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1. Introduction
In this paper, we consider the chemotaxis model for two coupled parabolic equations

ug =V - (Dw)Vu) = V- (S(w)Vv) + f(u), z€Q, t>0,

vy = Av— v+ g(u), e, t>0, (11)
ou _ 2 _ T €I t>0, '
u(x,0) = ug(z), v(z,0)=uvy(x), T € Q,

where Q@ C R™ (n > 2) is a bounded domain with smooth boundary, % denotes differentiation with respect
to the outward normal v on 0€2. The initial functions ug and vy are assumed to be nonnegative.

Systems of this type were initially introduced by Keller and Segel [12,13] to describe the aggregation of
cells (bacteria). More specifically, the movement of cells is (partially) directed by the concentration gradient
of a signal substance which is produced by cells themselves. This phenomenon, also referred to as chemotaxis,
plays an important role in various biological processes such as bacterial aggregation, pattern formation and
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cancer invasion (cf. [8] for a survey providing numerous biological examples). In system (1.1), u denotes
the cell density and v is the concentration of the chemical signal. The positive function D represents the
diffusivity of the cells, and the nonnegative function S measures the chemotactic sensitivity. The functions f
and g are the growth of v and the production of v, respectively. In particular, the importance of both
nonlinear diffusion D(u) and nonlinear sensitivity S(u) was initially emphasized in [18], where the authors
proposed the presence of a so-called volume-filling effect.

Tt is an important question whether solutions remain bounded or blow up in finite/infinite time. In the
case of linear signal production (g(u) = u), when the cell growth is neglected (f = 0), Tao and Winkler [19]
proved that solutions remain bounded under the condition that % < cu® with a < % and ¢ > 0 for all
u > 1, provided that Q is a convex domain and D(u) satisfies some other technical conditions. Afterwards,
Ishida et al. [11] generalized the result obtained in [19] to non-convex domains. As to the case when logistic
source f(u) is emphasized, Zheng [28] considered problem (1.1) under the choices that D(u) = (1 +u)~%,
S(u) = u(l+u)’~t and f(u) =r — pu”, it is shown that if 0 < a + 8 < max{k — 1+ a,2},or =k —1
and g is large enough, then all solutions are global and uniformly bounded. In addition, for researches on
the corresponding parabolic—elliptic problems, we refer to [5,27] and the references therein.

In comparison to problems with linear signal production, studies on chemotaxis model (1.1) (as well as
its parabolic—elliptic variant) with general signal production g(u) are much less complete. When there is
no logistic dampening, Liu and Tao [15] analyzed system (1.1) upon the particular choices that D(u) = 1,
S(u) = u and g(u) = u?, they proved the global boundedness of solutions when 0 < v < 2. The same
conclusion is true for the parabolic—elliptic variant [24], where the second equation is replaced by 0 =
Av + g(u) — ﬁ Jo 9(u). Moreover, it is presented in [24] that if Q is a ball and v > 2, then there exists
initial data such that the corresponding radially symmetric solution blows up in finite time, hence v = % is
critical. When the effect of logistic kinetics is taken into consideration, the parabolic—elliptic version related
to problem (1.1) with linear diffusion D(u) = 1 are investigated, we refer to Zheng et al. [29], Galakhov
et al. [6], Hu and Tao [10], these works established global existence and boundedness of classical solutions.
However, only few results concerning the fully parabolic system (1.1) have been found. In space dimension
n = 2, the authors [30] obtained the global existence of bounded solutions under some technical conditions.
In addition, for the studies on the asymptotic behavior of global solutions, we recommend the reader to see
the recent papers [4,16,25].

Based on the above observations, the goal of the present work is to investigate the existence of global
bounded solutions to the fully parabolic system (1.1). Throughout this paper, we assume that the initial
data (ug,vo) satisfies

ug € C°(Q) is nonnegative with ug # 0, (1.2)
vp € C1(Q) is nonnegative. '
The functions D, S € C?([0, 00)) fulfill S(0) = 0 and
do(1+u)"* < D(u) <di(14u)~%, 0<Su)<siu(l+u)l? (1.3)

for all u > 0 with some do,d;,s; > 0 and «a,a;, 3 € R. Moreover, we assume that f € C°([0,00)) with
f(0) >0 and g € C'([0,00)) such that

flu) <ru—pu®, 0<g(u) <gu” forall u>0, (1.4)

where r € R, u,g1,7>0and k > 1.
Under these hypotheses, our main results read as follows.
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Theorem 1.1. Let n > 2, f =0 and (ug,vo) satisfy (1.2). Suppose that D, S and g fulfill (1.3) and (1.4). If
0<y<1and

2
a+p+y<1l+ E,
then problem (1.1) admits a nonnegative classical solution (u,v) which is globally bounded.
Theorem 1.2. Let n > 2 and (ug,vo) satisfy (1.2). Suppose that D, S, f and g fulfill (1.3) and (1.4).

(i) If B+~ < k, then problem (1.1) admits a nonnegative classical solution (u,v) which is globally bounded.
(ii) Assume B+~ = k. Then there exists pug > 0 such that if p > g, then problem (1.1) admits a nonnegative
classical solution (u,v) which is globally bounded.

Remark 1. When v = 1 and 2 is a bounded convex domain, Theorem 1.1 is consistent with Theorem 0.1
n [19]; when § =+ =1 and k = 2, Theorem 1.2 coincide with Theorem 1 in [26].

Under the framework of Theorem 1.2, it is a natural question whether suitably strong logistic dampening
can enforce the obtained global bounded solutions to furthermore stabilize toward homogeneous steady
states. In fact, some precedent works give affirmative answers for models with v = 1 [22,3]. We further
underline that the asymptotic behavior of solutions to problem (1.1) remains unknown. According to [22,
3,16], for the prototypical choices f(u) = ru — pu® and g(u) = u?, it is our conjecture that the bounded
solution guaranteed by Theorem 1.2 has the property:

To. 1 oo
lu(-,t) — (ﬁ)kil e — 0 and |[jv(-t)— (—+)k'zl L) — 0 as t— oo,

provided that the logistic dampening is strong enough. On the other hand, for the local-in-time classical
solution guaranteed by Lemma 2.1 below, it is also meaningful to detect the possibility to exceed carrying
capacities to an arbitrary extent when logistic growth is sufficiently weak [23].

This paper is organized as follows. Section 2 gives the local existence of classical solutions to system (1.1)
and presents some useful lemmas as preliminaries. In Section 3, without logistic source, we give a proof of
Theorem 1.1. In Section 4, we take the effect of logistic source into account and prove the boundedness
result exhibited in Theorem 1.2.

2. Preliminaries

To begin with, let us state a basic result on local existence of classical solutions without proof, see the
details in [9,21,19,1] and [30].

Lemma 2.1. Letn > 1 and (ug, vo) satisfy (1.2). Suppose that D, S, f and g fulfill (1.3) and (1./). Then there
exist Trnae € (0,00] and a pair (u,v) of nonnegative functions from C°(Q x [0, Tynaz)) N C?H(Q x (0, Thnaz))
solving problem (1.1) classically. Moreover,

either Tae = 00, or limsup(|ju(-, )|z~ o) + [v(-, 1)l 1= () = oo

max

The following lemma shows some fundamental properties of solution (u,v) to problem (1.1) without
logistic source.
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Lemma 2.2. Letn > 1, f =0 and (ug,vo) satisfy (1.2). Suppose that D, S and g fulfill (1.3) and (1.4), then
the total mass of u is conserved in the sense that

||U(-,t)||L1(Q) = ||u0||L1(Q) fO?” all t € (Omiaz>- (21)

Moreover, if 0 < v <1, then for any s € [1, ﬁ), there exists C = C(s,7v) > 0 such that

o, )lwrs) < C for all t€ (0, Thmax), (2.2)
where (ny — 1)+ := max{ny — 1,0}.

Proof. The mass conservation property (2.1) can be derived by integrating the first equation in (1.1) over .
The assertion (2.2) follows from a method of Neumann semigroup estimates (cf. [14, Lemma 1]). O

The following lemma plays an important role in removing the requirement for convexity of domains, the
proof of which can be found in [17, Lemma 4.2].

Lemma 2.3. Let n > 1 and o € C%(Q). If g—f =0 on 09, then

o|Vy[?

ov

< 2kq|VY|? on 09,
where kg > 0 is an upper bound for the curvatures of 0S).

We proceed to give a lemma referred to as a variation of maximal Sobolev regularity, as obtained in [11,
Lemma 2.1] and [26, Lemma 2.2].

Lemma 2.4. Let n > 1 and m satisfy n < m < oco. Consider the following problem

ze=A0Az—z+w, (z,t)€Qx(0,T),

2z =0, (z,t) € 9Q x (0,T),

z(x,0) = zo(z), x €.
Then for each zg € W2™(Q) and any w € L™(0,T; L™(Q)), there exists a unique strong solution
z € WhH™(0,T; L™(2)) N L™(0,T; W2™()).

Moreover, if ty € [0,T) satisfies z(-,to) € W2™(Q) with % = 0 on 09, then there exists C(m) > 0

such that
T
//emT|AZ|md[EdT
to Q

T
<C(m) / / e dzdr + C(m)e™ (|12, t0) [Ty + 182, 10) [Ton )
to Q



X. Tao et al. / J. Math. Anal. Appl. 474 (2019) 733-747 737

3. Global boundedness without logistic source
With f = 0, the goal of this section is to establish uniform-in-time bounds for v and Vv with respect

to the norm in LP(Q)) in quantitative for arbitrarily large p. To begin with, we adjust some parameters. If
0<y< 1ando¢+6+7<1+%7thenwecanﬁxse [1,ﬁ) such that

1 1 1
Yy——<-<1l4+——a-p. (3.1)
n s n
We choose some a, b fulfilling

n n 1
1 in{—— d b =, —
<a<m1n{n_ } an >max{2,27},

S
27 (s —2)+

then there exist p > max{1+ %*, 1 +a —a;} and ¢ > 1 + 5 large enough satisfying

-2 2la+p—1| 1 _ =
PR+ TS ) < <phta+28-2,

n—2 1
e <1-a
n—2

n .;5 < b’
— }7;_
q< S5,

and hence, it is easy to verify that

-2 28 —2 1
n-2 praw26-2 1L o502, (3.2)
n p—« a
2 1 —2
1-S<><c1-222 (3.3)
s a ng
and
n-2 2y 1 2 1, 2 2(q — 1)
— < -<—4+-(1-= d ——=> 3.4
n p—a b n+q( n) an b—1 y (3:4)

for all p > p and ¢ > ¢q. We are now in the position to establish a key proposition as below.

Proposition 3.1. Let n > 2, f =0 and (ug, vo) satisfy (1.2). Suppose that D, S and g fulfill (1.3) and (1.4).
If0<~vy<1and

2
atf+y<1l+ o
then for all p € [1,00) and each q € [1,00), there exists C = C(p, q, o, a1, B,7) > 0 such that
lu(-)ller) <C  and [|[V(-,t)|pa) £ C  forall t € (0, Thaz)-

Proof. Let p > p and g > ¢. Define

z

p
(1 —a=2
z)::// +0 dodp for z >0,
00
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here (1.3) implies that ¢ is well-defined and nonnegative. Multiplying the first equation in (1.1) by ¢'(u),
integrating by parts over 2, we obtain

d
G [t = / ' (u) D(w)| Vuld + / #'(w)S(w)Vu - Voda
Q
=— /(1 + )P~ VulAdx + /(1 + u)Pme? 15;((1;)) Vu - Vudz

Q Q

<_ /(1 )P VufPda + 2—1/(1 + u)PH2 V|| Volde
0
Q Q

2

2d2
Q Q

1
g__/(1+u)p 2|7y 2y +

5 (1 + u)Prot28-217y|2de, (3.5)

we have used (1.3) and Young’s inequality in the last two inequalities. According to (3.5), we write

d 2 s _
o /¢(u)dx+ W/|V(1 +u) "7 d < 2d2 (1 + u)PHot28-217y| 2 dz. (3.6)
Q Q

By a straightforward computation, we get A|Vv|? = 2|D?v|? + 2Vv - VAw. Utilizing the second equation
in (1.1) and the pointwise estimate |Av|? < n|D?v|?, we have

2
(|Vo|?); + E|AU|2 + 2|Vo]? < A|Vv|? 4+ 2Vv - Vg(u). (3.7)

Testing (3.7) by |Vo[?(@~1) and recalling Lemma 2.3, we can find some positive constant C; = C;(q) such
that

1 2
—%/|Vv|2qdm+—/|Vv|2(q_1)|Av|2da:+2/|Vv|2qu

n

Q Q Q
§/|VU|2(Q_1)A|VU|2dx+2/|Vv|2(q_1)Vv'Vg(u)dx
Q Q
2
—a=1) [ IV 29w + [ vupen A as
Q o0

—2(¢g-1) / Vo2 =2V |Vo|? - Vug(u)dz — 2/ |Vo2@=D Avg(u)da

<__/\w2<q 2)|V|Vv|2|2dx+2ng/|Vv|2qd5

/|Vv|2(q 1)|Av| dr + (2(g —1) + /\VU\Q(Q 1) 2(u)dx
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<_—2(qqg Y /|V|Vv|q|2dx+2/m/|Vv|2qu+%/\Vv\Q(q_l)|Av|2dm
Q Q

+@la- 1)+ 5) [ IVoPa g )

Q
S——/IVIWI"I dw+01/wv\2qu+ /|v 26—V Av|?da
C@g-1)+ / Vo260 g (u) (3.8)

here we have used the trace inequality (cf. [7, Proposition 4.22, Proposition 4.24])

260 wl[Z200) < va”L2 )+ Cul|wllizq)
a

(3.8) along with (1.4) implies

/|v Page + 11 /|V|Vv| Pdx

<g?(2(q—1) + g) /u%\vo\?(q—l)d:p +(CL —2) / |Vo|?dz. (3.9)
Q Q

We combine (3.6) with (3.9) to see that

d 1 2 p-a

<Cs /(1+u)p+°‘+2'8_2\VU\2dm+CQ/|VU|2qd3:
Q Q

+ Cs /(1 + u)? | Vo2 Vg, (3.10)
Q

where Cy = max{%, g3(2(qg—1)+ %),C1—2} > 0. Since a,b > 1, we can use Holder’s inequality to estimate
0
the integrals on the right hand side of (3.10) according to

/(1 + u)PTet202 gy 2de < (/(1 + u)<P+a+2B*2>adx)%(/ Vo[ d)a (3.11)
Q Q Q
and
/(1+u)27|vu|2<q*1>da: < (/(1+u )27 da) s ( /|vu|2<q DY gy (3.12)
Q Q

where o’ = %45 > 1and V' = b_Ll > 1. By virtue of (2.1) and (3.2), we employ the Gagliardo—Nirenberg
inequality to get
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(/(1 + ) (Prat28-ag,y g

2(p+a+2B 2)
Q

=[l(1 +w)*=

2a p+a+2B 2

2(p+a+28-2)6 poo  2ptot26-2)(1-0)
p—o == —a
<G|V + )T || 20 11 +w) =] ’

Lr—a(Q)
2(p+0<+2/3 2)
+ Cs)|(14u) "2

()

§C4(/ V(14 u)=" |2dx)7p+2t2§_29 + Oy, (3.13)
Q

p—a

where 0 = 2

TG ralF )
- S

1+:D01

(0,1), and Cj5,Cy are some positive constants depending on p,« and §. In
view of (3.3), we use (2.2) and the Gagliardo—Nirenberg inequality once again to obtain

( / Vo2 )2 =|[Vol7|

2
q
L% (@)
Q
5
q q
<Cs|V|Vv| HLZ(Q)H\VU\ || +C5H|V | HL .
<Co( [ 19IVelPdn)’ + (3.14)
Q
where § = gj_?;g% € (0,1

), C5 = C5(q) and Cs = Cs(q,y) are positive constants. Substituting (3.13)
(3.14) into (3.11), we can find a positive constant C7 = C7(p, ¢, o, 5, ) fulfilling

Cy /(1 + w)PHet28=2 gy 2 dx
Q

g@(/ V(1 +u)¥|2dx)7”*?—?’29(/ IV|Vo|?[2dz) e + Cy. (3.15)
Q Q

Similarly, in light of (3.4), Lemma 2.2 along with the Gagliardo—Nirenberg inequality indicates that

(/(1 +w)PPda)t = |1+ w) =7,
5 Lr=a(Q)

< 08(/ V(14 u)"2° Pde) 725 + Cs,
Q
and

Y 1 2((1 1)
( / VRO da)d = [T
Q

2 (a=1)&
< Co( [ [VIVu|!]"dx) 7
Q)
Q

= Cs(p,(l,’y) and C19 = 09(

+ Cy
with some positive constants Cy

), where
_ o  p—a 4L _a4 __ _gq
0=+ : 1 o€ (0,1) and =12 2§‘1—1)b 2(q—1)
____,’_p (e
n 2 2

(0,1).
aatd
Then it follows from (3.12) that
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Cy /(1 + u)?| Vo2 Vg
Q

<Cof / V(1 + )5 Pde) 5 / V[ V]1 )
Q

+ Cho, (3.16)

where C9 = C1o(p, ¢, @,7y) > 0. Inserting (3.15) and (3.16) into (3.10) results in

d

& [+ |Vv|2q)dx+ /|v (14 )" 2da
Q

pta+28— 29

gc7</| (1+u) " Pda) =5 /|V|W| 2d)%
Q

pa 5 246 2 (¢=1)8
+ Cio( | IV +w) = |“de)r=—= ([ |V|Vv|?|*dx)
Q Q

+CQ/|VU|2qd(II+C7+Clo. (317)
Q
If
26—-2 4§ 26 — 1)
prat28-2, 0 e 20Dy (3.18)
p—a q p—a q

then applying Young’s inequality to (3.17), we can find Cy; = C11(p, q, @, 3,7v) > 0 such that

d

1
o (¢(u)+§|Vv|2q)dx+ /|v (1+u)=" |?da
Q

/ |Vo|22dx + C;. (3.19)
Q

In order to obtain (3.18), we define

a+28-2

o). PHat26-2 g  pred2iez_ L1411
(q) = — to=—T"7 5= T1 _1,.¢
p-a ¢ o3t m o wTats

n N 1 -1 1 1

ry e 20 a=10 -5 tw s

(@) ="—2+ S1_1.patTI_ 1 .aq°

p q n 2+ 2 n 2 s

Thanks to (3.1), we know that
h(g(p)) <1 and h(q(p)) <1,

where ¢(p) := B5%s. By a continuity argument, for any p > p, there exists ¢ € [g,q(p)) close to ¢(p)

satisfying

h(g) <1 and h(q) <1
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which together with the fact that ¢(p) — 400 as p — oo guarantees (3.18) for all p > p and ¢ > ¢. Recalling
the definition of ¢, we have from (1.3) and the Gagliardo—Nirenberg inequality that

Ydr < —— /1—|—upda:
/(b dop( -1) ( )
1 p—a 2P
[(1+wu) = ("5,
Lr—a(Q)
(3.20)

- dop(p — 1)
< Cua / V(1 +u) 5 [2dz) 75 + Oy,

€ (0,1) and Cy2 = C12(p, @) > 0. By the same argument, there exist some positive

o p—o
where o = lz 1+p _
constants 013, C14 depending on ¢ and ~y such that

1
Eue? / Voltde = (2 + Coll Vo

< clg(/ IV |Vo|?2dz)” + Cis
(3.21)

Q
g—1 2
< o /|V|Vv|q| dx + Cha,

where 7 = l%_‘;_%i_g (0,1). It can be observed from (3.19)—(3.21) that
n 2 s
d 2 2
pn (p(u) + |Vv| q)dx+Cl5 d(u)dx) 7 —|— |Vol*ddx < Cie
Q Q
with some positive constants C15 = C15(p, @) and Ci6 = Ci4(p, ¢, @, 3,7), this allows us to have
d 2 1 2
— [ (@(w) + =[Vv[*)dz + Ci7 [ ($(u) + 5\VU| f)dx < Cis,
Q

dt
Q
where C17 = Ci7(p, @) and Cy5 = C15(p, ¢, @, 5,7) are some positive constants. By a straightforward ODE
1 forallt € (0, Thax)

comparison argument, we arrive at

/(qs( ) 1|vu|2q)dxgmax{/(¢(uo L1002 da
Q

Q
It follows from (1.3) that (1 + u)PT*1~% < Cig(¢p(u) + u + 1) with C19 = Cio(p, @, a1) > 0, and hence, for

any p > p and each ¢ > ¢, we can find Cyg = Ca(p, ¢, o, a1, B,7) > 0 fulfilling

/(1 +u)Pt*r=%dy < Oy and /|VU|2’1dx <Oy forallte (0,Tha)
o)
. g

Q

These end our proof. O
Proof of Theorem 1.1. Theorem 1.1 is an immediate consequence of Proposition 3.1 and [19, Lemma A.1]
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4. Global boundedness with logistic source

In this section, we establish the global existence and boundedness of classical solutions to problem (1.1)
with logistic source, and the following proposition is of great help to get the main result.

Proposition 4.1. Let n > 2 and (ug,vo) satisfy (1.2). Suppose that D, S, f and g fulfill (1.3) and (1.4).

(i) If B+~ < k, then for any p € [1,00), there exists C = C(p, 8,7, r, i, k) > 0 such that
lu(-, )| Lry < C forall t € (0, Trnax)-

(ii) Assume B+~ = k. Then for any p € [1,00), there exists p, = up(p, 8,7, 1, k) > 0 with the property
that if i > p,, then there exists C = C(p, 8,7,7, u, k) > 0 such that

u(-,t)||Ley < C for all t € (0, Tinga)-

Proof. We abbreviate to := min{1, 37,4, }. Let p > max{1,n(k — 8) + 1 — k} and t € (to, Tinas). We
multiply the first equation in (1.1) by (1 +u)P~!, then (1.3) and (1.4) entail that

1d

pdt
Q

(14 u)Pdx

=—(p—1) [ A +w)?2D(u)|Vul*dz + (p — 1) | (1 +u)?"2S(u)Vu - Vodzx
/ /

+ /(1 +w)Pt f(u)dx

Q

<(p-1) /(1 +u)P2S(u)Vu - Vodr + r/(l + )P tudr — u/(l + u)PLuFda
Q Q Q

<(p-1) /(1 +u)P"28(u)Vu - Vudz + r/(l + u)P " ludz
Q

= 1/ (1 + u)Pth= ldm—l—,u/(l—l—u)p_ldw

Q Q
/ u)P~28(u)Vu - Vuda 4 21 /(1 + u)Pdx
Q 0
2]51 / 14+ w)PtFtde 4 O, (4.1)
Q

where C; = Cy(p,r, ) > 0. Let

_ptk-1
=5

then p > n(k — ) + 1 — k ensures m > n. It follows from (4.1) that
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ld/ m
- 1+upda:+—/1+updx
g [arwra 2 [as

Q Q
<(p-1) /(1 +u)P72S(u)Vu - Vodx + (E +2ry) /(1 + u)Pdx
Q b Q
a 2k’u 1 /(1 +u)P e + O

Q
/ 14+ u)P~2S(u)Vu - Vodr — —/ (1 +u)P Yz + Cy
Q
with some positive constant Co = Ca(p, r, i, k). Define
¢1(2 /1+O’p25 o)do for z > 0.
0

The inequality p > n(k — 8) + 1 — k along with k& > /3 implies p+ 8 — 1 > 0, we infer from (1.3) that

0<¢i1(2) < %(1 + 2)PTA=1 for 2 > 0.

Integrating by parts, we therefore get that

(p—1) [ (1 +u)?P28(u)Vu - Vodz
/

z/Vdn(u) - Vudz

si(p—1) / +8—1
<—2 /(1 p A
S+ p-1 (1+w) |Av|dx
Q

—2k+1
Q

< M /(1+u)p+k_1dx+03/|Av|pﬁ;1dx,

where C5 = C5(p, 8, i, k) > 0. Combining (4.2) with (4.3) yields

1
jt/(l—i—u)pdx—i——/ (14 u)Pdx
P
< - leil /(1+u)p+k_1dx+C’3/|Av|mdx+C2,

Q Q
this together with the variation-of-constants formula shows that
1
— [ (1 4 u(x,t))Pdx
b

Q
t

2k+1 // =T (1 4 )PHR 1dxdTJrC'g//efm(t*T)|Av|mdzd7'

to Q

< -

(4.2)
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t
1
+Cy / e T dr 4 — et to) / (1+ u(@,t0))"dx
p
Q

to

t t
< - ok+1 //e_m(t_T)(].+U)p+k_ld.’td7'+03//e_m(t—T)|AU|mdxdT+C4’ (44)

where Cy = €2 4 % Jo(1+u(x, t))Pdz. Recalling (1.4) and Lemma 2.4, it can be obtained from (4.4) that

1 p
5/(1+u(x t))Pdx

< - 2k+1// =T (1 4 )PHR 1dsz+C’5// mt=7) g™ (u)dzdr

+ Cse™ ™ ([[o(, o) | Fon () + IAV( t0) | Fon ) + Ca

Sfﬁ%// (1 )P dadr
to

+ C5g{n//6_m(t_f)um7dxd7' + Cs, (4.5)
where C5 = Cs(p, B, 1, k) > 0 and Cg = Cs(|v(-, t0)| Tmea) + |Av(-,to)] ?m(g)) + Cy.
In the case of S+ < k, we have mvy < p+k—1, then we can find a positive constant C7 = C7(p, 8,7, i, k)

fulfilling
t
059?1//6 m(t—7) m'ydxd7_<w// —m(t— T)(1+u)p+k 1da:d7'—|—C’7.
to

In conjunction with (4.5), this results in

1
];/(1 + u(z,t))Pde < Cs + C7 for all t € (to, Tmaz)-
Q

In the case of g+ v =k, it can be easily verified that my = p + k — 1. Define

Hp = 2k+105971ﬂ
If p > pp, then (4.5) enables us to conclude that

1
- /(1 + u(z,t))Pde < Cg for all t € (to, Tmaz)-
b

Q

Hence we complete the proof. 0O

Proof of Theorem 1.2. We take py > max{l,n(k — 8) + 1 — k} large enough fulfilling (A.8)—(A.10) in [19].

Thanks to Proposition 4.1, if
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B+ <k,

or
B+y=Fk and p > po = fip,,
then we can find a positive constant C7 = C7(5,~,r, 1, k) satisfying
lu(-,t)||Lro () < Cr7 for all t € (0, Thaa),

this together with the LP — LY estimates for the Neumann semigroup (cf. [20, Lemma 1.3], [2, Lemma 2.1])
warrants the existence of ¢ > n + 2 and g2 > "TH fulfilling

S(u(-,t))Vu(-,t) € L7(Q) and f(u(-t)) € L=(Q) for all t € (0, Traz)-
By means of a Moser-type iteration [19, Lemma A.1], we arrive at
()| < Cs  for all t € (0, Thaz),

where Cg = Cs(8,7,r, u, k) > 0. Now we fix ¢y > n and apply a standard semigroup technique once again
to see that

||’U<.’t)||W1*qO(Q) < C’9 for all t € (Ovaam)y

where Co = Co(f3,7,7, f1,k) > 0. The boundedness of |[v(-,t)|[ () follows readily from the embedding
theorem. These prove Theorem 1.2. O

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 11571020 and
No. 11671021). The authors wish to thank the anonymous reviewers for many valuable comments and
suggestions to improve the expressions.

References

[1] X.R. Cao, Boundedness in a quasilinear parabolic-parabolic Keller—Segel system with logistic source, J. Math. Anal. Appl.
412 (2014) 181-188.

[2] X.R. Cao, Global bounded solutions of the higher-dimensional Keller—Segel system under smallness conditions in optimal
spaces, Discrete Contin. Dyn. Syst. Ser. A 35 (2015) 1891-1904.

[3] X.R. Cao, Large time behavior in the logistic Keller-Segel model via maximal Sobolev regularity, Discrete Contin. Dyn.
Syst. Ser. B 22 (2017) 3369-3378.

[4] M.A.J. Chaplain, J.I. Tello, On the stability of homogeneous steady states of a chemotaxis system with logistic growth
term, Appl. Math. Lett. 57 (2016) 1-6.

[5] K. Djie, M. Winkler, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear
Anal. 72 (2) (2010) 1044-1064.

[6] E. Galakhov, O. Salieva, J.I. Tello, On a parabolic—elliptic system with chemotaxis and logistic type growth, J. Differential
Equations 261 (2016) 4631-4647.

[7] D.D. Haroske, H. Triebel, Distributions, Sobolev Spaces, Elliptic Equations, European Mathematical Society, Zurich, 2008.

[8] T. Hillen, K.J. Painter, A user’s guide to PDE models for chemotaxis, J. Math. Biol. 58 (2009) 183-217.

[9] D. Horstmann, M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations 215 (1) (2005)
52-107.

[10] B.R. Hu, Y.S. Tao, Boundedness in a parabolic-elliptic chemotaxis-growth system under a critical parameter condition,
Appl. Math. Lett. 64 (2017) 1-7.
[11] S. Ishida, K. Seki, T. Yokota, Boundedness in quasilinear Keller—Segel systems of parabolic—parabolic type on non-convex

bounded domains, J. Differential Equations 256 (2014) 2993-3010.


http://refhub.elsevier.com/S0022-247X(19)30110-6/bib43616F3134s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib43616F3134s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib43616F3135s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib43616F3135s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib43616F3137s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib43616F3137s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib43543136s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib43543136s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib44573130s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib44573130s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib4753543136s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib4753543136s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib48543038s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib48503039s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib48573035s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib48573035s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib48543137s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib48543137s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib4953593134s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib4953593134s1

X. Tao et al. / J. Math. Anal. Appl. 474 (2019) 1783-747 747

[12] E.F. Keller, L.A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol. 26 (3) (1970)
399-415.

[13] E.F. Keller, L.A. Segel, Model for chemotaxis, J. Theoret. Biol. 30 (2) (1971) 225-234.

[14] R. Kowalczyk, Z. Szymanska, On the global existence of solutions to an aggregation model, J. Math. Anal. Appl. 343
(2008) 379-398.

[15] D.M. Liu, Y.S. Tao, Boundedness in a chemotaxis system with nonlinear signal production, Appl. Math. J. Chinese Univ.
Ser. B 31 (2016) 379-388.

[16] Y.Y. Liu, Y.S. Tao, Asymptotic behavior in a chemotaxis-growth system with nonlinear production of signals, Discrete
Contin. Dyn. Syst. Ser. B 22 (2) (2017) 465-475.

[17] N. Mizoguchi, P. Souplet, Nondegeneracy of blow-up points for the parabolic Keller-Segel system, Ann. Inst. H. Poincaré
Anal. Non Linéaire 31 (2014) 851-875.

[18] K.J. Painter, T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q.
10 (2002) 501-543.

[19] Y.S. Tao, M. Winkler, Boundedness in a quasilinear parabolic—parabolic Keller—Segel system with subcritical sensitivity,
J. Differential Equations 252 (2012) 692-715.

[20] M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller—Segel model, J. Differential Equa-
tions 248 (2010) 2889-2905.

[21] M. Winkler, Boundedness in the higher-dimensional parabolic—parabolic chemotaxis system with logistic source, Comm.
Partial Differential Equations 35 (2010) 1516-1537.

[22] M. Winkler, Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic
dampening, J. Differential Equations 257 (2014) 1056-1077.

[23] M. Winkler, Emergence of large population densities despite logistic growth restrictions in fully parabolic chemotaxis
systems, Disctete Contin. Dyn. Syst. Ser. B 22 (2017) 2777-2793.

[24] M. Winkler, A critical blow-up exponent in a chemotaxis system with nonlinear signal production, Nonlinearity 31 (2018)
2031-2056.

[25] T. Xiang, Dynamics in a parabolic—elliptic chemotaxis system with growth source and nonlinear secretion, Commun. Pure
Appl. Anal. 18 (2019) 255-284.

[26] C.B. Yang, X.R. Cao, Z.X. Jiang, S.N. Zheng, Boundedness in a quasilinear fully parabolic Keller—Segel system of higher
dimensional with logistic source, J. Math. Anal. Appl. 430 (2015) 585-591.

[27] J.S. Zheng, Boundedness of solutions to a quasilinear parabolic—elliptic Keller-Segel system with logistic source, J. Differ-
ential Equations 259 (2015) 120-140.

[28] J.S. Zheng, Boundedness of solutions to a quasilinear parabolic-parabolic Keller-Segel system with a logistic source,
J. Math. Anal. Appl. 431 (2015) 867-888.

[29] P. Zheng, C.L. Mu, X.G. Hu, T. Tian, Boundedness of solutions in a chemotaxis system with nonlinear sensitivity and
logistic source, J. Math. Anal. Appl. 424 (2015) 509-522.

[30] P. Zheng, C.L. Mu, Y.S. Mi, Global existence and decay for a chemotaxis-growth system with generalized volume-filling
effect and sublinear secretion, NoDEA Nonlinear Differential Equations Appl. 24 (2017) 13.


http://refhub.elsevier.com/S0022-247X(19)30110-6/bib4B533730s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib4B533730s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib4B533731s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib4B533038s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib4B533038s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib4C543136s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib4C543136s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib4C697554616F3137s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib4C697554616F3137s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib4D533134s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib4D533134s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib50483032s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib50483032s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib54573132s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib54573132s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib573130s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib573130s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib57696E6B6C65723130s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib57696E6B6C65723130s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib573134s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib573134s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib573137s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib573137s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib57696E6B6C65723138s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib57696E6B6C65723138s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib5869616E673138s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib5869616E673138s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib59434A5A3135s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib59434A5A3135s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib5A68656E673135s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib5A68656E673135s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib5A68656E674A533135s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib5A68656E674A533135s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib5A4D48543135s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib5A4D48543135s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib5A4D4D3137s1
http://refhub.elsevier.com/S0022-247X(19)30110-6/bib5A4D4D3137s1

	Boundedness of solutions to a quasilinear parabolic-parabolic chemotaxis model with nonlinear signal production
	1 Introduction
	2 Preliminaries
	3 Global boundedness without logistic source
	4 Global boundedness with logistic source
	Acknowledgments
	References


