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Abstract

We give some new kinds of variational formulas for the first hitting time of non-
reversible Markov chain on countable state space. Some comparison theorems are
obtained for the non-reversible Markov chain and its corresponding reversible one.
As an application, we prove a stronger version of a conjecture in [1, Chapter 9,
Conjecture 22].
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1 Introduction

Hitting times play an important role in the theory for Markov processes. Especially for
Markov chains, the concept of hitting time is the start point to study recurrence, various
ergodicity etc.. Refer to [14] for discrete time Markov chains and to [2] for continuous
time Markov chains. In recent years, hitting times are used to derive the convergence
rate for a Markov process toward its limiting distribution, cf. [3, 18]. In this paper, we
give some new kinds of variational formulas for the first hitting time of a non-reversible
Markov chain on a countable state space. The existing variational formulas were mainly
for the symmetric Markov processes, see [12] for symmetric diffusion processes, [1] for
finite symmetric Markov chains. Very recently, in [8] we give a variational formula for
finite asymmetric Markov chains, via that of the capacity for asymmetric Markov chains
in [6]. As pointed out in [10, Section 3], hitting times are adopted to be an important
criterion to show advantages of non-reversible Markov chains, and there are no general
results in this direction.

Let V be a countable state space and Q = (qij : i, j ∈ V ) be an irreducible, totally
stable and conservative Q-matrix. That is, for i �= j, there exist distinct i1, ..., im ∈ V
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such that qii1qi1i2 ...qimj > 0, and

qi := −qii < ∞;
∑
j �=i

qij = qi, i ∈ V.

We also assume Q determines a unique Q-process X = {Xt : t ≥ 0} and the process
admits the stationary distribution π: π > 0,

∑
i∈V πi = 1 and

∑
i∈V πiqij = 0 for j ∈ V .

Denote by K the space of functions f : V → R with finite support S (f) = {i : f(i) �=
0}. For f, g ∈ K , define

Qf(i) =
∑
j∈V

qijfj =
∑
j �=i

qij(fj − fi), i ∈ V.

Let L2(π) be the space of functions on V which are square-integrable with respect to π,
with inner product 〈·, ·〉 defined by

〈f, g〉 =
∑
i∈V

πifigi,

and write π(f) =
∑

i∈V πifi for f ∈ L2(π). For convenience, we denote the generator of
chain X acting on domain D(Q) of L2(π) by Q, and for f ∈ L2(π), g ∈ D(Q), define

Dλ(f, g) = 〈f,−Qg〉+ λπ(fg), λ ≥ 0,

with the natural convention D := D0. Note that in general D(f, g) �= D(g, f). For any
subset A of V , let

τA = inf{t ≥ 0 : Xt ∈ A}
denote the first hitting time to A of chain X or Q, and

τ+A = inf{t > 0 : Xt ∈ A and there exists s ∈ (0, t) such that Xs �= X0}
denote the first return time to A. In particular, denote by τi and τ+i when A is a singleton
{i}. We also need the notations

FA := {f ∈ K : f |A = 0 and π(f) = 1}, GA := {g ∈ K : g|A = 0 and π(g) = 0}
and Gf := {g : S (g) ⊆ S (f) and π(g) = 0} for any f ∈ K .

Now, we can state our main results on the variational formulas of the first hitting time
for non-reversible Markov chains.

Theorem 1.1. With the notations defined above,

(1) for any non-trivial subset A ⊆ V and λ > 0,

λ

1− Eπ[exp(−λτA)]
= inf

f∈FA

sup
g∈Gf

Dλ(f − g, f + g); (1.1)

(2) for any non-trivial subset A ⊆ V ,

1/Eπ[τA] = inf
f∈FA

sup
g∈Gf

D(f − g, f + g). (1.2)

In particular, if the generator Q is bounded on L2(π), we can replace Gf in (1.1) by
GA. If moreover there exists i ∈ V such that Ei[(τ

+
i )

3] < ∞, then Gf in (1.2) also
can be replaced by GA.
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Remark 1.2. (1) It should be mentioned here that in an unpublished paper in 1994,
Doyle [5] gave a deep insight into the Dirichlet principle for non-reversible Markov
chains, even though his proofs are rather conceptual. Indeed, we benefit many ideas
from [5].

(2) A result similar to Theorem 1.1 can also be established for discrete time Markov
chains, which will be shown as a corollary in Section 5.

(3) When Q is reversible with respect to its stationary distribution π (πiqij = πjqji :
i, j ∈ V ), the supremum in (1.2) is attained at g = 0. In this case, the variational
formula reduces to:

1/Eπ[τA] = inf
f∈FA

D(f, f),

which was proved in [1, Chapter 3, Proposition 41] for finite V . Similarly, when Q
is reversible with respect to π, we obtain a new kind of variational formula:

λ

1− Eπ[exp(−λτA)]
= inf

f∈FA

Dλ(f, f), λ > 0. (1.3)

The method to prove Theorem 1.1 is to solve a pair of Poisson equations: one is for
Q, another is for Q∗, the dual of Q. Usually Q∗ = (q∗ij : i, j ∈ V ) is also called the
“time-reversal” of Q, given by

q∗ij = πjqji/πi, i, j ∈ V.

We remark that Q∗ is also induced an operator on L2(π) with domain D(Q∗), which is
adjoint with Q. Similarly, we can define, for f ∈ D(Q∗), g ∈ L2(π),

D∗
λ(f, g) = 〈−Q∗f, g〉+ λπ(fg), λ ≥ 0.

It is clear that D∗(f, g) = D(f, g) for f, g ∈ D(Q) ∩ D(Q∗), especially for f, g ∈ K .
In Section 2, we will first prove a variational formula from a pair of general Poisson

equations for Q and Q∗ when Q, Q∗ are bounded, and then we use an approximation
argument to derive the variational formulas for general unbounded Q. At first glance,
Theorem 1.1 has nothing to do with Q∗, but it really depends heavily on Q∗. This is
the main difference between the non-reversible Markov chains and the reversible ones.
Roughly speaking, we have to use an “inf-sup” form in the non-reversible case rather
than an “inf” form in the reversible case.

Next, we give another type of variational formulas for the first hitting time, which
seems difficult to be derived directly from Theorem 1.1. We can see that an “inf” form
appears, but both Q and Q∗ are involved in a rather complicated form. For this, define
the reversible Q-matrix Q = (qij : i, j ∈ V ) by

qij =
1

2
(qij + q∗ij).

Theorem 1.3. With the notations defined in Theorem 1.1,

(1) for any non-trivial subset A ⊆ V and λ > 0,

λ

1− Eπ[exp(−λτA)]
= inf

f∈FA

sup
S (g)⊆S (f)

{2Dλ(f, g)−Dλ(g, g)}; (1.4)
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(2) for any non-trivial subset A ⊆ V ,

1/Eπ[τA] = inf
f∈FA

sup
S (g)⊆S (f)

{2D(f, g)−D(g, g)}. (1.5)

The new variational formulas in Theorem 1.1 or Theorem 1.3 enable ones to compare
the hitting times between a Q-process and its corresponding reversible Q-process Q. For
this, for any subset A of V , denote by τ ∗A, τA the first hitting time to A of chains Q∗

and Q, respectively. Let T0 =
∑

j∈V πjEi[τj] be the average hitting time of chain Q. It
is well known that T0 is independent of the state i, see Corollary 13 in [1, Chapter 2].
And denote by T 0 the average hitting time of chain Q. As a corollary of Theorem 1.1, we
compare the first hitting time between chains Q and Q in following.

Corollary 1.4. For any subset A of V , there exists the Laplace transform order between
τA and τA. Namely,

Eπ[exp(−λτA)] ≤ Eπ[exp(−λτA)], λ > 0.

In particular, Eπ[τA] ≥ Eπ[τA] and T 0 ≥ T0.

As we did in [8], we can get a non-reversible Q-matrix by adding a vorticity matrix to a
reversible Q-matrix in Section 3.2 below. And we will present some comparison theorems
for them and give a proof of Corollary 1.4. Moreover, in [8], we gave an affirmative
answer to a conjecture in [1, Chapter 9, Conjecture 22], by using the new variational
formulas for discrete time Markov chains in Section 5, we can obtain a stronger version
for this conjecture. For this, we assume that V is finite and P is an irreducible probability
transition matrix on V with the stationary distribution π. Define

zij =
∞∑
n=0

[p
(n)
ij − πj]

as the fundamental matrix of P . In fact, the fundamental matrix Z can be view as the
inverse of operator I − P on the linear space of functions f : V → R satisfying π(f) = 0.
In [1], Aldous and Fill conjectured that

trace[Z2(P ∗ − P )] ≥ 0. (1.6)

They also proved that (1.6) implies that the average hitting time for a Markov chain is
smaller than that of its reversibilizations, see Corollary 24 in [1, Chapter 9].

Corollary 1.5. Assume that X is an irreducible Markov chain on finite state space V with
probability transition matrix P and stationary distribution π. Then [Z(P ∗ − P )Z]ii ≥ 0
for i ∈ V . Consequently, trace[Z2(P ∗ − P )] ≥ 0.

The rest of the paper is organized as follows. In Section 2 and 4, we prove the main
results, Theorem 1.1 and 1.3, and in Section 3, we present several comparison theorems.
In Section 5, discrete time Markov chains are considered, and Corollary 1.5 is proven.
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2 Proof of Theorem 1.1

Fix a non-trivial subset A of V and constants λ, c ≥ 0. Consider the Poisson equation
for chain Q: {

(λ−Q)x(i) = c, i ∈ Ac;

xi = 0, i ∈ A.
(2.1)

If its solution exists, then we denote it by ϕ. Similarly, write ϕ∗ be the solution of Poisson
equation (2.1) for chain Q∗ if it exists. We can obtain a variational formula for this pair
of Poisson equations, from which we derive the proof of Theorem 1.1.

Theorem 2.1. Assume that the generator Q is bounded. Suppose that for given a non-
trivial subset A ⊆ V and λ, c ≥ 0, Poisson equations (2.1) for chains Q and Q∗ have
solutions ϕ, ϕ∗, respectively, such that ϕ, ϕ∗ ∈ L2(π) and π(ϕ) = π(ϕ∗) = 1. Then

Dλ(ϕ
∗, ϕ) = inf

f∈FA

sup
g∈GA

Dλ(f − g, f + g).

Proof. Since K is dense in L2(π), it is sufficient to prove that

Dλ(ϕ
∗, ϕ) = inf

f∈F
′
A

sup
g∈G

′
A

Dλ(f − g, f + g), (2.2)

where F
′
A = {f ∈ L2(π) : f |A = 0 and π(f) = 1} and G

′
A = {g ∈ L2(π) : g|A =

0 and π(g) = 0}.
For this, we need two inequalities:

Dλ(ϕ
∗ − g, ϕ+ g) ≤ Dλ(ϕ

∗, ϕ); (2.3)

Dλ(ϕ
∗ + g, ϕ+ g) ≥ Dλ(ϕ

∗, ϕ), (2.4)

for all g ∈ G
′
A. Indeed, from the definitions of ϕ and ϕ∗ it follows that for g ∈ G

′
A

Dλ(g, ϕ) =
∑
i∈Ac

πigi(λ−Q)ϕ(i) = cπ(g) = 0;

Dλ(ϕ
∗, g) = 〈(λ−Q)∗ϕ∗, g〉 = cπ(g) = 0.

Thus, combine them with the fact that Dλ(g, g) ≥ 0 for all g ∈ G
′
A, one finds

Dλ(ϕ
∗ − g, ϕ+ g) = Dλ(ϕ

∗, ϕ)−Dλ(g, g) ≤ Dλ(ϕ
∗, ϕ)

and
Dλ(ϕ

∗ + g, ϕ+ g) = Dλ(ϕ
∗, ϕ) +Dλ(g, g) ≥ Dλ(ϕ

∗, ϕ).

Now we return to prove (2.2). Write ϕ = (ϕ + ϕ∗)/2 and ϕ̂ = (ϕ − ϕ∗)/2. It is easy
to check that ϕ ∈ F

′
A and ϕ̂ ∈ G

′
A. Note that Qφ∗ and Q∗φ are in L2(π) since Q (Q∗) is

bounded.
For g ∈ G

′
A, define g1 = g− ϕ̂, and then g1 ∈ G

′
A is clear from the boundary conditions

of ϕ̂ and g. So if we take f = ϕ in variational formula (2.2), then (2.3) implies that

Dλ(ϕ− g, ϕ+ g) = Dλ(ϕ− ϕ̂− g1, ϕ+ ϕ̂+ g1)

= Dλ(ϕ
∗ − g1, ϕ+ g1)

≤ Dλ(ϕ
∗, ϕ).
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Thus,
Dλ(ϕ

∗, ϕ) ≥ inf
f∈F

′
A

sup
g∈G

′
A

Dλ(f − g, f + g). (2.5)

Conversely, for f ∈ F
′
A, define f1 = f − ϕ and then f1 ∈ G

′
A similarly. By setting the

test function g = ϕ̂ in (2.2), from (2.4) it follows that

Dλ(f − ϕ̂, f + ϕ̂) = Dλ(ϕ
∗ + f1, ϕ+ f1) ≥ Dλ(ϕ

∗, ϕ).

So we obtain that
Dλ(ϕ

∗, ϕ) ≤ inf
f∈F

′
A

sup
g∈G

′
A

Dλ(f − g, f + g). (2.6)

Combining (2.5) and (2.6) gives the desired result.

To prove Theorem 1.1, we specify the general Poisson equation (2.1) for the first hitting
time.

Lemma 2.2. (1) For any non-trivial subset A and λ > 0, let

ϕi =
1− Ei[exp(−λτA)]

1− Eπ[exp(−λτA)]
, i ∈ V.

Then ϕ = (ϕi : i ∈ V ) is a solution of the Poisson equation:{
(λ−Q)x(i) = λ/(1− Eπ[exp(−λτA)]), i ∈ Ac;

xi = 0, i ∈ A.
(2.7)

(2) For any non-trivial subset A, let ψi = Ei[τA]/Eπ[τA], i ∈ V . Then ψ = (ψi : i ∈ V )
is a solution of the Poisson equation:{

−Qx(i) = 1/Eπ[τA], i ∈ Ac;

xi = 0, i ∈ A.
(2.8)

Proof. From [7, Chapter 9], we know that ϕ̃ := (Ei[exp(−λτA)] : i ∈ V ) is the minimal
non-negative solution of the equation{

xi =
∑

j �=i
qij

λ+qi
xj, i ∈ Ac;

xi = 1, i ∈ A.

Multiply both sides of the first equality by λ + qi and rearrange the terms, we can see
that ϕ̃ is a solution of the equation{

(λ−Q)x(i) = 0, i ∈ Ac;

xi = 1, i ∈ A.

Since Q1 = 0, it is clear that 1− ϕ̃ is a solution of the equation{
(λ−Q)x(i) = λ, i ∈ Ac;

xi = 0, i ∈ A.
(2.9)

Thus we obtain (1) by multiplying by 1/(1−Eπ[exp(−λτA)]) both sides of equation (2.9).
By using a similar transform, we can check that (2) holds.
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We also need following lemma, which says that τA and τ ∗A are identically distributed
when started from the stationary distribution π.

Lemma 2.3. For any subset A of V , the first hitting times τA and τ ∗A have the same
Laplace transform under Pπ. Namely,

Eπ[exp(−λτA)] = Eπ[exp(−λτ ∗A)], λ > 0.

In particular, Eπ[τA] = Eπ[τ
∗
A].

Proof. Fix λ > 0. It is easy to check, as in the proof of Lemma 2.2, that ϕ∗ = ((1 −
Ei[exp(−λτ ∗A)])/(1 − Eπ[exp(−λτ ∗A)]) : i ∈ V ) is a solution of Poisson equation (2.7) for
chain Q∗. So we have

Dλ(ϕ
∗, ϕ) = 〈ϕ∗, (λ−Q)ϕ〉 =

∑
i∈Ac

πiϕ
∗
i (λ−Q)ϕ(i) =

λ

1− Eπ[exp(−λτA)]
.

But note that on the left we have

Dλ(ϕ
∗, ϕ) = 〈(λ−Q)∗ϕ∗, ϕ〉 =

∑
i∈Ac

πiϕi(λ−Q)∗ϕ∗(i) =
λ

1− Eπ[exp(−λτ ∗A)]
.

Thus the proof be complete by combining above two equalities.

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Fix a non-trivial subset A and λ > 0.
(a) We assume firstly that Q is bounded. Since ϕ which defined as at Lemma 2.2 is

square-integrable, by taking c = λ/(1 − Eπ[exp(−λτA)]) on Poisson equation (2.1), we
obtain

λ

1− Eπ[exp(−λτA)]
= inf

f∈FA

sup
g∈GA

Dλ(f − g, f + g) (2.10)

from Theorem 2.1 and Lemma 2.2-2.3.
If moreover Ei[(τ

+
i )

3] < ∞ for some i ∈ V . Take and fix a ∈ A, we have Ea[(τ
+
a )

3] < ∞
by irreducibility. For ψ

′
i = Ei[τa],∑

i∈V
πiψ

′2
i ≤

∑
i∈V

πiEi[τ
2
a ] = Eπ[(τ

+
a )

2]− πaEa[(τ
+
a )

2].

But [4, Lemma 3.4] shows that

Eπ[(τ
+
a )

2] < ∞ ⇔ Ea[(τ
+
a )

3] < ∞,

so ψ
′ ∈ L2(π). Furthermore, ψ ∈ L2(π) follows immediately by ψ ≤ ψ

′
. Similarly

ψ∗ ∈ L2(π). Now by taking λ = 0 and c = 1/Eπ[τA] in Poisson equation (2.1), from
Theorem 2.1 and Lemma 2.2-2.3, we get

1/Eπ[τA] = inf
f∈FA

sup
g∈GA

D(f − g, f + g).

(b) To prove (1) and (2) for general (unbounded) Q, we use an approximation argu-
ment. But since the proofs of them are quite similar, we shall be brief and only prove (1)
here.
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When A is a non-trivial subset with finite Ac, we will define a collapsed chain on
Va = Ac ∪ {a} (a /∈ V ). Let QA = (qAij : i, j ∈ Va) be defined by

qAij = qij, i, j ∈ Ac; qAia =
∑
j∈A

qij, i ∈ Ac;

qAai =
1

π(A)

∑
j∈A

πjqji, i ∈ Ac; qAaa = −
∑
i∈Ac

qai.

The collapsed chain admits stationary distribution πA given by πA
i = πi for i ∈ Ac and

πA
a = π(A). Then τA has the same distribution as that of τAa the hitting time to the

singleton {a} of QA-process, as indicated in [1, Section 7.2, Chapter 1]. Since QA is a
bounded operator and ϕ, ψ defined in Lemma 2.2 are square-integrable and so are ϕ∗, ψ∗.
As proved above in (a), variational formula (2.10) holds for τAa , and then for τA.

(c) For f ∈ FA, we set Bc := S (f). So Bc is finite and A ⊆ B. Applying (2.10) to
subset B, we can see that

λ

1− Eπ[exp(−λτB)]
= inf

h∈FB

sup
g∈GB

Dλ(h− g, h+ g)

≤ sup
g∈Gf

Dλ(f − g, f + g).

And the fact τB ≤ τA gives

λ

1− Eπ[exp(−λτA)]
≤ sup

g∈Gf

Dλ(f − g, f + g). (2.11)

Conversely, without loss of generality, let V = {1, 2, ...} and set En := {n, n + 1, ...}
and An := En ∪ A. Then Ac

n is finite. Applying (2.10) to subset An again gives that

λ

1− Eπ[exp(−λτAn)]
≥ inf

f∈FAn

sup
g∈Gf

Dλ(f − g, f + g)

≥ inf
f∈FA

sup
g∈Gf

Dλ(f − g, f + g).

And we get
λ

1− Eπ[exp(−λτA)]
≥ inf

f∈FA

sup
g∈Gf

Dλ(f − g, f + g), (2.12)

by passing to the limit as n → ∞. Thus combining (2.11) and (2.12) gives the desired
result. �

3 Comparison theorems

In this section, we will present some comparison theorems for the first hitting times. There
are the Monotonicity law and comparison theorems between reversible and non-reversible
Markov chains. We also give a proof of Corollary 1.4 in this section.
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3.1 Monotonicity law

Recall that Q is an irreducible and regular Q-matrix, which determines uniquely a Q-
process. In order to distinguish hitting times between different chains, we denote τ·(Q)
as the first hitting time of chain Q in this subsection. For two Q-matrices Q and K, we
say that K ≤ Q, if kij ≤ qij for any i �= j.

Theorem 3.1. Assume that K, Q be irreducible and regular Q-matrices on V with same
stationary distribution π. If K ≤ Q and K is reversible with respect to π, then for any
subset A,

Eπ[exp(−λτA(K))] ≤ Eπ[exp(−λτA(Q))], λ > 0. (3.1)

In particular, Eπ[τA(K)] ≥ Eπ[τA(Q)].

Proof. Fix a subset A and λ > 0. If A = ∅ or V , it is easy to see that inequality (3.1)
holds. Now assume that A is a non-trivial subset. Since for f with finite support,

〈f, (λ−Q)f〉 = 1

2

∑
i,j

πi(λ+ qij)(fj − fi)
2,

the assumption K ≤ Q implies

〈f, (λ−Q)f〉 ≥ 〈f, (λ−K)f〉.

By Theorem 1.1 and variational formula (1.3) for the reversible case, and taking g = 0 in
the following supremum,

λ

1− Eπ[exp(−λτA(Q))]
= inf

f∈FA

sup
g∈Gf

〈f − g, (λ−Q)(f + g)〉

≥ inf
f∈FA

〈f, (λ−Q)f〉
≥ inf

f∈FA

〈f, (λ−K)f〉

=
λ

1− Eπ[exp(−λτA(K))]
.

Remark 3.2. (1) Let ξ and η be two non-negative random variables. We say that ξ is
smaller than η in the Laplace transform order(denoted by ξ ≤Lt η) if

E[exp(−λξ)] ≥ E[exp(−λη)], for all λ > 0.

According to Theorem 3.1, we can see that τA(Q) ≤Lt τA(K) for any subset A. Further-
more, More properties of the Laplace transform order can be found in [16].

(2) Correspondingly, Monotonicity law for the asymptotic variance and the capacity
can be found in [5, 15, 17] and references therein.
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3.2 Comparison theorems between reversible and non-reversible
Markov chains

As another important application of Theorem 1.1, we construct non-reversible Markov
chains by adding anti-symmetric perturbations to reversible Markov chains and present
some properties of their first hitting times.

Let us recall some notations. Consider an irreducible Markov chain X = {Xt : t ≥ 0}
on V with generator K = (kij : i, j ∈ V ) and stationary distribution π. Assume that X
is reversible with respect to π. Recall that matrix Γ is a vorticity matrix if it satisfies
Γ1 = 0 and ΓT = −Γ, where ΓT is the transpose of matrix Γ. Assume that there exists a
nonzero vorticity matrix Γ, such that

Γij > −πikij, i �= j ∈ V. (3.2)

Define
QΓ = K + diag(π)−1Γ,

where diag(π) is defined by the diagonal matrix for vector π and diag(π)−1 is its inverse.
Then QΓ is also irreducible and it has the same stationary distribution π. Assume that
Y is the Markov chain that is determined by QΓ. Denote by τ· and τ·(Γ) the first hitting
times of chains X and Y , respectively.

The following theorem shows that the first hitting times of chains X and Y exist the
Laplace transform order.

Theorem 3.3. Let Markov chains X and Y be defined as above. Then for any subset
A ⊆ V ,

τA(Γ) ≤Lt τA under Pπ. (3.3)

In particular, Eπ[τA] ≥ Eπ[τA(Γ)].

Proof. When A = ∅ or V , it is obvious that Eπ[exp(−λτA)] = Eπ[exp(−λτA(Γ))]. We just
need to prove that the Laplace transform order (3.3) is also true for non-trivial subsets.
Note that 〈f, (λ − QΓ)f〉 = 〈f, (λ − K)f〉 for f ∈ K . From Theorem 1.1 and (1.3) it
follows that, for λ > 0,

λ

1− Eπ[exp(−λτA(Γ))]
= inf

f∈FA

sup
g∈Gf

〈f − g, (λ−QΓ)(f + g)〉

≥ inf
f∈FA

〈f, (λ−QΓ)f〉
= inf

f∈FA

〈f, (λ−K)f〉

=
λ

1− Eπ[exp(−λτA)]
.

Remark 3.4. Denote the average hitting time of chains X and Y , by T0 and T0(Γ), re-
spectively. Theorem 3.3 implies that T0 ≥ T0(Γ). In fact, the average hitting time has
closed connection with strong ergodicity and asymptotic variance, see e.g. [9, 13].

According to the properties of the Laplace transform order, we present an interesting
result for the first hitting time as follows.
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Corollary 3.5. Suppose that f : [0,+∞) → R is a completely monotone function, i.e.,
its derivatives f (n) exist and satisfy (−1)nf (n) ≥ 0, n = 0, 1, 2, .... Then

Eπ[f(τA(Γ))] ≥ Eπ[f(τA)]

provided the expectations exist. Especially, if we take f(x) = (1 + x)−n, then

Eπ[(1 + τA(Γ))
−n] ≥ Eπ[(1 + τA)

−n], n ≥ 1.

Proof. Combine Theorem 5.A.7 in [16] and Theorem 3.3, we can finish the proof easily.

Finally, we give a proof of Corollary 1.4.

Proof of Corollary 1.4. Define Γ = diag(π)(Q−Q∗)/2. It is easy to check that Γ is a
vorticity matrix and

Q = Q+ diag(π)−1Γ.

Then the assertion follows from Theorem 3.3. �

3.3 Parameterization

Based on Section 3.2, we will introduce a parameter to control the anti-symmetric per-
turbations and investigate the properties of the hitting times that viewed as functions of
the parameter.

Let X be defined as at Section 3.2. Assume that there exists a nonzero vorticity matrix
Γ satisfying (3.2). Define a family of Q-matrices on V by

Qα = K + αdiag(π)−1Γ, −1 ≤ α ≤ 1. (3.4)

Obviously, all of them have the same stationary distribution π. For any subset A ⊆ V ,
define the first hitting time to A of chain Qα by τA(α) and the average hitting time by
T0(α). The following result shows that as functions of variable α, the hitting times of Qα

have monotone and symmetry properties.

Theorem 3.6. For the reversible Markov chain X, let Qα be defined as at (3.4) with
nonzero vorticity matrix Γ satisfying (3.2). For any subset A ⊆ V and λ > 0, denote by
R(α) either Eπ[τA(α)] or T0(α). Then

(1) Eπ[exp(−λτA(α))] = Eπ[exp(−λτA(−α))] and R(−α) = R(α) for any α ∈ [−1, 1];
(2) Eπ[exp(−λτA(α))] is non-increasing for α ∈ [−1, 0] and R(α) is non-decreasing

for α ∈ [−1, 0].

Proof. (1) As we know that the dual matrix (λ − Qα)
∗ = λ − Q−α, so we get the first

assertion by Lemma 2.3.
(2) The second assertion is obvious when A = ∅ or V . In following, assume that A is

a non-trivial subset. It suffices to prove that for any α1, α2 ∈ [−1, 0] with α1 < α2 and
f ∈ FA,

sup
g∈Gf

〈f − g, (λ−Qα1)(f + g)〉 ≥ sup
g∈Gf

〈f − g, (λ−Qα2)(f + g)〉, (3.5)

which implies that Eπ[exp(−λτA(α))] is non-increasing for α ∈ [−1, 0] by variational
formula (1.1).
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Now we prove (3.5). Define N = diag(π)−1Γ. Since N is anti-symmetric with respect
to π, we have

〈f − g, (λ−Qα)(f + g)〉
= 〈f − g, (λ−K)(f + g)〉 − α〈f − g,N(f + g)〉
= 〈f − g, (λ−K)(f + g)〉+ 2α〈Nf, g〉.

(3.6)

And also

〈f − (−g), (λ−Qα)(f + (−g))〉 = 〈f − g, (λ−K)(f + g)〉 − 2α〈Nf, g〉
by symmetry of K. Thus,

〈f − g, (λ−Qα)(f + g)〉 < 〈f − (−g), (λ−Qα)(f + (−g))〉
for α ∈ [−1, 0] and function g ∈ Gf with 〈Nf, g〉 > 0. This means that the supremum in
(3.5) can not be attained by those g such that 〈Nf, g〉 > 0, so it is sufficient to consider
the function g ∈ Gf such that 〈Nf, g〉 ≤ 0. Apply (3.6) to those g to get that

〈f − g, (λ−Qα1)(f + g)〉 ≥ 〈f − g, (λ−Qα2)(f + g)〉,
for −1 ≤ α1 ≤ α2 ≤ 0. Thus (3.5) holds.

Finally, we can also prove the monotone properties of R(α) in a similar way via
variational formula (1.2).

Remark 3.7. In fact, we proved that the commute time have monotone and symmetry
properties, and so as the average hitting time on discrete time Markov chains in [8].

4 Proof of Theorem 1.3

In this section, we will firstly prove a new version of variational formulas (1.4)-(1.5) for
the subset A with finite Ac, and then use an approximation argument to complete the
proof of Theorem 1.3. But for the reason that the approximation is very similar to that in
the last part of the proof of Theorem 1.1, we choose to omit it after we prove the following
result for A with finite Ac.

We introduce some notations firstly. Fix a non-trivial subset A with finite Ac. In what
follows, denote matrix R = (rij : i, j ∈ V ) restricted on Ac by Ra, which is defined by

raij = rij, i, j ∈ Ac,

and define πa the measure on Ac by πa
i = πi for i ∈ Ac.

Recall that Q is symmetric with respect to π, so Q
a
is symmetric with respect to πa .

For λ > 0, (λ−Q
a
)−1 is the resolution for Q

a
-process (paij(t) : i, j ∈ Ac), that is,

(λ−Q
a
)−1 =

∫ ∞

0

e−λtpaij(t)dt,

so (λ−Q
a
)−1 is well-defined and self-adjoint on L2(Ac, πa). Let

Aλ = (λ−Qa)(λ−Q
a
)−1(λ−Qa)∗.

Then Aλ is a self-adjoint operator on L2(Ac, πa). Since Q is irreducible, we can see that
Qa must be not conservative. Thus A := (−Qa)(−Q

a
)−1(−Qa)∗ is also well defined, and

self-adjoint on L2(Ac, πa).
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Proposition 4.1. With the notations in Theorem 1.1,

(1) for non-trivial subset A with finite Ac and λ > 0,

λ

1− Eπ[exp(−λτA)]
= inf

πa(f̃)=1
〈f̃ ,Aλf̃〉πa

= inf
f∈FA

sup
g|A=0

{2Dλ(f, g)−Dλ(g, g)};

(2) for non-trivial subset A with finite Ac,

1/Eπ[τA] = inf
πa(f̃)=1

〈f̃ ,A f̃〉πa

= inf
f∈FA

sup
g|A=0

{2D(f, g)−D(g, g)}.

Remark 4.2. Gaudillière and Landim [6] gave a variational formula of capacity for non-
reversible Markov chains, from which we borrow some ideas for our proof here.

The following lemma is a key to prove Proposition 4.1.

Lemma 4.3. Fix a non-trivial subset A with finite Ac.

(1) For λ > 0, let ϕ, ϕ∗ be the solutions of Poisson equations (2.7) for chains Q and
Q∗, respectively. Then ϕ := (ϕ+ ϕ∗)/2 on Ac is the unique solution of the Poisson
equation

Aλx(i) =
λ

1− Eπ[exp(−λτA)]
, i ∈ Ac. (4.1)

(2) Let ψ, ψ∗ be the solutions of Poisson equations (2.8) for chains Q and Q∗, respec-
tively. Then ψ = (ψ + ψ∗)/2 on Ac is the unique solution of the Poisson equation

A x(i) = 1/Eπ[τA], i ∈ Ac.

Proof. We only prove (1) here while the proof of (2) is similar. It follows from Lemma
2.3 that for all i ∈ Ac,

(λ−Qa)∗ϕ∗(i) = (λ−Qa)ϕ(i) =
λ

1− Eπ[exp(−λτA)]
.

So it implies that

(λ−Qa)∗ϕ(i) =
1

2
[(λ−Qa)∗ϕ(i) + (λ−Qa)∗ϕ∗(i)]

=
1

2
[(λ−Qa)∗ϕ(i) + (λ−Qa)ϕ(i)]

= (λ−Q
a
)ϕ(i),

and thus

Aλϕ(i) = (λ−Qa)ϕ(i) =
λ

1− Eπ[exp(−λτA)]
, i ∈ Ac.
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Proof of Proposition 4.1. We just give the proof of (1) here, since that of (2) is
similar. Fix a non-trivial subset A with finite Ac and λ > 0.

From Lemma 4.3 and the fact πa(ϕ) = 1 it follows that

〈ϕ,Aλϕ〉πa =
λ

1− Eπ[exp(−λτA)]
. (4.2)

For any f̃ : Ac → R with πa(f̃) = 1, define f̃1 = f̃−ϕ and then πa(f̃1) = 0. Using Lemma
4.3 again gives

〈f̃1,Aλϕ〉πa =
λπa(f̃1)

1− Eπ[exp(−λτA)]
= 0,

so that
〈f̃ ,Aλf̃〉πa = 〈ϕ,Aλϕ〉πa + 〈f̃1,Aλf̃1〉πa ≥ 〈ϕ,Aλϕ〉πa ,

since Aλ is positive definite on L2(Ac, πa). Therefore,

λ

1− Eπ[exp(−λτA)]
= inf

πa( ˜f)=1
〈f̃ ,Aλf̃〉πa .

Notice that (λ−Q
a
)−1 is a bounded positive definite operator on L2(Ac, πa), [11, Theorem

3.1.2] provides that

〈f̃ , (λ−Q
a
)−1f̃〉πa = sup

g̃
{2〈f̃ , g̃〉πa − 〈g̃, (λ−Q

a
)g̃〉πa}.

For any f̃ , g̃ on Ac with πa(f̃) = 1, we can extend f̃ , g̃ to V by letting f |Ac = f̃ ,
g|Ac = g̃ and f, g vanish on A. Thus π(f) = πa(f̃) = 1, and

〈(λ−Qa)∗f̃ , g̃〉πa = Dλ(f, g), 〈g̃, (λ−Qa)g̃〉πa = Dλ(g, g),

so that
〈f̃ ,Aλf̃〉πa = sup

g|A=0

{2Dλ(f, g)−Dλ(g, g)}.

This completes the proof. �
Next, we will give an interesting application of Theorem 1.3. Recall the notations

given as at Section 3.2. In Theorem 3.3, we prove that

Eπ[exp(−λτA(Γ))] ≥ Eπ[exp(−λτA)], for all A ⊆ V.

What we are interested in is the inverse problem: whether there exists a subset A such
that the above strict inequality holds. This answer is yes as follows.

Theorem 4.4. Let QΓ = K+diag(π)−1Γ for some vorticity matrices which satisfy (3.2).
Then QΓ = K if and only if one of the following conditions fulfilled:

(1) there exists λ > 0 such that Eπ[exp(−λτA(Γ))] = Eπ[exp(−λτA)] for any A ⊆ V ;

(2) Eπ[τA] = Eπ[τA(Γ)] for any A ⊆ V .
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Proof. It is obvious that the necessity is true, and for the sufficiency, since the proofs
under (1) and (2) are similar, we only prove the assertion by assuming that there exists
λ > 0 such that

Eπ[exp(−λτA(Γ))] = Eπ[exp(−λτA)], A ⊆ V. (4.3)

For convenience, denote N = diag(π)−1Γ. We will prove that N = 0 so that QΓ = K.
Obviously, the diagonal of N is dull since Γ is anti-symmetric. We are going to prove that

nij = 0 for i �= j. (4.4)

Before doing that, we need do some preparations. Fix a non-trivial subset A with finite
Ac and denote by ϕΓ the solution of Poisson equation (4.1) for chain QΓ. By equality
(4.2) in the proof of Proposition 4.1,

λ

1− Eπ[exp(−λτA(Γ))]
= 〈ϕΓ, (λ−Qa

Γ)(λ−Ka)−1(λ−Qa
Γ)

∗ϕΓ〉πa

= 〈ϕΓ, (λ−Ka)ϕΓ〉πa + 〈ϕΓ, N
a∗(λ−Ka)−1NaϕΓ〉πa ,

(4.5)

where Qa
Γ, Ka and πa are defined as above. For the chain K, since it is reversible with

respect to π, we use (1.3) to its first hitting time and obtain

λ

1− Eπ[exp(−λτA)]
= inf

πa(f)=1
〈f, (λ−Ka)f〉πa

≤ 〈ϕΓ, (λ−Ka)ϕΓ〉πa .

(4.6)

But according to hypothesis (4.3) and (4.5)-(4.6), it must holds

〈ϕΓ, N
a∗(λ−Ka)−1NaϕΓ〉πa = 〈NaϕΓ, (λ−Ka)−1NaϕΓ〉πa = 0.

Thus
NaϕΓ = 0, (4.7)

since (λ−Ka)−1 is positive definite on L2(Ac, πa).
Now we prove (4.4) step by step. Without loss of generality, let V = {1, 2, ...}. Take

A = {3, 4, ...}, from the definition of ϕΓ it follows that

ϕΓ(1), ϕΓ(2) > 0 and ϕΓ(k) = 0, k ≥ 3. (4.8)

Combine (4.7)-(4.8) with the fact n11 = n22 = 0, we obtain that na
12 = na

21 = 0, i.e.,
n12 = n21 = 0. A similar argument shows that n13 = n23 = n31 = n32 = 0 when we take
A = {4, 5, ...}. Thus inductively nij = 0 for any i �= j.

5 Discrete time Markov chains

In this section, we consider discrete time Markov chains. Recall that V is a countable
state space, on which P = (pij : i, j ∈ V ) is the probability transition matrix of an
irreducible discrete time Markov chain X = {Xn : n ≥ 0}. Assume that the chain X
admits the unique stationary distribution π = (πi : i ∈ V ):∑

i∈V
πipij = πj, j ∈ V.
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Let τ·(τ+· ) denote the first hitting(return) time of X. Similar to the Dirichlet form Dλ in
continuous time case, we denote a new Dirichlet form Eλ(λ ≥ 0) for chain X by

Eλ(f, g) = 〈f, (I − e−λP )g〉, for f, g ∈ L2(π),

with the natural convention E := E0.
A result analogous to Theorem 1.1 and 1.3 holds for discrete time Markov chains, we

write down it in following corollary.

Corollary 5.1. For the discrete time Markov chain X,

(1) for any non-trivial subset A ⊆ V and λ > 0,

1− e−λ

1− Eπ[exp(−λτA)]
= inf

f∈FA

sup
g∈GA

Eλ(f − g, f + g)

= inf
f∈FA

sup
S (g)⊆S (f)

{2Eλ(f, g)− Eλ(g, g)};
(5.1)

(2) for any non-trivial subset A ⊆ V ,

1/Eπ[τA] = inf
f∈FA

sup
g∈Gf

E(f − g, f + g)

= inf
f∈FA

sup
S (g)⊆S (f)

{2E(f, g)− E(g, g)}. (5.2)

In particular, if there exists i ∈ V such that Ei[(τ
+
i )

3] < ∞, then Gf in (5.2) can be
replaced by GA.

Proof. For the assertion (2), we just replace Q by I − P in the proofs of variational
formulas (1.2) and (1.5), we can complete its proof easily. Now, fix λ > 0 and a non-
trivial subset A. As presented in [7, Chapter 6], (Ei[exp(−λτA)] : i ∈ V ) is the minimal
non-negative solution of the equation{

xi = e−λ
∑

j∈V pijxj, i ∈ Ac;

xi = 1, i ∈ A.

So by some simple transforms, we obtain that

φi =
1− Ei[exp(−λτA)]

1− Eπ[exp(−λτA)]
, i ∈ V

is a solution of Poisson equation{
(I − e−λP )x(i) = 1−e−λ

1−Eπ [exp(−λτA)]
, i ∈ Ac;

xi = 0, i ∈ A.
(5.3)

Now using the arguments like the ones for Poisson equation (2.7) to (5.3) gives the desired
result.
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To prove Corollary 1.5, we need a monotone property of hitting times. For this, denote
by P ∗, P the dual and reversible parts of P with respect to π, respectively. Define

Pα = (1− α)P + αP ∗, 0 ≤ α ≤ 1. (5.4)

Then Pα is an irreducible probability transition matrix and P1/2 = P . They all have
the same stationary distribution π. Denote the first hitting time and the average hitting
time of chain Pα by τ·(α), T0(α), and then the monotone and symmetry properties in
Theorem 3.6 can be extended to discrete time Markov chains by the new variational
formulas (5.1)-(5.2).

Corollary 5.2. Let chains Pα be defined as at (5.4). For any subset A ⊆ V and λ > 0,
denote by R(α) either Eπ[τA(α)] or T0(α). Then

(a) Eπ[exp(−λτA(α))] = Eπ[exp(−λτA(1− α))] and R(α) = R(1− α) for α ∈ [0, 1].
(b) Eπ[exp(−λτA(α))] is non-increasing for α ∈ [0, 1/2] and R(α) is non-decreasing

for α ∈ [0, 1/2].

Now, we can give a proof of Corollary 1.5 as follows.
Proof of Corollary 1.5. Assume that the state space V is finite and fix i ∈ V . As
shown in the proof of Corollary 24 in [1, Chapter 9], when α ∈ [0, 1/2),

d

dα
Ej[τi(α)] =

1

πi

∑
k

[(zα)ik − (zα)jk]
∑
l

(p∗kl − pkl)(zα)li, j ∈ V.

Average over j and use that fact
∑

j πj(zα)jk = 0 to derive

d

dα
Eπ[τi(α)] =

1

πi

∑
k

∑
l

(zα)ik(p
∗
kl − pkl)(zα)li

=
1

πi

[Zα(P
∗ − P )Zα]ii

=
1

(1− 2α)πi

[Zα(P
∗
α − Pα)Zα]ii,

where Zα is the fundamental matrix of Pα and τi(α) is the first hitting time to state i
of chain Pα. Notice that Corollary 5.2 gives that Eπ[τi(α)] is non-decreasing on [0, 1/2].
So d

dα
Eπ[τi(α)] ≥ 0, i.e., [Zα(P

∗
α − Pα)Zα]ii ≥ 0 for α ∈ [0, 1/2). In particular, [Z(P ∗ −

P )Z]ii ≥ 0 for i ∈ V and then the proof be complete by trace[Z2(P ∗−P )] = trace[Z(P ∗−
P )Z]. �
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