ = R;

l (N (u)) ≥ r for every u ∈ KrR. (2.3)

Then there exists a sequence (un) ⊂ KrR such that

E (un) ≤ m + 1
n

(2.4)

and

‖E′ (un) + λnun‖ ≤ 1
n
, (2.5)

where

λn =
{

−
〈
E′(un),un

〉
R2 if ‖un‖ = R and 〈E′ (un) , un〉 < 0

0 otherwise.
(2.6)

Proof. Ekeland’s variational principle (see, e.g., [21]) guarantees the existence of a sequence (un) ⊂ KrR

such that

E (un) ≤ m + 1
n
, (2.7)

E (un) ≤ E (v) + 1
n
‖v − un‖ (2.8)

for all v ∈ KrR and n ≥ 1. Two cases are possible:
Case (1). There is a subsequence of (un) (also denoted by (un)) such that r ≤ l (un) and ‖un‖ < R for 

every n. For a fixed but arbitrary n and t > 0, consider the element

v = un − tE′ (un) .
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Since v = (1 − t)un + tN (un) and both un and N (un) belong to K, one has that v ∈ K for every t ∈ (0, 1). 
Also, the concavity of l and (2.3) yield

l (v) ≥ (1 − t) l (un) + tl (N (un)) ≥ r

for all t ∈ (0, 1). In addition the continuity of the norm gives ‖v‖ ≤ R for every t ∈ (0, 1) small enough. 
Hence v ∈ KrR for all sufficiently small t > 0. Replacing v in (2.8) we obtain

E (un − tE′ (un)) −E (un) ≥ − t

n
‖E′ (un)‖ .

Dividing by t and letting t go to zero yields

−〈E′ (un) , E′ (un)〉 ≥ − 1
n
‖E′ (un)‖ ,

that is

‖E′ (un)‖ ≤ 1
n
.

Thus, in this case, relation (2.5) holds with λn = 0.
Case (2). There is a subsequence of (un) (also denoted by (un)) such that ‖un‖ = R for every n. Passing 

eventually to a new subsequence, in view of (2.2) and (2.7), we may assume that l (un) > r for every n. Two 
subcases are possible:

(a) For a subsequence (still denoted by (un)), 〈E′ (un) , un〉 > 0 for every n. Then for any fixed index n, 
the above choice of v in (2.8) is still possible since

‖v‖2 = ‖un − tE′ (un)‖2 = ‖un‖2 + t2 ‖E′ (un)‖2 − 2t 〈E′ (un) , un〉

= R2 + t2 ‖E′ (un)‖2 − 2t 〈E′ (un) , un〉 ≤ R2

for 0 < t ≤ 2 〈E′ (un) , un〉 / ‖E′ (un)‖2.
(b) Assume 〈E′ (un) , un〉 ≤ 0 for every n. Then for any fixed index n, we use (2.8) with

v = un − t (E′ (un) + λnun + εun) ,

where t, ε > 0 and λn = − 〈E′ (un) , un〉 /R2 ≥ 0. Since

v = (1 − t) 1 − t− tλn − tε

1 − t
un + tN (un) ,

we immediately see that v ∈ K for every t ∈ (0, 1) small enough that 1 − t − tλn − tε > 0. Also,

〈E′ (un) + λnun + εun, un〉 = εR2 > 0,

and as in case (a), we find that ‖v‖ ≤ R for sufficiently small t > 0. On the other hand, from l (un) > r, we 
have δl (un) = r for some number δ ∈ (0, 1). Then, for any ρ ∈ [δ, 1], one has

l (ρun) = l (ρun + (1 − ρ) 0) ≥ ρl (un) + (1 − ρ) l (0)

= ρl (un) ≥ δl (un) = r.
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In particular, we may take ρ = (1 − t− tλn − tε) / (1 − t) which belongs to [δ, 1] for sufficiently small t. 
Consequently,

l (v) = l

(
(1 − t) 1 − t− tλn − tε

1 − t
un + tN (un)

)
= l ((1 − t) ρun + tN (un)) ≥ (1 − t) l (ρun) + tl (N (un)) ≥ r.

Therefore v ∈ KrR for every sufficiently small t > 0. Replacing v in (2.8) and letting t → 0 yields

〈E′ (un) ,−E′ (un) − λnun − εun〉 ≥ − 1
n
‖E′ (un) + λnun + εun‖ .

Finally, let ε tend to zero and use 〈un, E
′ (un) + λnun〉 = 0 to deduce

‖E′ (un) + λnun‖ ≤ 1
n
,

that is (2.5). �
Lemma 2.1 yields the following critical point theorem.

Theorem 2.2. Assume that the assumptions of Lemma 2.1 are satisfied. In addition assume that there is a 
number ν such that

〈E′ (u) , u〉 ≥ ν for every u ∈ KrR with ‖u‖ = R, (2.9)

E′ (u) + λu 	= 0 for all u ∈ KrR with ‖u‖ = R and λ > 0, (2.10)

and a Palais–Smale type condition holds, more exactly, any sequence as in the conclusion of Lemma 2.1 has 
a convergent subsequence. Then there exists u ∈ KrR such that

E (u) = m and E′ (u) = 0.

Proof. The sequence (λn) given by (2.6) is bounded as a consequence of (2.9). Hence, passing eventually 
to a subsequence we may suppose that (λn) converges to some number λ. Clearly λ ≥ 0. Next using the 
Palais–Smale type condition we may assume that the sequence (un) converges to some element u ∈ KrR. 
Then letting n → ∞ in (2.4) and (2.5) gives E (u) = m and E′ (u) + λu = 0. From (2.6) we have that the 
case λ > 0 is possible only if ‖u‖ = R, which is excluded by assumption (2.10). Therefore λ = 0 and so 
E′ (u) = 0. �
Remark 2.3. If the functional l is continuous on KrR, then instead of (2.3) we can take the weaker boundary 
condition

l (N (u)) ≥ r for every u ∈ KrR with l (u) = r.

Remark 2.4 (A sufficient condition for (2.3)). Assume that the space X is continuously embedded in a 
normed linear space (Y, ‖.‖Y ) which is ordered by the cone C inducing on Y the partial ordering �, where

u � v if v − u ∈ C.

Also assume that K is a subcone of C, K ⊂ C ∩X, and that N : Y → X and l : K → R+ are such that
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N (C) ⊂ K and 0 � u � v implies N (u) � N (v) (u, v ∈ Y ) ;

u � v implies l (u) ≤ l (v) (u, v ∈ K) .

If there are two elements φ, ψ ∈ C \ {0} such that

l (u)φ � u � ‖u‖ψ

for every u ∈ K, then a sufficient condition for (2.3) to hold is

l (N (rφ)) ≥ r.

Indeed, if u ∈ KrR, then 0 � rφ � l (u)φ � u implies N (rφ) � N (u) and next l (N (rφ)) ≤ l (N (u)), 
whence the conclusion.

2.1. Multiple critical points

Assume that there is a constant c > 0 such that

l (u) ≤ c ‖u‖ (2.11)

for all u ∈ K. Then from the assumption KrR 	= ∅, one finds r ≤ cR. Indeed, if u ∈ KrR, then r ≤ l (u) ≤
c ‖u‖ ≤ cR.

Also, if

r1 ≤ cR1, r2 ≤ cR2 and cR1 < r2,

then the sets Kr1R1 and Kr2R2 are disjoint. Indeed, if u ∈ Kr1R1 , then

r1 ≤ l (u) ≤ c ‖u‖ ≤ cR1 < r2.

Hence l (u) < r2 which shows that u /∈ Kr2R2 . The same conclusion holds if

r1 ≤ cR1, r2 ≤ cR2 and r1 > cR2.

These remarks allow us to state the following multiplicity results.

Theorem 2.5. Assume that (2.11) holds.
(10) If there are finite or infinite sequences of numbers (rj)1≤j≤n , (Rj)1≤j≤n (1 ≤ n ≤ +∞) with rj ≤

cRj for 1 ≤ j ≤ n and cRj < rj+1 for 1 ≤ j < n, such that the assumptions of Theorem 2.2 are satisfied 
for each of the sets KrjRj

, then for every j, there exists uj ∈ KrjRj
with

E (uj) = inf
KrjRj

E and E′ (uj) = 0. (2.12)

(
20) If there are infinite sequences of numbers (rj)j≥1, (Rj)j≥1 with cRj+1 < rj ≤ cRj for all j, such that 

the assumptions of Theorem 2.2 hold for each of the sets KrjRj
, then for every j, there exists uj ∈ KrjRj

which satisfies (2.12).
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3. A vector version of the localization critical point theorem

Let us now duplicate the objects X, K, and l considered in Section 2. Thus we consider instead, two 
Hilbert spaces Xi with scalar products 〈., .〉i and norms ‖.‖i (i = 1, 2); two wedges Ki ⊂ Xi, and two upper 
semicontinuous functionals li : Ki → R+ with li (0) = 0. Also we assume that E is now a C1 functional on 
the product space X1 ×X2. We have E′ (u, v) = (E′

u (u, v) , E′
v (u, v)), for u ∈ X1, v ∈ X2, and we denote 

by N1, N2 the operators

N1 (u, v) = u−E′
u (u, v) , N2 (u, v) = v − E′

v (u, v) . (3.1)

Here we are interested to find a solution (u, v) of the system
{

u = N1 (u, v)
v = N2 (u, v) ,

(3.2)

or equivalently, a critical point of E, that is
{

E′
u (u, v) = 0

E′
v (u, v) = 0,

which minimizes E in a set of the form KrR := (K1)r1R1
× (K2)r2R2

, where r = (r1, r2), R = (R1, R2) and

(Ki)riRi
= {w ∈ Ki : ri ≤ li (w) and ‖w‖i ≤ Ri} .

Applying Ekeland’s principle to the functional E and to the closed subset KrR of X1 × X2 we easily 
obtain the vector versions of Lemma 2.1 and Theorem 2.2.

Lemma 3.1. Let the following conditions be satisfied:

m := inf
(u,v)∈KrR

E (u, v) > −∞;

there is ε > 0 such that E (u, v) ≥ m + ε if

l1 (u) = r1 and ‖u‖1 = R1, or l2 (v) = r2 and ‖v‖2 = R2;

l1 (N1 (u, v)) ≥ r1 and l2 (N2 (u, v)) ≥ r2 for every (u, v) ∈ KrR.

Then there exists a minimizing sequence (un, vn) ⊂ KrR, i.e., E (un, vn) → m as n → ∞, such that

E (un, vn) ≤ m + 1
n
,

‖E′
u (un, vn) + λnun‖1 ≤ 1

n
and ‖E′

v (un, vn) + μnvn‖2 ≤ 1
n
,

where

λn =
{

−
〈
E′

u(un,vn),un

〉
1

R2
1

if ‖un‖1 = R1 and 〈E′
u (un, vn) , un〉1 < 0

0 otherwise,

μn =
{

−
〈
E′

v(un,vn),vn
〉
1

R2
2

if ‖vn‖2 = R2 and 〈E′
v (un, vn) , vn〉2 < 0

0 otherwise.
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Theorem 3.2. Assume that the assumptions of Lemma 3.1 are satisfied. In addition assume that there is a 
number ν such that

〈E′
u (u, v) , u〉1 ≥ ν for every (u, v) ∈ KrR with ‖u‖1 = R1 ,

〈E′
v (u, v) , v〉2 ≥ ν for every (u, v) ∈ KrR with ‖v‖2 = R2 , (3.3)

E′
u (u, v) + λu 	= 0 for all (u, v) ∈ KrR with ‖u‖1 = R1 and λ > 0,

E′
v (u, v) + λv 	= 0 for all (u, v) ∈ KrR with ‖v‖2 = R2 and λ > 0, (3.4)

and the Palais–Smale type condition holds, i.e., any sequence as in the conclusion of Lemma 3.1 has a 
convergent subsequence. Then there exists (u, v) ∈ KrR such that

E (u, v) = m and E′ (u, v) = 0.

Theorem 3.2 allows to obtain multiple solutions of variational systems, with disjoint localizations of only 
one or both components.

4. Localization of Nash-type equilibria of nonvariational systems

Now we deal with system (3.2) without assuming the existence of a functional E with property (3.1). 
Instead, we assume that each equation of the system has a variational structure, i.e., there are two C1

functionals Ei : X := X1 ×X2 → R, such that

N1 (u, v) = u− E11 (u, v) , N2 (u, v) = v − E22 (u, v) ,

where by E11, E22 we mean the partial derivatives of E1, E2 with respect to u and v, respectively. We look 
for a point (u, v) in a set of the form KrR := (K1)r1R1

× (K2)r2R2
, which solves (3.2) and is a Nash-type 

equilibrium in KrR of the pair of functionals (E1, E2), more exactly

E1 (u, v) = min
w∈(K1)r1R1

E1 (w, v) ,

E2 (u, v) = min
w∈(K2)r2R2

E2 (u,w) .

We say that the operator N : X → X, N (u, v) = (N1 (u, v) , N2 (u, v)) is a Perov contraction on KrR if 
there exists a matrix M = [mij ] ∈ M2,2 (R+) such that Mn tends to the zero matrix as n → ∞, and the 
following matricial Lipschitz condition is satisfied

[
‖N1 (u, v) −N1 (u, v)‖1

‖N2 (u, v) −N2 (u, v)‖2

]
≤ M

[
‖u− u‖1

‖v − v‖2

]
(4.1)

for every u, u ∈ (K1)r1R1
and v, v ∈ (K2)r2R2

.
Notice that for a square matrix of nonnegative elements, the property Mn → 0 is equivalent to ρ (M) < 1, 

where ρ (M) is the spectral radius of matrix M , and also to the fact that I −M is nonsingular and all the 
elements of the matrix (I −M)−1 are nonnegative (see [14]). In case of square matrices M of order 2, the 
above property is characterized by the inequality

tr (M) < min {2, 1 + det (M)} .
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Our hypotheses are as follow:

(H1) For each v ∈ (K2)r2R2
, the functional E1 (., v) is bounded from bellow on (K1)r1R1

; for each u ∈
(K1)r1R1

, the functional E2 (u, .) is bounded from bellow on (K2)r2R2
.

(H2) l1 (N1 (u, v)) ≥ r1 for every (u, v) ∈ KrR; N1 (u, v) 	= (1 + λ)u for all (u, v) ∈ KrR with ‖u‖1 = R1
and λ > 0;
l2 (N2 (u, v)) ≥ r2 for every (u, v) ∈ KrR; N2 (u, v) 	= (1 + λ) v for all (u, v) ∈ KrR with ‖v‖2 = R2
and λ > 0.

(H3) For each v ∈ (K2)r2R2
, there is ε > 0 such that E1 (u, v) ≥ inf(K1)r1R1

E1 (., v) + ε whenever u
simultaneously satisfies l1 (u) = r1 and ‖u‖1 = R1;
for each u ∈ (K1)r1R1

, there is ε > 0 such that E2 (u, v) ≥ inf(K2)r2R2
E2 (u, .) + ε whenever v

simultaneously satisfies l2 (v) = r2 and ‖v‖2 = R2.
(H4) N is a Perov contraction on KrR.

Let us underline the local character of the contraction condition (H4). This is essential for multiple 
Nash-type equilibria when (H4) is required to hold on disjoint bounded sets of the type KrR but not on the 
entire K. Thus the ‘slope’ of N has to be ‘small’ on the sets KrR but can be unlimited large between these 
sets, which makes possible to fulfill the boundary conditions (H2).

Theorem 4.1. Assume that conditions (H1)–(H4) hold. Then there exists a solution (u, v) ∈ KrR of sys-
tem (3.2) which is a Nash-type equilibrium on KrR of the pair of functionals (E1, E2).

Proof. The proof follows the same steps as for Theorem 3.1 in [18]. However, for the convenience of readers 
we give it in details. We shall construct recursively two sequences (un) , (vn), based on Lemma 2.1. Let v0
be any element of (K2)r2R2

. At any step n (n ≥ 1) we may find an un ∈ (K1)r1R1
and an vn ∈ (K2)r2R2

such that

E1 (un, vn−1) ≤ inf
(K1)r1R1

E1 (., vn−1) + 1
n
, ‖E11 (un, vn−1) + λnun‖1 ≤ 1

n
(4.2)

and

E2 (un, vn) ≤ inf
(K2)r2R2

E2 (un, .) + 1
n
, ‖E22 (un, vn) + μnvn‖2 ≤ 1

n
, (4.3)

where

λn =
{

− 〈E11(un,vn−1),un〉1
R2

1
if ‖un‖1 = R1 and 〈E11 (un, vn−1) , un〉1 < 0

0 otherwise,

and the expression of μn is analogous.
Condition (H4) guarantees that the operators Ni are bounded, so the boundedness of the sequences of 

real numbers (λn) and (μn). Therefore, passing to subsequences, we may assume that the sequences (λn)
and (μn) are convergent.

Let

αn := E11 (un, vn−1) + λnun and βn := E22 (un, vn) + μnvn.

Clearly αn, βn → 0. Also
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(1 + λn)un −N1 (un, vn−1) = αn (4.4)

(1 + μn) vn −N2 (un, vn) = βn.

Since λn > 0, the first equality if (4.4) written for n and n + p yields

‖un+p − un‖1

≤ (1 + λn) ‖un+p − un‖1

= ‖(1 + λn)un+p − (1 + λn)un‖1

= ‖(1 + λn+p)un+p − (1 + λn)un − (λn+p − λn)un+p‖1

≤ ‖N1 (un+p, vn+p−1) −N1 (un, vn−1)‖1 + ‖αn+p − αn‖1 + |λn+p − λn| ‖un+p‖1 .

Furthermore, using ‖un+p‖1 ≤ R1 and (4.1) we deduce

‖un+p − un‖1

≤ m11 ‖un+p − un‖1 + m12 ‖vn+p−1 − vn−1‖2 + ‖αn+p − αn‖1 + R1 |λn+p − λn|
= m11 ‖un+p − un‖1 + m12 ‖vn+p − vn‖2 + ‖αn+p − αn‖1 + R1 |λn+p − λn|

+m12
(
‖vn+p−1 − vn−1‖2 − ‖vn+p − vn‖2

)
.

Denote

an,p = ‖un+p − un‖1 , bn,p = ‖vn+p − vn‖2 ,

cn,p = ‖αn+p − αn‖1 + R1 |λn+p − λn| , dn,p = ‖βn+p − βn‖2 + R2 |μn+p − μn| .

Clearly, cn,p → 0 and dn,p → 0 uniformly with respect to p. With this notations,

an,p ≤ m11an,p + m12bn,p + cn,p + m12 (bn−1,p − bn,p) . (4.5)

Similarly, from the second equality in (4.4), we find

bn,p ≤ m21an,p + m22bn,p + dn,p.

Hence
[
an,p
bn,p

]
≤ M

[
an,p
bn,p

]
+

[
cn,p + m12 (bn−1,p − bn,p)

dn,p

]
.

Consequently, since I −M is invertible and its inverse contains only nonnegative elements, we may write
[
an,p
bn,p

]
≤ (I −M)−1

[
cn,p + m12 (bn−1,p − bn,p)

dn,p

]
.

Let (I −M)−1 = [γij ]. Then

an,p ≤ γ11 (cn,p + m12 (bn−1,p − bn,p)) + γ12dn,p (4.6)

bn,p ≤ γ21 (cn,p + m12 (bn−1,p − bn,p)) + γ22dn,p.
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From the second inequality, one has

bn,p ≤ γ21m12

1 + γ21m12
bn−1,p + γ21cn,p + γ22dn,p

1 + γ21m12
.

Clearly (bn,p) is bounded uniformly with respect to p. Now we use the following lemma proved in [18].

Lemma 4.2. Let (xn,p) , (yn,p) be two sequences of real numbers depending on a parameter p, such that

(xn,p) is bounded uniformly with respect to p,

and

0 ≤ xn,p ≤ λxn−1,p + yn,p for all n, p and some λ ∈ [0, 1).

If yn,p → 0 uniformly with respect to p, then xn,p → 0 uniformly with respect to p too.

According to this result, bn,p → 0 uniformly for p ∈ N, and hence (vn) is a Cauchy sequence. Next, the 
first inequality in (4.6) implies that (un) is also a Cauchy sequence. Let u∗, v∗ be the limits of the sequences 
(un) , (vn), respectively. The conclusion of Theorem 4.1 now follows if we pass to the limit in (4.2), (4.3)
and we use (H2). �
5. Applications to periodic problems

5.1. The case of a single equation

We apply the results from Section 2 to the periodic problem

−u′′ (t) + a2u (t) = f (u (t)) on (0, T ) (5.1)

u (0) − u (T ) = u′ (0) − u′ (T ) = 0

where a 	= 0 and f : R → R is a continuous function with f (R+) ⊂ R+.
Let X := H1

p (0, T ) be the space of functions of the form

u (t) =
t∫

0

v (s) ds + C,

with u (0) = u (T ), C ∈ R and v ∈ L2 (0, T ), endowed with the inner product

〈u, v〉 =
T∫

0

(
u′v′ + a2uv

)
dt

and the corresponding norm

‖u‖ =

⎛
⎝ T∫ (

u′2 + a2u2) dt
⎞
⎠

1
2

.

0
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Let K be the positive cone of X, i.e., K = {u ∈ H1
p (0, T ) : u ≥ 0 on [0, T ]}, and let l : K → R+ be given 

by

l (u) = min
t∈[0,T ]

u (t) .

The energy functional associated to the problem is E : H1
p (0, T ) → R,

E (u) = 1
2 ‖u‖2 −

T∫
0

F (u (t)) dt,

where

F (τ) =
τ∫

0

f (s) ds.

The identification of the dual 
(
H1

p (0, T )
)′ to the space H1

p (0, T ) via the mapping J :
(
H1

p (0, T )
)′ →

H1
p (0, T ), J (v) = w, where w is the weak solution of the problem

−w′′ + a2w = v on (0, T ) ,

w (0) − w (T ) = w′ (0) − w′ (T ) = 0

yields to the representation

E′ (u) = u−N (u)

where

N (u) = J (f (u (·))) .

Note that the condition f (R+) ⊂ R+ guarantees that N (K) ⊂ K.
Let c > 0 be the embedding constant of the inclusion H1

p (0, T ) ⊂ C [0, T ], that is, ‖u‖C[0,T ] ≤ c ‖u‖ for 
all u ∈ H1

p (0, T ).
Note that for u ≡ 1, the above inequality gives 1 ≤ ac

√
T , whence a2 ≥ 1/ 

(
c2T

)
. Also, if r and R are 

positive numbers and a
√
Tr ≤ R, then the set KrR is nonempty. Indeed, any constant λ ∈

[
r,R/

(
a
√
T
)]

belongs to KrR, since l (λ) = λ ≥ r and ‖λ‖ =
(∫ T

0 a2λ2ds
)1/2

= aλ
√
T ≤ R.

Theorem 5.1. Let r, R be positive constants such that a
√
Tr ≤ R. Assume that f is nondecreasing on the 

interval [r, cR] and that the following conditions hold:

E (r) < R2

2 − TF (cR) , (5.2)

and

f (r) ≥ a2r, f (cR) ≤ R

cT
. (5.3)

Then problem (5.1) has a positive solution u with r ≤ u (t) ≤ cR for all t ∈ [0, T ], which minimizes E in 
the set KrR.
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Proof. 1. Check of condition (2.1). Let u ∈ KrR. One has r ≤ u (t) ≤ cR for all t ∈ [0, T ]. Then, since F is 
nondecreasing on R+,

E (u) ≥ −
T∫

0

F (u (s)) ds ≥ −TF (cR) > −∞.

2. Check of condition (2.2). Take any u with l (u) = r and ‖u‖ = R. Then

E (u) = R2

2 −
T∫

0

F (u (s)) ds ≥ R2

2 − TF (cR) .

Thus our claim holds in view of the strict inequality (5.2) and the obvious inequality m ≤ E (r) (note that 
the constant function r belongs to KrR).

3. Check of condition (2.3). Let u ∈ KrR. Then

l (N (u)) = l (J (f (u))) ≥ l (J (f (r))) = f (r) l (J (1))

= f (r)
a2 ≥ r,

in virtue of the first inequality in (5.3).
4. Check of condition (2.10). Assume that E′ (u) + λu = 0 for some u ∈ KrR with ‖u‖ = R and λ > 0. 

Then

(1 + λ)
(
−u′′ + a2u

)
= f (u) ,

whence

R2 < (1 + λ)R2 = 〈f (u) , u〉L2 ≤ Tf (cR) cR,

that is

R

cT
< f (cR) ,

which contradicts the second inequality in (5.3).
5. Condition (2.9) being immediate and the required Palais–Smale type condition being a consequence 

of the compact embedding of H1
p (0, T ) into C [0, T ], Theorem 2.2 yields the conclusion. �

Example 1. For each λ > 0, the equation −u′′+a2u = λ
√
u has a T -periodic solution satisfying u (t) ≥ λ2/a4

for all t ∈ [0, T ].
Indeed, if we take r = λ2/a4, then the first condition from (5.3) is satisfied with equality. Next chose R

large enough that (5.2) and the second inequality (5.3) hold, that is,

E (r) < R2

2 − λ
2
3T (cR)

3
2 and λ

√
cR ≤ R

cT
.
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5.2. The case of a variational system

We now consider the periodic problem for the system

−u′′ (t) + a2
1u (t) = f1 (u (t) , v (t)) on (0, T ) (5.4)

−v′′ (t) + a2
2v (t) = f2 (u (t) , v (t)) on (0, T )

in the case when f1, f2 are the partial derivatives of a function F : R2 → R with respect to the first and the 
second variable, respectively. We assume that ai 	= 0 and fi (R+ × R+) ⊂ R+, for i = 1, 2.

We apply the results in Section 3, where X1 is the space H1
p (0, T ) endowed with the scalar product 

〈u, v〉1 =
∫ T

0
(
u′v′ + a2

1uv
)
ds and the induced norm ‖.‖1, while X2 is the same space endowed with the 

analogue scalar product and norm 〈., .〉2 , ‖.‖2. Also K1 = K2 is the cone of nonnegative functions in 
H1

p (0, T ), and l1 (w) = l2 (w) = mint∈[0,T ] w (t) for w ∈ H1
p (0, T ), w ≥ 0.

The system has a variational structure since its T -periodic solutions (u, v) are the critical points of the 
energy functional on H1

p (0, T ) ×H1
p (0, T ),

E (u, v) = 1
2

(
‖u‖2

1 + ‖v‖2
2

)
−

T∫
0

F (u (s) , v (s)) ds.

For i = 1, 2, let ci > 0 be the embedding constant of the inclusion Xi ⊂ C [0, T ], that is, ‖w‖C[0,T ] ≤
ci ‖w‖i for all w ∈ H1

p (0, T ).

Theorem 5.2. Let ri, Ri be positive constants such that ai
√
Tri ≤ Ri (i = 1, 2). Assume that for i = 1, 2, 

fi is nondecreasing in each of the variables on [r1, c1R1]× [r2, c2R2] and that the following conditions hold:

E (r1, r2) <
R2

i

2 − TF (c1R1, c2R2) ,

and

fi (r1, r2) ≥ a2
i ri, fi (c1R1, c2R2) ≤

Ri

ciT
.

Then system (5.4) has a T -solution (u, v) with r1 ≤ u (t) ≤ c1R1 and r2 ≤ v (t) ≤ c2R2 for all t ∈ [0, T ], 
which minimizes E in the set KrR := (K1)r1R1

× (K2)r2R2
.

Example 2. The potential of the system

−u′′ + a2
1u = α1

√
u + γv

−v′′ + a2
2v = α2

√
v + γu

is

F (u, v) = 2
3

(
α1u

3
2 + α2v

3
2

)
+ γuv.

As for Example 1, we have the following result: For every numbers αi > 0, i = 1, 2, T > 0 and 0 ≤ γ <

min
{
1/

(
2c2iT

)
: i = 1, 2

}
, the system has a T -periodic solution with u (t) ≥ α2

1/a
4
1 and v (t) ≥ α2

2/a
4
2 and 

all t ∈ [0, T ]. For the proof, take ri = α2
i /a

4
i (i = 1, 2) and a sufficiently large R := R1 = R2.
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5.3. The case of a nonvariational system

We now consider the system (5.4) for two arbitrary continuous functions f1, f2 and use the notations from 
the previous section. The energy functionals associated to the equations of the system are Ei : H1

p (0, T ) ×
H1

p (0, T ) → R,

E1 (u, v) = 1
2 ‖u‖2

1 −
T∫

0

F1 (u (t) , v (t)) dt,

E2 (u, v) = 1
2 ‖v‖2

2 −
T∫

0

F2 (u (t) , v (t)) dt,

where

F1 (τ1, τ2) =
τ1∫
0

f1 (s, τ2) ds, F2 (τ1, τ2) =
τ2∫
0

f2 (τ1, s) ds.

The identification of the dual 
(
H1

p (0, T )
)′ to the space H1

p (0, T ) via the mapping Ji :
(
H1

p (0, T )
)′ →

H1
p (0, T ), Ji (v) = w, where w is the weak solution of the problem

−w′′ + a2
iw = v on (0, T ) ,

w (0) − w (T ) = w′ (0) − w′ (T ) = 0

yields to the representations

E11 (u, v) = u−N1 (u, v) , E22 (u, v) = v −N2 (u, v) ,

where E11, E22 stand for the partial derivatives of E1, E2 with respect to u and v, respectively, and

Ni (u, v) = Ji (fi (u (·) , v (·))) .

Let r = (r1, r2) and R = (R1, R2) be such that

0 < ai
√
Tri ≤ Ri, i = 1, 2.

Check of condition (H1): For every (u, v) ∈ KrR = (K1)r1R1
× (K2)r2R2

and t ∈ [0, T ], one has

r1 ≤ u (t) ≤ ‖u‖C[0,T ] ≤ c1 ‖u‖1 ≤ c1R1,

and similarly r2 ≤ v (t) ≤ c2R2. It follows that

|fi (τ1, τ2)| ≤ ρi

for every τ1 ∈ [r1, c1R1], τ2 ∈ [r2, c2R2] and some ρi ∈ R+ (i = 1, 2). Then

E1 (u, v) ≥ −
T∫

0

u(t)∫
0

|f1 (s, v (t))| dsdt ≥ −
T∫

0

c1R1∫
0

|f1 (s, v (t))| dsdt

≥ −c1R1Tρ1 > −∞,

and similarly E2 (u, v) ≥ −c2R2Tρ2 > −∞. Hence condition (H1) holds.
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Next we assume in addition that for i ∈ {1, 2},

fi (τ1, τ2) is nonnegative and nondecreasing (5.5)

in both variables τ1 and τ2 in [r1, c1R1] × [r2, c2R2] ,

fi (r1, r2) ≥ a2
i ri, (5.6)

fi (c1R1, c2R2) ≤ Ri/ (Tci) , (5.7)

and

Fi (c1R1, c2R2) − Fi (r1, r2) <
1

2T
(
R2

i − a2
iTr

2
i

)
. (5.8)

Check of condition (H2): Let (u, v) ∈ KrR. Then from u (t) ≥ r1, v (t) ≥ r2 and the monotonicity of f1, 
we have

fi (u (t) , v (t)) ≥ fi (r1, r2) .

This together with (5.6) implies

li (Ni (u, v)) ≥ li (Ji (fi (r1, r2))) = fi (r1, r2)
a2
i

≥ ri.

Thus the first part of (H2) is verified. For the second part, assume that there exists (u, v) ∈ KrR with 
‖u‖1 = R1 and λ > 0 such that

N1 (u, v) = (1 + λ)u.

Then

(1 + λ)
(
−u′′ + a2

1u
)

= f1 (u, v) ,

which gives

R2
1 < (1 + λ)R2

1 = (1 + λ) ‖u‖2
1 = 〈f1 (u, v) , u〉L2

≤ Tf1 (c1R1, c2R2) c1R1,

whence

f1 (c1R1, c2R2) > R1/ (Tc1) ,

which contradicts (5.7). An analogue reasoning applies if N2 (u, v) = (1 + λ) v for some (u, v) ∈ KrR with 
‖v‖2 = R2 and λ > 0. Therefore (H2) holds.

Check of condition (H3): The constant function r1 belongs to (K1)r1R1
and for any v ∈ (K2)r2R2

, one 
has

E1 (r1, v) = 1
2a

2
1Tr

2
1 −

T∫
0

F1 (r1, v (t)) dt

≤ 1
a2
1Tr

2
1 − TF1 (r1, r2) .
2
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Also, for any (u, v) ∈ KrR with l1 (u) = r1 and ‖u‖1 = R1, one has

E1 (u, v) = 1
2R

2
1 −

T∫
0

F1 (u (t) , v (t)) dt ≥ 1
2R

2
1 − TF1 (c1R1, c2R2) .

Therefore the first part of (H3) holds with

ε = 1
2R

2
1 − TF1 (c1R1, c2R2) −

(
1
2a

2
1Tr

2
1 − TF1 (r1, r2)

)

which is positive in view of assumption (5.8). The second part of (H3) can be checked similarly.
Finally, to guarantee (H4) we need some Lipschitz conditions on f1 and f2. We assume the existence of 

nonnegative constants σij , i, j = 1, 2, such that

|fi (τ1, τ2) − fi (τ1, τ2)| ≤ σi1 |τ1 − τ1| + σi2 |τ2 − τ2| , i = 1, 2, (5.9)

for τ1, τ1 ∈ [r1, c1R1] and τ2, τ2 ∈ [r2, c2R2] ,

and for the matrix M = [σij/ (aiaj)]1≤i,j≤2 one has

Mn → 0 as n → ∞. (5.10)

Check of condition (H4): Notice that for w ∈ L2 (0, T ), from

‖Ji (w)‖2
i = 〈w, Ji (w)〉L2 ≤ ‖w‖L2 ‖Ji (w)‖L2 ≤ 1

ai
‖w‖L2 ‖Ji (w)‖i ,

one has

‖Ji (w)‖i ≤
1
ai

‖w‖L2 , w ∈ L2 (0, T ) . (5.11)

Then using (5.11) and (5.9) we obtain

‖N1 (u, v) −N1 (u, v)‖1 = ‖J1 (f1 (u, v) − f1 (u, v))‖1

≤ 1
a1

‖f1 (u, v) − f1 (u, v)‖L2

≤ σ11

a1
‖u− u‖L2 + σ12

a1
‖v − v‖L2

≤ σ11

a2
1
‖u− u‖1 + σ12

a1a2
‖v − v‖2 .

Similarly,

‖N2 (u, v) −N2 (u, v)‖2 ≤ σ21

a2a1
‖u− u‖1 + σ22

a2
2
‖v − v‖2 .

Hence (4.1) holds with mij = σij/aiaj .
Therefore we have the following result.

Theorem 5.3. Under assumptions (5.5)–(5.8), (5.9) and (5.10), there exists a T -periodic solution (u, v) ∈
KrR of system (5.4) which is a Nash-type equilibrium on KrR of the pair of energy functionals (E1, E2).
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Let us underline the fact that all the assumptions on f1 and f2 in the above theorem are given with 
respect to the bounded region [r1, c1R1] × [r2, c2R2]. This makes possible to apply Theorem 5.3 to several 
disjoint such regions obtaining this way multiple solutions of Nash-type.

Example 3. Consider the problem of positive T -periodic solutions for the system

−u′′ + a2
1u = α1

√
u + γ1v (5.12)

−v′′ + a2
2v = α2

√
v + γ2u

where αi, γi are nonnegative coefficients with γi < a2
i (i = 1, 2).

We try to localize a positive solution (u, v) with r ≤ u (t) and r ≤ v (t) for all t ∈ [0, T ]. We apply the 
previous result with r1 = r2 =: r and R1 = R2 =: R.

(a) The positivity and monotonicity of f1 and f2 on R+ × R+ required by (5.5) are obvious.
(b) Condition (5.6): We have

f1 (r, r) = α1
√
r + γ1r.

Thus we need

α1
√
r + γ1r ≥ a2

1r.

Under the assumption γ1 < a2
1 this gives

r ≤
(

α1

a2
1 − γ1

)2

.

Similarly, for f2,

r ≤
(

α2

a2
2 − γ2

)2

.

(c) Condition (5.7): We have

f1 (c1R, c2R) = α1
√

c1R + γ1c2R.

Hence we need

α1
√

c1R + γ1c2R ≤ R

Tc1
.

This implies γ1 < 1/ (Tc1c2) and

R ≥ α2
1T

2c31

(1 − Tγ1c1c2)2
.

Similarly, γ2 < 1/ (Tc1c2) and

R ≥ α2
2T

2c32
2 .
(1 − Tγ2c1c2)
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(d) Condition (5.8) for i = 1 reads as

2
3α1 (c1R)

3
2 + γ1c1c2R

2 − F1 (r, r) < 1
2T

(
R2 − a2

1Tr
2)

and holds for a sufficiently large R provided that

γ1 <
1

2Tc1c2
.

Similarly,

γ2 <
1

2Tc1c2
.

(e) Condition (5.9): For τ1 ∈ [r, c1R] and τ2 ∈ [r, c2R], one has

∂f1 (τ1, τ2)
∂τ1

= α1

2√τ1
≤ α1

2
√
r
,

∂f2 (τ1, τ2)
∂τ2

≤ α2

2
√
r
.

In addition

∂f1 (τ1, τ2)
∂τ2

= γ1,
∂f2 (τ1, τ2)

∂τ1
= γ2.

Hence (5.9) holds with

σii = αi

2
√
r

and σij = γi for i 	= j (i, j = 1, 2) . (5.13)

Consequently we have the following result.

Theorem 5.4. Assume that

γi < a2
i , γi <

1
2Tc1c2

for i = 1, 2,

and there exists r > 0 with

r ≤ min
{(

αi

a2
i − γi

)2

: i = 1, 2
}
,

such that the matrix M = [σij/ (aiaj)]1≤i,j≤2 where σij are given by (5.13) satisfies (5.10). Then (5.12) has 
a unique T -periodic solution (u, v) such that u (t) ≥ r and v (t) ≥ r for every t ∈ [0, T ], which is a Nash-type 
equilibrium of the pair of corresponding energy functionals.

Proof. The existence follows from Theorem 5.3 and the uniqueness is a consequence of the Perov contraction 
property of the operator N . �

In particular, if a1 = a2 =: a (when c1 = c2 =: c) and α1 = α2 =: α, the assumptions of Theorem 5.4
reduce to the following ones:

γi <
1

2Tc2 , r ≤ α2

2 2
(a − min {γ1, γ2})
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and

4
(
a4 − γ1γ2

)
r − 4αa2√r + α2 > 0

(the condition for M to satisfy (5.10)). We may choose

r = α2

(a2 − min {γ1, γ2})2

if

min {γ1, γ2} > 2√γ1γ2 − a2.

Numerical example. Theorem 5.4 applies in particular if a = T = 1 (when c =
√

2), α = 2, γ1 = 1/5, 
γ2 = 1/6 and r = 5.76.
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