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Nonlinear parabolic equations of “divergence form,” ut = (ϕ(u) ψ(ux))x, are 
considered under the assumption that the “material flux,” ϕ(u) ψ(v), is bounded 
for all values of arguments, u and v. In literature such equations have been referred 
to as “strongly degenerate” equations. This is due to the fact that the coefficient, 
ϕ(u) ψ′(ux), of the second derivative, uxx, can be arbitrarily small for large value 
of the gradient, ux. The “hyperbolic phenomena” (unbounded growth of space 
derivatives within a finite time) have been established in literature for solutions 
to Cauchy problem for the above-mentioned equations. Accordingly one can expect 
a correct statement of the initial-boundary value problem for such equations only 
under additional assumptions on the problem data. In this paper we describe 
several restrictions, under which the initial-boundary value problems for strongly 
degenerate parabolic equations are well-posed.

© 2019 Elsevier Inc. All rights reserved.

0. Introduction

The following Cauchy problem was studied in [5]:

ut = ∂

∂x

(
ϕ(u)ψ(ux)

)
, (0.1)

u(x, 0) = u0(x),

where ϕ(ξ) is a smooth and strictly positive function, and ψ(s) is a smooth and odd function satisfying 
ψ′(s) > 0 for s ∈ R and

lim
s→∞

ψ(s) = ψ∞ < ∞. (0.2)
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It is easy to see that under the above assumptions the function ψ′(s) is not uniformly bounded away 
from zero, or equation (0.1) is degenerate. Following [5], we refer to equation (0.1) as “strongly degenerate.” 
Indeed, in some applications with governing equations of type (0.1) the term under the divergence operator 
in the right hand side, ϕ(u) ψ(ux), represents a material flux (see [2,3] for the reason to study such strongly 
degenerate equations). In many cases such a flux is supposed to increase unboundedly as |ux| → ∞, even in 
the case of degeneracy for large gradient. Therefore, so far as the boundedness of the flux, |ϕ(u)ψ(ux)| < C, 
is established, it implies that the gradient is bounded as well, |ux| < C1. Classical solvability to the problem 
under consideration follows from an “a priori” estimate: sup(|u| + |ux|) < C2 (see [9,10], for example). On 
the contrary, the flux ϕ(u)ψ(ux) in equation (0.1) is restricted by the condition (0.2) if the solution itself is 
bounded, |u(x, t)| ≤ C0. In a number of cases the estimate of solution in the uniform norm can be obtained 
through the maximum principle [12]. It was proved in [5] that the spatial derivative, ux(x, t), of the solution 
to Cauchy problem for (0.1) may grow to infinity within a finite time, whose fact gives rise, in particular, 
to the discontinuity of solution itself (cf. the shock waves in hyperbolic problems, or just the hyperbolic 
phenomena which mean that the space derivatives of the solution grow unboundedly within a finite time). 
Note that in [5] increasing initial profiles, u0(x), were considered.

Initial-boundary value problem for equation (0.1) in the simple case of ϕ(u) ≡ 1 with Dirichlet boundary 
conditions was studied in [13], and shown that it is well-posed for any smooth initial profile. In the case of 
Neumann type boundary conditions similar result was proved in [15] under certain additional assumptions. 
The so-called “Lyapunov Functionals” technique has been used in the proofs (see [16]). It was based on 
inequality

sup
x,t

|ψ(ux)| ≤ sup
x

|ψ(u′
0)|, (0.3)

which gives an estimate of the derivative, ux, in case

ψ−∞ := lim
s→−∞

ψ(s) = −ψ∞. (0.4)

The fact

ψ(0) = 0 (0.5)

was also essentially used. Note that re-scaling the problem by ψ̂ = ψ + c, we can easily achieve either 
symmetric property of the limits in (0.4) or vanishing property in (0.5), but in general only one of them.

In both cases of Dirichlet and Neumann type boundary conditions gradient of the solution could be 
evaluated by applying maximum principle to the derivative, v(x, t) := ux(x, t). “Lyapunov Functionals” 
technique, developed in [15] for the case ϕ ≡ 1 (see [4,16] for more details concerning such functionals), was 
then used in [14] to study more general type of function ϕ(u). Namely, the estimate

sup
x,t

|ϕ(u)ψ(ux)| ≤ sup
x

|ϕ(u0)ψ(u′
0)| (0.6)

was established for the solution to the problem with Dirichlet boundary conditions. Such an inequality, 
similar to estimate (0.3), gives the desired bound on the gradient, ux, in a special case of “small variation 
of ϕ(u).”

Note that the cases ϕ′(s) ≡ 0 and ϕ′(s) �= 0 qualitatively differ from each other. Let us discuss them 
in detail. Really, the estimate of the gradient, |ux(x, t)|, plays a key role in studying the solvability for 
equations of type (0.1). In case the gradient is bounded, |ux| ≤ M1 (note that the fact |u| ≤ M follows from 
the maximum principle in the case of Dirichlet boundary conditions for equation (0.1)), the equation may 
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be regarded as a regular, non degenerate parabolic equation. Classical solvability of different boundary value 
problems in such cases has been well studied upon the proper smoothness conditions (see, e.g., [9–12,16]).

Estimate for the gradient, |ux| ≤ M1 (under the assumption that the solution itself is bounded as well, 
|u| ≤ M), was proved for a solution to a more general quasilinear equation

ut = a(x, u, ux)uxx + b(x, u, ux), (0.7)

when the non-linear terms satisfy the famous “quadratic growth condition.” For the case of one spatial 
dimension under study, the above-mentioned growth condition takes the form (see [9,10,12,16])

∣∣∣∣ b(x, u, ux)
a(x, u, ux)

∣∣∣∣ ≤ C(u) f(ux) with
∞∫
1

s

f(s) ds = ∞. (0.8)

Remark 0.1. Roughly speaking, the function f(s) in (0.8) has not more than quadratic growth at infinity. 
Obviously, for f(s) = 1 +s2+α the integral in (0.8) converges for any α > 0. However, growth like f(s) ∼ s2lns
is acceptable as well.

Violation of condition (0.8) may cause to give a “derivative blow-up” solution, i.e., hyperbolic phenomenon
(see, e.g., [1,7,8,12,15]). Precisely, it has been proved that the bounded classical solution can not possess 
a finite derivative even within a certain time interval. In other words, the classical solution does not exist 
after a finite time.

Suppose that ϕ(s) ≡ constant in (0.1), and compare it with its general form in (0.7). We observe that the 
function b ≡ 0, and therefore we can put f(s) ≡ 1 and the growth condition (0.8) is fulfilled. Alternatively, 
for the more general case ϕ′ �= 0 in (0.1) we have

b(x, u, ux)
a(x, u, ux)

= ϕ′(u)ψ(ux)ux

ϕ(u)ψ′(ux) ,

and the integral in (0.8) is finite in view of (0.2):

∞∫
1

sψ′(s)
sψ(s) ds =

∞∫
1

d (lnψ(s)) < ∞.

Thus, the growth condition in (0.8) fails.
The present paper is organized as follows. In Section 1 we consider the case that the multiplier ϕ(x, u, ux)

is not the subject of differentiation; besides, the maximum principle is not applicable in estimating the 
derivative ux. Global-in-time solvability theorem is established under certain conditions. In Section 2 we 
give a precise statement of the problems for equation (0.1) to study in the following sections. In Section 3 we 
prove the “global-in-time” existence theorem for a sufficiently small initial profile. In Section 4 solvability to 
the problem under study is established for arbitrary initial datum under certain restrictions on the nonlinear 
term ψ(ux) in (0.1). Finally, in Section 5 a condition for the existence theorem is formulated in terms of the 
so-called generalized distance between the initial profile and a set of singular solutions to the corresponding 
ordinary differential equation.

1. Solvability of degenerate equation in non-divergence form

In this section in a rectangle QT = {(x, t) ∈ (a0, a1) × (0, T )} we consider the following problem

ut = ϕ(x, u, ux) ∂ [ψ(ux) + εf(x)] , (1.1)

∂x
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αiux − hi(u)|x=ai
= 0 (i = 0, 1), (1.2)

u(x, 0) = u0(x). (1.3)

All of the functions in (1.1)–(1.3) are supposed to be smooth enough, say f , ϕ, ψ, hi, and u0 ∈ C4; 
ε > 0 is a constant. Constants αi (i = 0, 1) in (1.2) are supposed to take values 0 or 1, αi ∈ {0, 1}. 
Moreover, the boundary conditions in (1.2) are supposed to satisfy relations α2

i +[h′
i(s)]2 �= 0 (to have “non 

trivial” boundary conditions). In case αi = 0 we suppose that the corresponding boundary condition is 
of Dirichlet type, u|x=ai

= constant (this assumption is done in order to exclude the “absurd cases,” like 
exp(u)|x=ai

= 0, e.g.). Note that under the above assumptions, all of the classical boundary conditions, 
namely of Dirichlet, Neumann, and the “flux” type, are admissible. In the following we also assume that 
the compatibility conditions (see [12] for details) among the initial and boundary conditions are fulfilled.

Nonlinearities (for both smooth functions) are supposed to be as:
ϕ(x, u, ux) ≥ δ = constant > 0, and ψ(s) is a monotone increasing

ψ′(s) > 0 (1.4)

and bounded function with “symmetric limits,”

− lim
s→−∞

ψ(s) = −ψ−∞ = ψ∞ = lim
s→∞

ψ(s) (ψ∞ �= 0). (1.5)

For any function ψ(s) having the above properties there exists a unique zero, λ,

ψ(λ) = 0. (1.6)

Let us introduce the following notation:

gi(u) =

⎧⎨
⎩

λ for αi = 0,

hi(u) for αi = 1;
(1.7)

Gi(u) := ψ(gi(u)) + εf(ai), (1.8)

and the sequence of functionals

Jn(u) := 1
m

a1∫
a0

u∫
0

(
G2n+1

0 (ξ) −G2n+1
1 (ξ)

)
dξ dx

+
a1∫

a0

[ ux∫
λ

(ψ(η) + εf(x))2n+1 dη + ux

m

(
(x− a1)G2n+1

0 (u) − (x− a0)G2n+1
1 (u)

)]
dx, (1.9)

where n ∈ N and m is the length of spatial interval,

m := a1 − a0. (1.10)

Obviously, for any smooth function u(x, t) we have (see (1.8))

d Jn
dt =

a1∫
(ψ(ux) + εf(x))2n+1

uxt dx +
a1∫ (

x− a1

m
G2n+1

0 (u) − x− a0

m
G2n+1

1 (u)
)
uxt dx
a0 a0
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+2n + 1
m

a1∫
a0

(
(x− a1)G2n

0 (u)ψ′(g0)g′0(u) − (x− a0)G2n
1 (u)ψ′(g1)g′1(u)

)
uxut dx

+ 1
m

a1∫
a0

(
G2n+1

0 (u) −G2n+1
1 (u)

)
ut dx. (1.11)

Integrations by parts give the following identities:

a1∫
a0

(ψ(ux) + εf(x))2n+1
uxt dx = (ψ(ux) + εf(x))2n+1

ut

∣∣∣a1

x=a0

−(2n + 1)
a1∫

a0

(ψ(ux) + εf(x))2n (ψ′(ux)uxx + εf ′(x))ut dx, (1.12)

1
m

a1∫
a0

(
(x− a1)G2n+1

0 (u) − (x− a0)G2n+1
1 (u)

)
uxt dx

=
(

x− a1

a1 − a0
G2n+1

0 (u) − x− a0

a1 − a0
G2n+1

1 (u)
)
ut

∣∣∣∣
a1

x=a0

− 1
m

a1∫
a0

(
G2n+1

0 (u) −G2n+1
1 (u)

)
ut dx

−2n + 1
m

a1∫
a0

(
(x− a1)G2n

0 (u)ψ′(g0)g′0(u) − (x− a0)G2n
1 (u)ψ′(g1)g′1(u)

)
uxut dx. (1.13)

Note that the terms out of integrals in relations (1.12) and (1.13) possess the same values with opposite 
signs for any smooth function, u(x, t), satisfying the boundary conditions in (1.2) (see (1.8)). Therefore, 
from (1.11)–(1.13) we obtain that, for a smooth solution, u(x, t), to problem (1.1)–(1.3) all the functions 
Jn(u)(t) do not increase with time:

d Jn(u)
dt = −(2n + 1)

a1∫
a0

(ψ(ux) + εf(x))2n u2
t

ϕ(x, u, ux)
dx ≤ 0,

or, the inequalities

Jn(u(x, t)) ≤ Jn(u0(x)) (1.14)

hold for all n ∈ N.
Below we describe the basic idea how relation (1.14) leads to the estimate of the “flux,” |ψ(ux) +

εf(x)| < C.
First, note that the functionals Jn(u) in (1.9) can be represented in the form

Jn =
a1∫

a0

ux∫
λ

(ψ(η) + εf(x))2n+1 dη dx +
u∫

0

G2n+1
0 (ξ) dξ

∣∣∣∣∣∣
x=a0

−
u∫

0

G2n+1
1 (ξ) dξ

∣∣∣∣∣∣
x=a1

. (1.15)

Now we are going to evaluate from below the integral (with respect to x) term in (1.15).
For a given function u(x, t) and any t > 0 consider the following decomposition of the spatial interval 

[a0, a1] = E0 ∪ E+ ∪ E−, where
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⎧⎪⎨
⎪⎩

E+(t) :=
{
x ∈ [a0, a1]

∣∣ ux > λ, ψ(ux) + εf(x) ≥ 0
}
,

E−(t) :=
{
x ∈ [a0, a1]

∣∣ ux < λ, ψ(ux) + εf(x) ≤ 0
}
.

(1.16)

Remark 1.1. By the definition in (1.6) we have ψ(ux) > 0 for x ∈ E+(t) and ψ(ux) < 0 for x ∈ E−(t), so 
that either ψ(ux) = 0 or sgnψ(ux) sgnf(x) < 0 for x ∈ E0(t). Therefore, the estimate

|ψ(ux) + εf(x)| ≤ ε |f(x)| (1.17)

holds for x ∈ E0(t).

By virtue of (1.16) and (1.6) it is easy to see that

∫
E+∪E−

ux∫
λ

(ψ(η) + εf(x))2n+1 ψ′(η)
ψ′(η) dη dx

≥ (maxψ′(s))−1

2n + 2

⎛
⎝ ∫

E+∪E−

(ψ(ux) + εf(x))2n+2 dx−
∫

E+∪E−

(εf(x))2n+2 dx

⎞
⎠ . (1.18)

Similarly, in view of (1.17), we have
∣∣∣∣∣∣
∫
E0

ux∫
λ

(ψ(η) + εf(x))2n+1 dη dx

∣∣∣∣∣∣ ≤ C

∫
E0

(εf(x))2n+2 dx (1.19)

with some constant C > 0. Both (1.18) and (1.19) yield that

a1∫
a0

ux∫
λ

(ψ(η) + εf(x))2n+1 dη dx ≥ (maxψ′(s))−1

2n + 2

a1∫
a0

(ψ(ux) + εf(x))2n+2 dx− C

a1∫
a0

(εf(x))2n+2 dx (1.20)

with some constant C > 0.
By similar reasons to the above we obtain that the estimate
∣∣∣∣∣∣∣

a1∫
a0

u′
0∫

λ

(ψ(η) + εf(x))2n+1 dη dx

∣∣∣∣∣∣∣ ≤
(minψ′(s))−1

2n + 2

a1∫
a0

(ψ(u′
0) + εf(x))2n+2 dx + C

a1∫
a0

(εf(x))2n+2 dx (1.21)

holds, where the minimum is calculated for |s| ≤ supx |u′
0(x)|.

Using inequalities (1.20), (1.21), (1.14) and representation (1.15), we get

a1∫
a0

(ψ(ux) + εf(x))2n+2 dx ≤ (2n + 2)C

⎛
⎝ a1∫

a0

(ψ(u′
0) + εf(x))2n+2 dx

+
a1∫

a0

(εf(x))2n+2 dx +
u0∫
u

G2n+1
0 (ξ) dξ

∣∣∣
x=a0

−
u0∫
u

G2n+1
1 (ξ) dξ

∣∣∣
x=a1

⎞
⎠ , (1.22)

where the constant C depends on the data, but, which is important, does not depend on n. Extracting 
2n + 2 root from both sides of (1.22), and then passing to the limit as n → ∞, we obtain
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sup
x,t

|ψ(ux) + εf(x)| ≤ max
{

sup
x

|ψ(u′
0) + εf(x)|, sup

i,t
|Gi(u(ai, t))|, sup

x
|εf(x)|

}
. (1.23)

If the traces of solution u|x=ai
are bounded, then estimate (1.23) yields that under a certain restriction 

on the data the gradient, ux(x, t), is bounded too.

Theorem 1.1. Assume that the initial profile u0(x) in (1.3) and the traces at the boundary of solution to 
problem (1.1)–(1.3) satisfy inequalities

sup
x

|ψ(u′
0(x))| + 2ε sup

x
|f(x)| < ψ∞, (1.24)

sup
i,t

|ψ(gi(u(ai, t))) + εf(ai)| + ε sup
x

|f(x)| < ψ∞. (1.25)

Then the solution u(x, t) to problem (1.1)–(1.3) satisfies the estimate

sup
x,t

|ux(x, t)| ≤ M1. (1.26)

Remark 1.2. In special cases, depending on the boundary conditions in (1.2) and some properties of the 
solution, Theorem 1.1 can be formulated in a better way by evaluating the different terms in (1.22) or (1.23). 
Below we give some of such observations.

1) In case of Dirichlet boundary conditions, αi = 0, i.e., u(ai, t) = constant (i = 0, 1), it follows from
(1.6)–(1.8) that

Gi(u) = εf(ai);

2) For the Neumann type conditions in (1.2), αi = 1, and hi(u) = Hi, function Gi(u) in (1.8) is nothing 
but

Gi(u) = ψ(Hi) + εf(ai);

3) Suppose that ux(x, t) ≥ λ and f(x) ≥ 0. Then, it follows from (1.6) that for all t ≥ 0

|ψ(ux) + εf(x)| = ψ(ux) + εf(x);

4) Suppose that u ≥ 0, (−1)i(hi(u) − λ) ≥ 0, and (−1)if(ai) > 0. Then we have

(−1)i
u∫

0

G2n+1
i (ξ) dξ ≥ 0.

Remark 1.3. Note that the estimate for the gradient in (1.26) in a number of cases can be obtained through 
the maximum principle. Indeed, let ε = 0 and ϕ = ϕ(x, u) in (1.1). After formal differentiation of equation
(1.1) we obtain that the gradient, v(x, t) := ux(x, t), solves the following equation:

vt = ϕ(x, u)ψ′(v)vxx + ϕψ′′(v)v2
x + (ϕx + ϕu v)ψ′(v)vx. (1.27)

Any constant, v = C, satisfies equation (1.27). Therefore, the solution to Dirichlet problem for equation
(1.27) remains bounded, which corresponds to the bounded spatial gradient of solution to Neumann problem 
for equation (1.1). Similar observation is true in the case of αi = 1 in (1.2) along with the “maximum principle 



JID:YJMAA AID:22989 /FLA Doctopic: Partial Differential Equations [m3L; v1.252; Prn:1/03/2019; 11:35] P.8 (1-19)
8 M.M. Lavrentiev, A. Tani / J. Math. Anal. Appl. ••• (••••) •••–•••
inequalities,” (−1)ihi(u) ≥ 0 (i = 0, 1). In this case the solution to equation (1.1) remains bounded, and 
therefore the gradient, v = ux, is bounded as well through the maximum principle for equation (1.27).

Remark 1.4. It is to be noted that in the general case of equation (1.1) with ε �= 0 and ϕ = ϕ(x, u, ux), 
maximum principle is not applicable to evaluate the gradient, v = ux. Such a principle is effective (see [12]) 
only under the additional assumption that for all x and u the inequality

ε (f ′′ϕ + f ′ϕx + f ′ϕuux)ux ≥ −b1u
2
x − b2

holds with some non-negative constants b1 and b2.

Remark 1.5. Note that in case αi = 1 and h′
i(u) �= 0 (i = 0, 1) in (1.2) (the “flux type” boundary conditions) 

it is necessary to add a certain restriction on hi(u) for the global-in-time classical solvability. As is well 
known, “strong” enough “flux” through the boundary may cause blow-up solutions (see [6] and the references 
therein).

Remark 1.6. By the maximum principle in [12], the solution to problem (1.1)–(1.3) remains bounded, 
supx,t |u(x, t)| < M , for suitable boundary conditions if

εϕ(x, u, 0)f ′(x)u ≥ −|u|Φ(|u|) − b2, (1.28)

where b2 ≥ 0, and Φ(τ) is a non-decreasing positive function of τ ≥ 0 satisfying

∞∫
1

dτ
Φ(τ) = ∞.

Remark 1.7. As have been noted in [9,10], the estimate

sup
x,t

(|u| + |ux|) ≤ M2 (1.29)

for the solution to problem of type (1.1)–(1.3) leads to the existence theorem under the proper smoothness 
conditions on the data.

Therefore, in view of Remarks 1.6 and 1.7, Theorem 1.1 leads to solvability theorem in a number of cases. 
Note also that once the estimate of the gradient, ux(x, t), is established, the equation under study could be 
regarded non-degenerate. Hence, the unique classical solvability follows. Below we formulate such a result.

Theorem 1.2. There exists a global-in-time unique classical solution to problem (1.1)–(1.3) if one of the 
following conditions is fulfilled:

I: α0 = α1 = 1 and h0 = h1 = 0 in (1.2), λ = 0 in (1.6), εf ′(x) ≥ 0, u′
0(x) ≥ 0, inequality (1.28) holds, 

and

sup
x

ψ(u′
0(x)) + ε (sup

x
f(x) − inf

x
f(x)) < ψ∞.

II: The initial profile u0(x) in (1.3) satisfies inequality (1.24) and one of the options below is fulfilled:

1) α0 = α1 = 0 in (1.2);
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2) α0 = α1 = 1 and hi = Hi in (1.2), inequality (1.28) holds, and

sup
i,t

|ψ(gi(Hi)) + εf(ai)| + ε sup
x

|f(x)| < ψ∞; (1.30)

3) inequalities εf ′(x) ϕu < 0, (−1)i(hi(u) − λ) ≥ 0, (−1)if(ai) ≥ 0, and u0 ≥ 0 hold along with (1.28), 
and

sup
i

|ψ(gi(u0(ai))) + εf(ai)| + ε sup
x

|f(x)| < ψ∞; (1.31)

4) inequalities (1.28) and (1.25) hold.

Remark 1.8. Note that case II, 1) in Theorem 1.2 gives the unique classical solvability without any reference 
to the maximum principle. Boundedness of the solution, supx,t |u| < M , follows from the estimate of the 
gradient, supx,t |ux| < M1, by integration.

As was already mentioned, it is sufficient to establish estimate (1.29) to prove any statement of The-
orem 1.2 (see [9,10], e.g.). Thus, we just give brief comments. In the case of I comparison theorem gives 
ux ≥ 0, so that from 3) of Remark 1.2 we rewrite (1.23) as

sup
x,t

ψ(ux) − ε inf
x

f(x) ≤ sup
x

ψ(u′
0) + ε sup

x
f(x),

which gives (1.26), and, in view of Remark 1.6, (1.29) as well.
Similarly, in order to get (1.26) we make use of the following arguments. In case II, 1) we use (1.25), 

improved by 1) in Remark 1.2, to get (1.26) with the help of (1.23). Estimate supx,t |u| < M follows from 
(1.26) by integration due to the boundary conditions. In case II, 2) inequality (1.25) in Theorem 1.1 is 
replaced by (1.30), while for II, 3) we have u(x, t) ≥ 0 through the comparison principle. Then, we use 4) 
in Remark 1.2 to evaluate the last two terms of the right hand side in (1.22). Therefore, we replace (1.25)
in Theorem 1.1 with (1.31).

2. Equation in divergence form: statement of the problem

In a rectangle QT = {(x, t) ∈ (a0, a1) × (0, T )}, for equation

ut = ∂

∂x

(
ϕ(u)ψ(ux)

)
= ϕ(u)ψ′(ux)uxx + ϕ′(u)ψ(ux)ux (2.1)

we consider one of the following boundary conditions:

u |x=a0 = u |x=a1 = A; (2.2)
∂u

∂x

∣∣∣∣
x=a0

= ∂u

∂x

∣∣∣∣
x=a1

= 0; (2.3)

(u, ux) |x=a0 = (u, ux) |x=a1 ; (2.4)

and the initial condition

u(x, 0) = u0(x). (2.5)

Remark 2.1. In the sequel we shall refer to problem (2.1), (2.2), (2.5) as Problem 2 (P2), while the case that 
boundary condition (2.3) or (2.4) replaces (2.2) will be referred to as Problem 3 or 4 (P3 or P4) in turn.
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All the data are supposed to be sufficiently smooth, i.e., u0 ∈ C3+α([a0, a1]) with α ∈ (0, 1) and ϕ, ψ ∈
C4(R). Moreover, the initial profile u0 is assumed to satisfy the compatibility conditions of zero-th and first 
orders with the boundary data for all cases under study (see [12], for instance).

Furthermore, we assume that the function ϕ(s) is strictly positive

ϕ(s) ≥ δ > 0, (2.6)

and, in the case of Dirichlet boundary condition (2.2), satisfies an additional restriction

ϕ′(A) = 0; (2.7)

the function ψ(s) is monotonically increasing and bounded

ψ′(s) > 0, |ψ(s)| < C, (2.8)

and satisfies lims→∞ ψ′(s) = 0 and s2ψ′(s), s2ψ′′(s)2/ψ′(s) ≤ C for s ∈ R.
Therefore, equation (2.1) is degenerate. Moreover, for the bounded function ψ(s) this equation is referred 

to as the strongly degenerate parabolic equation (see [5], for instance).
Inequality

sψ(s) ≥ 0 for s ∈ R (2.9)

is also required, which necessarily means that ψ(0) = 0.
For example, the function

ψ(s) = arctan s (2.10)

satisfies all the conditions mentioned above.
As has been well known (see [12], e.g.), all the problems above have unique classical solutions, local-

in-time, since all the functions are assumed to be smooth and the compatibility conditions are fulfilled. 
However, as was proved in [5], a global (in time) classical solution to Cauchy problem for equation (2.1)
with a monotone initial profile upon some additional assumptions does not exist.

Note that solutions u(x, t) to all of the above problems satisfy the “strong maximum principle”:

min
x∈[a0,a1]

u0(x) ≤ u(x, t) ≤ max
x∈[a0,a1]

u0(x). (2.11)

In the sequel we shall also use the fact that for any type of boundary conditions in (2.2)–(2.4), and for 
any time t (assume that the classical solution to the corresponding problem exists) there is at least one 
point x∗(t) ∈ [a0, a1] such that the spatial gradient vanishes:

ux(x∗(t), t) = 0.

Therefore, at any time while the solution exists, inequality

u2
x(x, t) ≤ m

a1∫
a0

u2
xx(x, t) dx, m = a1 − a0 (2.12)

holds.
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3. Solvability for small initial data

As we have already mentioned, solvability for the strongly degenerate equations necessarily requires 
additional conditions. These could be a sort of “smallness” (solvability for small time interval, solvability 
for small initial data, and so on), as is often used in the theory of parabolic equations. Here we provide 
results of such type. In addition, we establish some relations among the problem data (non-linear terms, 
initial profile), which compose sufficient conditions for the unique solvability of the problems under study.

In this section we establish some solvability, global-in-time, result for the problems under study with 
small initial functions, u0(x). In order to get a priori estimates necessary for that we shall multiply equation 
(2.1) by certain selected expressions, integrate with respect to a spatial variable, and integrate by parts. 
Note that all terms at the boundaries disappear for all of the considered types of boundary conditions in 
(2.2)–(2.4). We shall not indicate these separately throughout this section.

It is easy to see that the solutions to all problems above, P2, P3, and P4, satisfy identity

a1∫
a0

ut u
2n
x uxx dx = 1

2n + 1

a1∫
a0

ut
∂

∂x
u2n+1
x dx = − 1

2n + 1

a1∫
a0

u2n+1
x uxt dx

= − 1
(2n + 1)(2n + 2)

d
dt

a1∫
a0

u2n+2
x dx.

Therefore, multiplying equation (2.1) by u2n
x uxx and integrating with respect to x, we obtain

1
(2n + 1)(2n + 2)

d
dt

a1∫
a0

u2n+2
x dx +

a1∫
a0

ϕ(u)ψ′(ux)u2n
x u2

xx dx = −
a1∫

a0

ϕ′(u)ψ(ux)u2n+1
x uxx dx. (3.1)

Integration by parts leads to

−(2n + 2)
a1∫

a0

ϕ′(u)ψ(ux)u2n+1
x uxx dx

=
a1∫

a0

ϕ′(u)ψ′(ux)u2n+2
x uxx dx +

a1∫
a0

ϕ′′(u)ψ(ux)u2n+3
x dx

= − 1
2n + 3

⎛
⎝ a1∫

a0

ϕ′′(u)ψ′(ux)u2n+4
x dx +

a1∫
a0

ϕ′(u)ψ′′(ux)u2n+3
x uxx dx

⎞
⎠+

a1∫
a0

ϕ′′(u)ψ(ux)u2n+3
x dx

=: I1 + I2. (3.2)

Now we consider the case

ϕ′′(s) ≤ 0 for s ∈ [min
x

u0(x),max
x

u0(x)]. (3.3)

In view of (2.11) it means that ϕ′′(u(x, t)) ≤ 0, and therefore, together with (2.9), the first summand in the 
right side of (3.2) is not positive,

I1 ≤ 0. (3.4)
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Second term I2 can be evaluated as follows:

(2n + 3)|I2| ≤
a1∫

a0

ϕ(u)ψ′(ux)u2n
x u2

xx dx + C

a1∫
a0

u2n+2
x dx, (3.5)

where

C = sup
∣∣ϕ′′(u)ψ′(ux)u2

x

∣∣+ sup
∣∣∣∣ϕ′(u)2ψ′′(ux)2

4ϕ(u)ψ′(ux)
u4
x

∣∣∣∣ .
Using (3.2), (3.4) and (3.5), we derive from (3.1) that

a1∫
a0

u2n+2
x dx ≤

a1∫
a0

(u′
0)2n+2 dx + C

t∫
0

a1∫
a0

u2n+2
x dx dt,

and therefore, by Gronwall’s lemma, inequality

a1∫
a0

u2n+2
x dx ≤

(
1 + eCT

) a1∫
a0

(u′
0)

2n+2 dx (3.6)

holds. Since the constant C in (3.6) does not depend on n (cf. (3.5)), we get

sup
(x,t)∈QT

|ux(x, t)| ≤ sup
x∈[a0,a1]

|u′
0(x)| . (3.7)

As has been already mentioned, both estimates (2.11) and (3.7) yield

Theorem 3.1. In addition to the conditions of Section 2, under assumption (3.3) there exist global-in-time 
unique classical solutions to all the problems P2, P3, and P4 under study.

Now we consider the case ψ(s) = arctan s in (2.1) (see (2.10)) and suppose that

ϕ′′(s) ≥ 0 for s ∈ [min
x

u0(x),max
x

u0(x)] (3.8)

(cf. (3.3)).
In order to use identities (3.1) with n = 0 and n = 1, let Ψj(s) be the primitive function of ψ(s)s2j+1

(j = 0, 1). Obviously,

⎧⎪⎪⎨
⎪⎪⎩

Ψ0(s) = 1
2
(
(s2 + 1) arctan s− s

)
,

Ψ1(s) = 1
4

(
(s4 − 1) arctan s− 1

3s
3 + s

)
.

(3.9)

Adding (3.1) with n = 0 multiplied by 1/2 to (3.1) with n = 1, we obtain

1
4

d
dt

a1∫
a0

(
u2
x + 1

3 u4
x

)
dx +

a1∫
a0

ϕ(u)
1
2 + u2

x

1 + u2
x

u2
xx dx = −

a1∫
a0

ϕ′(u)
(

1
2

∂

∂x
Ψ0(ux) + ∂

∂x
Ψ1(ux)

)
dx. (3.10)

Using exact formulae in (3.9), after integration by parts we see that
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a1∫
a0

ϕ′(u)
(

1
2

∂

∂x
Ψ0(ux) + ∂

∂x
Ψ1(ux)

)
dx = −1

4

a1∫
a0

ϕ′′(u)
[(
u5
x + u3

x

)
arctan ux − 1

3 u4
x

]
dx.

Therefore, by taking into account the trivial observation that

f(ξ) := α + ξ

1 + ξ
≥ α for α ∈ (0, 1) and ξ ≥ 0,

it follows from (3.10) that

d
dt

a1∫
a0

(
u2
x + 1

3u
4
x

)
dx + 2

a1∫
a0

ϕ(u)u2
xx dx + 1

3

a1∫
a0

ϕ′′(u)u4
x dx ≤

a1∫
a0

ϕ′′(u)
(
|ux|5 + |ux|3

)
dx. (3.11)

Using Young’s inequality

|ux|5 + |ux|3 ≤ λu4
x + 1

2λ
(
u6
x + u2

x

)
(3.12)

with λ = 1/3, and estimates in (2.12) and (3.8), from (3.11) we obtain that

d
dt

a1∫
a0

(
u2
x + 1

3 u4
x

)
dx + 2 min

x
ϕ(u)

a1∫
a0

u2
xx dx

≤ 3
2 m2 max

x
ϕ′′(u)

⎡
⎢⎣m2

⎛
⎝ a1∫

a0

u2
xx dx

⎞
⎠

2

+ 1

⎤
⎥⎦

a1∫
a0

u2
xx dx. (3.13)

Inequality (3.13) leads to

a1∫
a0

(
u2
x + 1

3 u4
x

)
dx ≤

a1∫
a0

(
(u′

0)2 + 1
3 (u′

0)4
)

dx,

if the relation

2 min
x

ϕ(u) ≥ 3
2 m2 max

x
ϕ′′(u) (m2X2 + 1), X :=

a1∫
a0

u2
xx dx (3.14)

holds.
Suppose now that the relation

2 min
x

ϕ(u0) >
3
2 m2 max

x
ϕ′′(u0) (3.15)

holds. Then there exists a constant X0 > 0 such that

2 min
x

ϕ(u0) >
3
2 m2 max

x
ϕ′′(u0)

(
m2X2

0 + 1
)
. (3.16)

Moreover, let the initial profile u0(x) in (2.5) satisfy
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a1∫
a0

(
(u′

0)2 + 1
3 (u′

0)4
)

dx < ε (3.17)

for a suitably small ε > 0 determined later. It is easy to see that inequality (3.17) yields

max
x

u0 − min
x

u0 ≤
√
mε,

|min
x

ϕ(u) − min
x

ϕ(u0)|, |max
x

ϕ′′(u) − max
x

ϕ′′(u0)| ≤ K
√
mε

for some positive constant K. Then the left hand side of (3.14) is bounded from below by 2 minx ϕ(u0) −
2K

√
mε, and the right hand side is bounded from above by 3m2 (maxx ϕ

′′(u0) + K
√
mε) (m2X2 + 1)/2, so 

that by using (3.16) and by choosing ε > 0 in (3.17) such as

2
(
4 + 3m2)K√

mε ≤ 3m4 max
x

ϕ′′(u0)X2
0 , (3.18)

the inequality (3.14) holds for any X = X(t)(> 0) satisfying

X ≤ X0

(
4 + 3m2

2(4 + 3m2) + 3m4X2
0

)1/2

.

Thus, we have established that under smallness hypothesis (3.17) with ε being chosen according to (3.18)
inequality

a1∫
a0

u2
xx dx ≤ C (3.19)

is fulfilled.
Therefore, by (2.11), (2.12) we have (see Remark 1.7)

Theorem 3.2. Consider equation (2.1) with ψ(s) = arctan s. If the initial profile u0(x) in (2.5) satisfies 
relations (3.15) and (3.17) with ε > 0 being chosen according to (3.18), then there exist global-in-time 
unique classical solutions to all the problems P2, P3, and P4.

4. Estimates of higher order derivatives

In this section we establish some solvability results for the problems under study which do not necessarily 
require smallness assumption on the initial function, u0(x). Besides, we introduce alternative hypotheses 
that some quantities are small. Criteria stated below can be achieved either by small length of the spatial 
interval m, or through the small values of derivatives ϕ′(s), ϕ′′(s), and ϕ′′′(s) in comparison with ϕ(s) itself, 
along with some other problem parameters.

In the rest of this section we assume that in the case of Neumann type boundary conditions (2.3), the 
function ψ(s), in addition to all restrictions mentioned above, satisfies the identities

ψ(0) = ψ′′(0) = 0. (4.1)

In the special case of (2.10) both relations (4.1) are satisfied. In the case of Dirichlet type boundary conditions 
(2.2), identity (2.7) is also assumed. Note that the solution to problem (2.1), (2.2), (2.5) is considered to be 
smooth enough, and hence such a solution satisfies additional boundary conditions
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uxx|x=a0 = uxx|x=a1 = 0, (4.2)

which directly follow from equation (2.1) under the proper smoothness of u(x, t).
Again, the additional requirements (4.1) and (4.2) imply that all the terms at the boundaries in the 

calculations below disappear. We shall not mention this fact separately.
Formal differentiation of equation (2.1) with respect to x gives

uxt = ϕψ′ uxxx + ϕψ′′ u2
xx + 2ϕ′ψ′ uxuxx + ϕ′ψ uxx + ϕ′′ψ u2

x. (4.3)

Multiply equation (4.3) by uxxx, and integrate with respect to x. Noting the auxiliary calculations

a1∫
a0

uxxxuxt dx = −
a1∫

a0

uxxuxxt dx = −1
2

d
dt

a1∫
a0

u2
xx dx,

−
a1∫

a0

ϕψ′′ u2
xxuxxx dx = 1

3

⎛
⎝ a1∫

a0

ϕψ′′′ u4
xx dx +

a1∫
a0

ϕ′ψ′′ uxu
3
xx dx

⎞
⎠ ,

−2
a1∫

a0

ϕ′ψ′ uxuxxuxxx dx =
a1∫

a0

ϕ′ψ′′ uxu
3
xx dx +

a1∫
a0

ϕ′ψ′ u3
xx dx +

a1∫
a0

ϕ′′ψ′ u2
xu

2
xx dx,

−
a1∫

a0

ϕ′ψ uxxuxxx dx = 1
2

⎛
⎝ a1∫

a0

ϕ′ψ′ u3
xx dx +

a1∫
a0

ϕ′′ψ uxu
2
xx dx

⎞
⎠ ,

and

−
a1∫

a0

ϕ′′ψ u2
xuxxx dx =

a1∫
a0

ϕ′′ψ′ u2
xu

2
xx dx + 2

a1∫
a0

ϕ′′ψ uxu
2
xx dx +

a1∫
a0

ϕ′′′ψ u3
xuxx dx,

we get

1
2

d
dt

a1∫
a0

u2
xx dx +

a1∫
a0

ϕψ′ u2
xxx dx

= 1
3

a1∫
a0

ϕψ′′′ u4
xx dx +

a1∫
a0

(
4
3ϕ

′ψ′′ ux + 3
2ϕ

′ψ′
)

u3
xx dx

+
a1∫

a0

(
2ϕ′′ψ′ u2

x + 5
2ϕ

′′ψ ux

)
u2
xx dx +

a1∫
a0

ϕ′′′ψ u3
xuxx dx. (4.4)

Suppose that there exists an ε > 0 such that

ψ′′′(ux(x, t)) ≤ −ε. (4.5)

In the case of particular function ψ(s) of the form (2.10), (4.5) simply means that |ux(x, t)| < 1/
√

3. In a 
general case, this assumption on function ψ implies that there exists an interval (s1, s2), on which ψ′′′(s) < 0. 
Therefore, inequality (4.5) may be formulated in terms of some bounds on the gradient of the considered 
solution, ux(x, t).
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Remark 4.1. The fact ψ′′′(s) < 0 for s ∈ (s1, s2) and (4.1) imply s1 < 0 < s2 and ψ′′′(s1) = ψ′′′(s2) = 0. 
In other words, ψ′′(s) is monotonically decreasing on [s1, s2], and s1 < 0 and s2 > 0 are the first maximum 
and minimum points of ψ′′(s), respectively.

Now, using the Hölder inequality, we evaluate each term in the right side of (4.4) which does not contain 
u4
xx. In some of the relations below we shall also use estimate (2.12). Then we have

∣∣∣∣∣∣
a1∫

a0

(
4
3ϕ

′ψ′′ux + 3
2ϕ

′ψ′
)
u3
xx dx

∣∣∣∣∣∣ ≤ C1m
1/4

⎛
⎝ a1∫

a0

u4
xx dx

⎞
⎠

3/4

(4.6)

with

C1 = sup
x

∣∣∣∣43ψ′′ux + 3
2ψ

′
∣∣∣∣ sup

x
|ϕ′| (4.7)

and

2

∣∣∣∣∣∣
a1∫

a0

ϕ′′ψ′u2
xu

2
xx dx

∣∣∣∣∣∣ ≤ C2
√
m

⎛
⎝ a1∫

a0

u4
xx dx

⎞
⎠

1/2

(4.8)

with

C2 = 2 sup
x

∣∣ψ′ u2
x

∣∣ sup
x

|ϕ′′| . (4.9)

Remark 4.2. For more general function ψ satisfying ψ′(s) = O(s−2) (|s| → ∞) constants C1 and C2 are 
bounded.

Similarly, in view of (2.12), it is easy to see that

5
2

∣∣∣∣∣∣
a1∫

a0

ϕ′′ψuxu
2
xx dx

∣∣∣∣∣∣ ≤ C3
√
m

⎛
⎝ a1∫

a0

u2
xx dx

⎞
⎠

3/2

≤ C3 m
5/4

⎛
⎝ a1∫

a0

u4
xx dx

⎞
⎠

3/4

(4.10)

with

C3 = 3 sup
x

|ψ| sup
x

|ϕ′′|, (4.11)

and
∣∣∣∣∣∣

a1∫
a0

ϕ′′′ψu3
xuxx dx

∣∣∣∣∣∣ ≤ C4 m
2

⎛
⎝ a1∫

a0

u2
xx dx

⎞
⎠

2

≤ C4 m
3

⎛
⎝ a1∫

a0

u4
xx dx

⎞
⎠ (4.12)

with

C4 = sup
x

|ψ| sup
x

|ϕ′′′|. (4.13)

It follows from (4.6)–(4.13), (2.12), (2.6) and (4.5) that the right hand side of (4.4) is bounded from 
above by
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[(
−εδ

3 + C4m
3
)⎛
⎝ a1∫

a0

u4
xx dx

⎞
⎠

1/2

+m1/4 (C1 + C3m)

⎛
⎝ a1∫

a0

u4
xx dx

⎞
⎠

1/4

+C2
√
m

]⎛⎝ a1∫
a0

u4
xx dx

⎞
⎠

1/2

. (4.14)

In the case of 
∫ a1
a0

u4
xx dx < 1, ‖uxx‖L2(a0,a1) ≤ m1/4 holds; otherwise (4.14) is non-positive if

C1 m
1/4 + C2 m

1/2 + C3 m
5/4 + C4 m

3 ≤ εδ

3 (4.15)

holds. In the latter case it immediately follows from (4.4) that ‖uxx‖L2(a0,a1) ≤ ‖u′′
0‖L2(a0,a1). Therefore, we 

conclude by using (2.12) that

sup
x

|ux(x, t)| ≤
√
m ‖uxx‖L2(a0,a1) ≤

√
m max

{
m1/4, ‖u′′

0(x)‖L2(a0,a1)

}
. (4.16)

In case the inequality (4.5) holds for the values of gradient, specified in (4.16), we obtain classical 
solvability of the problem under study. The key requirement, (4.15), can be fulfilled either through the 
small length of the spatial interval m, or in case the derivatives ϕ′(u0), ϕ′′(u0), and ϕ′′′(u0) are small 
enough in comparison with the product ε ϕ(u0) (see (4.5)).

Under an additional assumption

ϕ′′′′(u) ≥ 0, (4.17)

which is valuable in view of applied reasons, condition (4.15) can be slightly improved. Indeed, since

a1∫
a0

ϕ′′′(u)ψ(ux)u3
xuxx dx = −1

4

a1∫
a0

ϕ′′′(u)ψ′(ux)u4
xuxx dx− 1

4

a1∫
a0

ϕ′′′′(u)ψ(ux)u5
x dx, (4.18)

the value of one of the summands in (4.15) may be changed.

Remark 4.3. According to (4.18), (4.15) is replaced by

C1 m
1/4 + C2 m

1/2 + C3 m
5/4 + C5 m

9/4 ≤ εδ

3 (4.19)

with

C5 = 1
4 sup

∣∣ψ′u2
x

∣∣ sup |ϕ′′′| = 1
4

sup
∣∣ψ′u2

x

∣∣
sup |ψ| C4 =: γ0 C4.

When the problems under study are discussed on the spatial interval (a0, a1) with its length m > γ
4/3
0 , 

inequality (4.19) gives a better information than inequality (4.15) does.

Again both estimates (2.11) and (4.16) yield

Theorem 4.1. In addition to the conditions of Section 2, suppose that (4.1) and (4.5) hold. All the problems
P2, P3, and P4 with additional boundary conditions (4.2) have global-in-time unique solutions on (a0, a1)
whose length m is determined by (4.15).

Furthermore, under an additional assumption (4.17) the global-in-time solutions mentioned above exist 
on (a0, a1) whose length m is determined by (4.19).
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5. Solvability through the distance with singular solutions to ODE

As have been already mentioned, equation (2.1) does not satisfy the well known “quadratic growth 
condition” in (0.8). Therefore, an ordinary differential equation

d
dx

(
ϕ(y)ψ(y′)

)
= 0, y = y(x), (5.1)

has bounded singular solutions (see [13,16], e.g.). It means that in extending the solutions to certain Cauchy 
problems for equation (5.1) their gradients y′(x) may grow to infinity, while the solutions themselves, y(x), 
remain bounded.

Let us introduce two definitions (see [13]).

Definition 5.1. If a solution z(x) to a certain Cauchy problem for equation (5.1) remains bounded, but is 
not regularly extensible onto the whole interval [a0, a1], such a solution is called a singular solution. Set of 
all the singular solutions to equation (5.1) will be denoted by Z.

Definition 5.2. A smooth function f(x) is said to possess a positive generalized distance with the set of 
singular solutions Z defined in Definition 5.1, if

ρ(f(x)) := inf
z∈Z

inf
x∈[a0,a1]

inf
η∈I(x)

(|z(x) − f(x)| + |z′(x) − η|) > 0, (5.2)

where I(x) denotes the segment with endpoints 0 and f ′(x).

It is clear that the generalized distance introduced above is positive in the following cases:

1. the function f(x) does not cross any of singular solutions z ∈ Z to ODE (5.1);
2. at the point of intersection of the graph of f(x) with any of singular solutions z ∈ Z the derivatives 

f ′(x) and z′(x) have different signs,

sgnf ′(x) sgnz′(x) < 0;

3. the absolute value of |z′(x)| is strictly greater than |f ′(x)| at the point of intersection, if the derivatives 
have the same sign, sgnf ′(x) sgnz′(x) > 0.

If the initial profile, u0(x), possesses a positive “generalized distance” with the set of all bounded singular 
solutions to ODE (5.1), problem P2 was proved to be well-posed in [13].

Obviously, equation (5.1) has the first integral

ϕ(y)ψ(y′) = ϕ(y0)ψ(y1), (5.3)

where y0 and y1 are the Cauchy data y(x0) = y0, y′(x0) = y1.
It is easy to see that in case

maxϕ(u0)
minϕ(u0)

ψ(sup |u′
0|) < ψ∞, (5.4)

the initial profile, u0(x), possesses a positive generalized distance with the set of singular solutions to ODE 
(5.1).

Consequently, we have
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Theorem 5.1. In addition to the conditions of Section 2, suppose that the initial profile u0(x) in (2.5) satisfies
(5.4). Then each problem of P2, P3, and P4 admits a global-in-time unique classical solution.
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