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In this paper, we deal with a haptotaxis cancer invasion model describing 
the migration and proliferation of two families of cancer cells, the epithelial-
mesenchymal transition between two families cancer cells, the dynamics of matrix 
degrading enzymes, and the evolution and re-modeling of the extracellular matrix. 
Under appropriate regularity assumptions on initial data, by making some a priori 
estimates and applying iterative techniques, we establish the global existence and 
uniform boundedness of the unique classical solution in two-dimensional spatial 
domain for arbitrary cancer cells proliferation rates and in three-dimensional spatial 
setting for large cancer cells proliferation rates. These results improve and extend 
previously known ones.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider the following two species cancer invasion haptotaxis model
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cDt = ΔcD − χD∇ · (cD∇v) − μEMT c
D + μDcD(1 − cD − cS − v), x ∈ Ω, t > 0,

cSt = ΔcS − χS∇ · (cS∇v) + μEMT c
D + μSc

S(1 − cD − cS − v), x ∈ Ω, t > 0,
τmt = Δm + cD + cS −m, x ∈ Ω, t > 0,
vt = −mv + μvv(1 − cD − cS − v), x ∈ Ω, t > 0,
∂cD

∂ν − χDcD ∂v
∂ν = ∂cS

∂ν − χSc
S ∂v
∂ν = ∂m

∂ν = 0, x ∈ ∂Ω, t > 0,
cD(x, 0) = cD0 (x), cS(x, 0) = cS0 (x), τm(x, 0) = τm0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.1)
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in a bounded domain Ω ⊆ Rn (n = 2, 3) with smooth boundary ∂Ω, where ∂ν denotes the outward 
normal derivative on ∂Ω, the unknown functions cD(x, t), cS(x, t), m(x, t), v(x, t) represent the density of 
differentiated cancer cells (DCCs), the density of cancer stem cells (CSCs), the concentration of the matrix 
metalloproteinases (MMPs) and the concentration of extracellular matrix (ECM), respectively, χD, χS > 0
are the haptotactic coefficients of DCCs and CSCs correspondingly. The terms −μEMT c

D and +μEMT c
D

stand for the epithelial-mesenchymal transition (EMT) from DCCs to CSCs, the terms μD(1 − cD− cS −v), 
μS(1 − cD − cS − v) with coefficients μD, μS > 0 describe the proliferation of DCCs and CSCs according 
to a logistic law which is influenced by the local density of the total biomass and includes competition for 
free space as well as resources with the ECM, the term + cD + cS indicates the spontaneous production 
of the matrix degrading enzyme MMPs by DCCs and CSCs, the term −m shows the decay of MMPs, the 
term −mv illustrates the degradation of ECM by MMPs upon contact, the term μvv(1 − cD − cS − v) with 
coefficient μv > 0 describes that the ECM is able to be self-remodeled in a typical logistic manner in the 
absence of cancer cells (DCCs and CSCs) and assumed to compete for free space and resources with cancer 
cells.

This model describes the process of two families of cancer cells invasion of surrounding healthy tissue, 
which involves many biological mechanisms, for instance, the migration of cancer cells arising from random 
diffusion and haptotaxis (the movement of cancer cells is biased towards a gradient of the non-diffusible 
ECM [5,27]), the epithelial-mesenchymal transition from DCCs to CSCs [22], the proliferation of cancer 
cells and their competition for space with ECM, the production and decay of MMPs, the degradation and 
self-construction of ECM. The parameter τ ∈ {0, 1}. When τ = 0, it indicates the diffusion rate of MMPs 
is much faster than that of cancer cells [7]. When τ = 1, it was recently proposed by Hellmann et al. [13]
and Sfakianakis et al. [28] as a modified tumor invasion model with haptotaxis effect of Anderson et al. 
type [2]. A novel point or a key feature of this model is that it includes not only two families of cancer cells 
with haptotactic movement but the epithelial-mesenchymal transition, as for more biological background 
and explanations of it, we refer to [13,28] and cited references therein.

Mathematicians have been extensively attracted by the haptotaxis cancer invasion model to develop 
a detailed analysis of the global existence and asymptotic behavior of solution. Walker and Webb [35]
considered the haptotaxis model of Chaplain and Anderson [6] which includes one cancer cell species, 
the matrix degrading enzyme, ECM and oxygen, and they proved the existence of unique global classical 
solution. An Perumpanani and Byrne’s haptotaxis model [27] consisting of tumor cell, tumor cell-derived 
protease and the collagen gel was investigated by Tao and Zhu [34], and the existence and uniqueness of 
global classical solution was proved by a priori estimates, together with the parabolic Lp estimates and 
Schauder estimates. Subsequently, Liţcanu and Morales-Rodrigo [20] analytically studied the asymptotic 
behavior of solutions to the Perumpanani and Byrne’s model. The global existence of weak solutions to the 
simplified haptotaxis model of [2] was discussed by Marciniak-Crzochra and Ptashnyk [23] and the uniform 
boundedness of solutions was showed by applying the method of bounded invariant rectangles. What is 
worth mentioning is that Tao [30] is the first attempt to investigate the global existence of classical solution 
to the haptotaxis model with tissue remodeling proposed in [6]. More related works are referred to [3,8,21,37]
and abundant references cited therein.

It is important to remark that there is merely one cancer cell species in above mentioned works on 
haptotaxis cancer invasion models, because those haptotaxis cancer invasion models with two or more 
cancer cell species may be difficult to be analyzed as a result of the complex structure and strong coupling 
between various cancer cell species and ECM. Based on the go-or-grow hypothesis assuming cancer cells can 
either move or proliferate, a strongly coupled PDE-ODE-ODE two species cancer invasion haptotaxis model 
was proposed by Stinner et al. [29], and the global existence of weak solutions was obtained in arbitrary 
dimensions. More recently, we particularly mentioned that, for the case of τ = 1 in two dimensional space 
of haptotaxis model (1.1), Giesselmann et al. [10] investigated the global existence and uniqueness of the 
classical solutions for large μD and μS . A natural question followed by the later contribution [10] is whether 
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or not the global solvability of haptotaxis model (1.1) remains valid for small μD, μS > 0 or arbitrary 
μD, μS > 0 in two dimensions, to the best of our knowledge, it remains open. In addition, the global 
solvability of haptotaxis model (1.1) in three dimensions has never been touched. No matter biological 
relevance or mathematical meaning, we find it is worth addressing above question.

In order to answer above question, we discuss the global solvability and boundedness of (1.1) in dimensions 
2 and 3. As opposed to [10], we investigate the global solvability of (1.1) with τ ∈ {0, 1} in two-dimensional 
case for arbitrary μD, μS > 0 and in three-dimensional setting for large μD, μS > 0, however, only the case of 
n = 2 and τ = 1 for large μD, μS > 0 was discussed in [10]. In detail, for the case n = 2 and τ = 1, we only 
assume that μD, μS > 0 other than μD ≥ χDμv, μS ≥ χSμv (see (1.6) in [10]), the latter only need to esti-
mate the terms 

∫
Ω
(
aD
)p

, 
∫
Ω
(
aS
)p, but in the present paper, we need to estimate 

∫
Ω
(
aD
)p+1

, 
∫
Ω
(
aS
)p+1, 

this leads to more obstacles. To overcome these obstacles, we make some a priori estimates. Firstly, we 
develop a certain dissipative property of the functionals 

∫
Ω eχDv

(
aD
)2

, 
∫
Ω eχSv

(
aS
)2 which will serve as 

a starting point to establish an iteration step resulting in the L∞(Ω) boundedness of aD and aS . Then, 
by building a bridge between ‖∇v(·, t)‖qLq(Ω) and 

∫ t

0

(∥∥∇aD(·, s)
∥∥q
Lq(Ω) +

∥∥∇aS(·, s)
∥∥q
Lq(Ω)

)
ds, we show the 

estimates of ‖∇v‖L5(Ω), thereby complete the proof. In the case of n = 2 and τ = 0, one can establish 
the estimate of ‖m(·, t)‖L3(Ω) by the L1 estimate on semi-linear elliptic equations, then one can prove the 
main result by proceeding in like manner as the case of n = 2 and τ = 1. In the condition n = 3 and 
τ = 1, we derive an adapted iteration criterion to raise successfully the regularities of aD, aS from L1(Ω)
to Lp(Ω) for any p > 1, then complete the proof by applying the similar way as the case of n = 2. Under 
the circumstance n = 3 and τ = 0, the estimates of ‖m(·, t)‖L3(Ω) can be turned into a priori estimates of ∥∥aD(·, t)

∥∥
L3(Ω) +

∥∥aS(·, t)
∥∥
L3(Ω) with the help of the standard elliptic Lp theory, which can guarantee the 

iteration criterion used in the case of n = 3 and τ = 1 also can be applied here.
Let us give the following hypotheses for the need of analysis.
(H1) Suppose that in what follows that the prescribed initial data satisfy

⎧⎪⎪⎨
⎪⎪⎩
(
cD0 , cS0 ,m0, v0

)
∈ C2+α(Ω̄) for some α ∈ (0, 1),

cD0 , cS0 ,m0 > 0, 0 < v0 ≤ 1 in Ω,
∂cD0
∂ν − χDcD0

∂v0
∂ν = ∂cS0

∂ν − χSc
S
0
∂v0
∂ν = ∂m0

∂ν = 0 on ∂Ω.

(H2) Assume that the EMT rate function μEMT

(
cD, cS ,m, v

)
: R4 → R satisfies 0 ≤ μEMT ≤ μM

for some constant μM > 0. Moreover, μEMT

(
cD, cS ,m, v

)
is Lipschitz continuous, that is, for some finite 

constant L > 0, there holds

∥∥μEMT

(
cD1 , cS1 ,m1, v1

)
− μEMT

(
cD2 , cS2 ,m2, v2

)∥∥
C(Q̄T )

≤ L
(∥∥cD1 − cD2

∥∥
C(Q̄T ) +

∥∥cS1 − cS2
∥∥
C(Q̄T ) + ‖m1 −m2‖C(Q̄T ) + ‖v1 − v2‖C(Q̄T )

)
.

Based on above hypotheses, the main results of the present paper read as follows.

Theorem 1.1. (Global existence in 2 dimensions) Let Ω be a bounded domain in R2 with smooth boundary 
∂Ω ∈ C2+α for some α ∈ (0, 1) and τ ∈ {0, 1}. Suppose that χD, χS , μD, μS > 0 and μv > 0, and the 
hypotheses (H1) − (H2) hold. Then the problem (1.1) admits a unique classical solution with cD, cS , m > 0
and 0 < v ≤ 1, where cD, cS , m, v are bounded uniformly in the following sense

sup
t∈(0,∞)

∥∥cD(·, t)
∥∥
L∞(Ω) +

∥∥cS(·, t)
∥∥
L∞(Ω) + ‖m(·, t)‖W 1,∞(Ω) + ‖v(·, t)‖L∞(Ω) ≤ C (1.2)

for some C > 0 independent of time.
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Theorem 1.2. (Global existence in 3 dimensions) Let Ω be a bounded domain in R3 with smooth boundary 
∂Ω ∈ C2+α for some α ∈ (0, 1) and τ ∈ {0, 1}. Suppose that χD, χS , μD, μS > 0 and μv > 0, and the 
hypotheses (H1) − (H2) hold. In addition, assume that μD ≥ χDμv, μS ≥ χSμv. Then the problem (1.1)
admits a unique classical solution with cD, cS , m > 0 and 0 < v ≤ 1, where cD, cS , m, v are bounded 
uniformly in the following sense

sup
t∈(0,∞)

∥∥cD(·, t)
∥∥
L∞(Ω) +

∥∥cS(·, t)
∥∥
L∞(Ω) + ‖m(·, t)‖W 1,∞(Ω) + ‖v(·, t)‖L∞(Ω) ≤ C (1.3)

for some C > 0 independent of time.

The remaining part of this article is organized as follows. In Section 2, some necessary notations of 
this problem are introduced and some preliminary results which are useful for our investigation are given. 
Section 3 is devoted to derive the local existence of unique classical solution for (1.1) on account of the 
Banach’s fixed point theorem and provide a weakened extensibility criterion of local solutions with the 
help of the Lp theory and Schauder estimates of parabolic and elliptic equations. In Section 4, we prove 
Theorem 1.1 by making some a priori estimates. Section 5 focus on giving the proof of Theorem 1.2. Finally, 
we conclude this paper in Section 6.

2. Notations and preliminaries

In this section, we shall introduce some notations and give some preliminary results which will be often 
used in sequel and indispensable for dealing with our problem.

For consistency, in what follows, we denote QT = Ω × (0, T ) for any fixed T ∈ (0, ∞), Qt = Ω × (0, t) for 
any t ∈ (0, T ], ΣT = ∂Ω × (0, T ) and |Ω| represent the measure of Ω. For simplicity, we abbreviate 

∫
Ω y(x)dx

as 
∫
Ω y, the variables x will not be omitted in this integral if we emphasize the spatial dependence of y. In 

addition, for the convenience of notation, throughout this section, we denote various positive constants by 
A0 that may be different in different places.

Let us first recall the following derivate of Poincaré’s inequality [14].

Lemma 2.1. Let Ω ⊆ Rn be a bounded domain with smooth enough boundary. Then, for any u ∈ W 1,p(Ω), 
there exists a positive constant A0 such that

‖u‖W 1,p(Ω) ≤ A0
(
‖∇u‖Lp(Ω) + ‖u‖Lq(Ω)

)
(2.1)

with arbitrary p > 1 and q > 0.

Next, we shall need the following well-known Gagliardo-Nirenberg interpolation inequality in several 
places [9,32].

Lemma 2.2. Let Ω ⊆ Rn be a bounded domain with smooth enough boundary. Let l, k be any integers 
satisfying 0 ≤ l < k and p > 0. Then, for any function u ∈ W k,q(Ω) 

⋂
Lr(Ω), there exists a positive 

constant CGN depending only on Ω, q, k, r, n such that the following inequality holds:

‖Dlu‖Lp(Ω) = CGN

(
‖Dku‖λLq(Ω)‖u‖1−λ

Lr(Ω) + ‖u‖Lr(Ω)

)
, (2.2)

where

l ≤ λ ≤ 1, 1 ≤ q, r ≤ ∞,
1 − l = λ

(
1 − k

)
+ 1 − λ
k p n q n r
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when k − l − n
q is not a nonnegative integer;

l

k
≤ λ < 1, 1 < q < ∞, r > 1, 1

p
− l

n
= λ

(
1
q
− k

n

)
+ 1 − λ

r

when k − l − n
q is a nonnegative integer.

In addition, the following result will play an essential role in the proof of Lemma 4.2 bellow, we would 
like refer the reader to [25, Lemma 2.3] for its proof.

Lemma 2.3. Let T > 0, θ ∈ (0, T ) and assume that y is a nonnegative absolutely continuous function 
satisfying

y′(t) + a(t)y(t) ≤ b(t)y(t) + c(t) for a.e. t ∈ (0, T ) (2.3)

with some functions a(t) > 0, b(t) ≥ 0, c(t) ≥ 0 and a, b, c ∈ L1
loc(0, T ) for which there exist b1, c1 > 0 and 

γ > 0 such that

sup
0≤t≤T−θ

t+θ∫
t

b(s)ds ≤ b1, sup
0≤t≤T−θ

t+θ∫
t

c(s)ds ≤ c1

and

sup
0≤t≤T−θ

t+θ∫
t

a(s)ds− sup
0≤t≤T−θ

t+θ∫
t

b(s)ds ≥ γ for any t ∈ (0, T − θ).

Then for all t ∈ (0, T ), we have

y(t) ≤ y(0)eb1 + c1e
2b1

1 − e−γ
+ c1e

b1 . (2.4)

For the estimates of m when τ = 1 in (1.1), we need following Lemma 2.4. We omit its proof for simplicity 
and refer the reader to [18, Lemma 1 and 32, Lemmata 3.2-3.3].

Lemma 2.4. Let Ω ⊆ Rn be a bounded domain with smooth enough boundary, T > 0 and u0 ∈ W 1,∞(Ω). 
Suppose that ‖f(·, t)‖Lp(Ω) ≤ A0 for all t ∈ (0, T ) and (u, f) satisfies the following inhomogeneous linear 
heat equation

⎧⎪⎪⎨
⎪⎪⎩
ut = Δu− u + f, in Ω × (0, T ),
∂u
∂ν = 0, on ∂Ω × (0, T ),
u(x, 0) = u0, in Ω.

(2.5)

Then, for all t ∈ (0, T ) and for every 1 ≤ p < n, we have

‖u(·, t)‖W 1,q(Ω) ≤ A0, (2.6)

where

q <
np

. (2.7)

n− p
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If p = n, then (2.6) holds with every q < ∞; if p > n, then (2.6) holds with q = ∞. In addition, there holds

‖u(·, t)‖Ls(Ω) ≤ A0 (2.8)

for all t ∈ (0, T ) and any s > p satisfying

1
s

+ 2
n
>

1
p
. (2.9)

3. Local existence and extensibility criterion

It is worthwhile to point out that, if (cD, cS , m, v) is a local classical solution of (1.1), we require 
v ∈ C2,1(QT ) at least from the two terms −χDcDΔv and −χSc

SΔv of (1.1). However, above mentioned 
regularity of v is difficult to obtain due to the v-equation of (1.1) is only an ODE. Hence, for the convenience 
of subsequent analysis, we make the following variable transformations followed [17,31,33]:

{
aD = cDe−χDv,

aS = cSe−χSv.

Consequently, the original system (1.1) can be transformed as
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aDt = e−χDv∇ ·
(
eχDv∇aD

)
+ χDaDmv − μEMTa

D

+ (μD − χDμvv) aD
(
1 − eχDvaD − eχSvaS − v

)
, x ∈ Ω, t > 0,

aSt = e−χSv∇ ·
(
eχSv∇aS

)
+ χSa

Smv + μEMTa
DeχDv−χSv

+ (μS − χSμvv) aS
(
1 − eχDvaD − eχSvaS − v

)
, x ∈ Ω, t > 0,

τmt = Δm + eχDvaD + eχSvaS −m, x ∈ Ω, t > 0,
vt = −mv + μvv

(
1 − eχDvaD − eχSvaS − v

)
, x ∈ Ω, t > 0,

∂aD

∂ν = ∂aS

∂ν = ∂m
∂ν = 0, x ∈ ∂Ω, t > 0,

aD(x, 0) = aD0 (x) = cD0 (x)e−χDv0(x), aS(x, 0) = aS0 (x) = cS0 (x)e−χSv0(x),

τm(x, 0) = τm0(x), v(x, 0) = v0(x), x ∈ Ω.

(3.1)

It is worth noting that the systems (1.1) and (3.1) are equivalent in the sense of classical solution. Therefore, 
in what follows we only need discuss the classical solution of (3.1).

In addition, it follows from the assumptions (H1) that
⎧⎪⎪⎨
⎪⎪⎩
(
aD0 , aS0 ,m0, v0

)
∈ C2+α(Ω̄) for some α ∈ (0, 1),

aD0 , aS0 ,m0 > 0, 0 < v0 ≤ 1 for x ∈ Ω,
∂aD

0
∂ν = ∂aS

0
∂ν = ∂m0

∂ν = 0.
(3.2)

By appropriate adaption of a fixed point arguments and results in [30, Theorems 2.1-2.2 and 34, Lemma 
2.1], we have the following two statements on local existence of classical solutions to the problem (3.1). For 
the convenience of notation, throughout this section, we shall use a universal positive constant B0 to denote 
various constants that may vary in different places, and denote them by B0(a.b...) while we need emphasize 
this constant depending on some parameters a, b...

Lemma 3.1. (Local existence and extensibility criterion for τ = 1) Let Ω ⊆ Rn (n = 2, 3) be a bounded 
domain with smooth enough boundary. Suppose that χD, χS , μD, μS , μv > 0, τ = 1, and that the assumptions 
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(H2) and (3.2) hold. Then there exists Tmax ∈ (0, ∞] such that the problem (3.1) admits a unique classical 
solution 

(
aD, aS ,m, v

)
∈
(
C2+α,1+α

2
(
Ω̄ × [0, Tmax)

))4 for α ∈ (0, 1) satisfying

aD > 0, aS > 0, m > 0, 0 < v ≤ 1, for all (x, t) ∈ Ω × (0, Tmax), (3.3)

and which are such that

either Tmax = ∞ or lim sup
t↗Tmax

{∥∥aD(·, t)
∥∥
C2+α(Ω̄) +

∥∥aS(·, t)
∥∥
C2+α(Ω̄) + ‖v(·, t)‖C2+α(Ω̄)

}
= ∞. (3.4)

Lemma 3.2. (Local existence and extensibility criterion for τ = 0) Let Ω ⊆ Rn (n = 2, 3) be a bounded 
domain with smooth enough boundary. Suppose that χD, χS , μD, μS , μv > 0, τ = 0, and that the assumptions 
(H2) and (3.2) hold. Then there exists Tmax ∈ (0, ∞] such that the problem (3.1) admits a unique classical 
solution 

(
aD, aS ,m, v

)
∈
(
C2+α,1+α

2
(
Ω̄ × [0, Tmax)

))2×C2+α,α2
(
Ω̄ × [0, Tmax)

)
×C2+α,1+α

2
(
Ω̄ × [0, Tmax)

)
for α ∈ (0, 1) satisfying

aD > 0, aS > 0, m > 0, 0 < v ≤ 1, for all (x, t) ∈ Ω × (0, Tmax), (3.5)

and which are such that

either Tmax = ∞ or lim sup
t↗Tmax

{∥∥aD(·, t)
∥∥
C2+α(Ω̄) +

∥∥aS(·, t)
∥∥
C2+α(Ω̄) + ‖v(·, t)‖C2+α(Ω̄)

}
= ∞. (3.6)

Remark 3.1. It is worthwhile to point out that we only assume the nonnegative function μEMT (cD, cS , m, v)
is bounded and Lipschitz continuous other than the Lipschitz continuous of its first derivatives. This as-
sumption on μEMT (cD, cS , m, v) is weaker than that supposed in [10] (see (1.7a)-(1.7c) of [10]).

According to Lemma 3.1 and Lemma 3.2, in order to obtain the global existence of the unique classical so-
lution of problem (3.1), we only need show the boundedness of lim sup

t↗Tmax

{∥∥aD(·, t)
∥∥
C2+α(Ω̄) +

∥∥aS(·, t)
∥∥
C2+α(Ω̄)

+ ‖v(·, t)‖C2+α(Ω̄)

}
, but it is always difficult to achieve it. Therefore, inspired by [24, Lemma 2.2 and 16, 

Lemma 3.2], we weaken the extensibility criterions (3.4) and (3.6) as follows.

Lemma 3.3. (Weakened extensibility criterion) Let τ ∈ {0, 1}. Assume that the assumptions (H2) and (3.2)
hold. Then the solutions 

(
aD, aS ,m, v

)
of (3.1) constructed in Lemma 3.1 and Lemma 3.2 have the property 

that

either Tmax = ∞ or lim sup
t↗Tmax

(∥∥aD(·, t)
∥∥
L∞(Ω) +

∥∥aS(·, t)
∥∥
L∞(Ω) + ‖∇v(·, t)‖L5(Ω)

)
= ∞. (3.7)

Proof. Let us consider the case τ = 1. We proceed the proof by contradiction. Assume that Tmax < ∞, but

sup
t∈(0,Tmax)

(∥∥aD(·, t)
∥∥
L∞(Ω) +

∥∥aS(·, t)
∥∥
L∞(Ω) + ‖∇v(·, t)‖L5(Ω)

)
≤ B0. (3.8)

The aD, aS-equations of (3.1) can be rewritten as the following linear forms

aDt = ΔaD + χD∇v∇aD + g8a
D (3.9)

and

aSt = ΔaS + χS∇v∇aS + g9a
S + μEMT e

χDv−χSvaD, (3.10)
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where g8 = (χDmv − μEMT )+(μD − χDμvv)
(
1 − eχDvaD − eχSvaS − v

)
, g9 = χSmv+(μS − χSμvv) (1−

eχDvaD − eχSvaS − v
)
.

By using Lemma 2.4, we infer from (3.8) that

‖m‖W 1,∞(Ω) ≤ B0 for all t ∈ (0, Tmax). (3.11)

This in conjunction with the assumption (H2) and 0 < v ≤ 1, we deduce that there exist some B0 > 0 such 
that

‖g8‖L∞(Ω) ≤ B0 and ‖g9‖L∞(Ω) ≤ B0 for all t ∈ (0, Tmax). (3.12)

This together with the maximal parabolic regularity results (see [19, Theorem IV.9.1] and [11, Theorem 
2.3]) yields

∥∥aD∥∥
W 2,1

4 (QTmax ) ≤ B0 and
∥∥aS∥∥

W 2,1
4 (QTmax ) ≤ B0. (3.13)

Hence, by the Sobolev embedding theorem (see Lemma II.3.3 of [19]), we have

∥∥∇aD
∥∥
L20(QTmax ) ≤ B0 and

∥∥∇aS
∥∥
L20(QTmax ) ≤ B0. (3.14)

Now, let us deal with v. Applying ∇ to the v-equation of (3.1), we arrive

∇vt = g10∇v + g11, (3.15)

where g10 = −m + μv

(
1 − eχDvaD − eχSvaS − v

)
− μvv

(
1 + χDeχDvaD + χSe

χSvaS
)
, g11 = −v∇m −

μvv
(
eχDv∇aD + eχSv∇aS

)
.

Furthermore, we find that g10 ≤ μv due to (3.3). Multiplying (3.15) by q|∇v|q−2∇v for q ≥ 2, in view of 
(3.3) and (3.11), it follows from Young’s inequality that

(|∇v|q)t = qg10|∇v|q − qv|∇v|q−2∇v · ∇m− qμvv|∇v|q−2∇v ·
(
eχDv∇aD + eχSv∇aS

)
≤ qμv|∇v|q + q|∇m||∇v|q−1 + qμv|∇v|q−1 (eχD |∇aD| + eχS |∇aS |

)
≤ B0(q)

(
|∇v|q + |∇aD|q + |∇aS |q + 1

)
. (3.16)

Integrating (3.16) over Ω and using the Gronwall’s inequality, we obtain

∫
Ω

|∇v|q ≤ B0(q)

⎛
⎝ t∫

0

∫
Ω

|∇aD|q +
t∫

0

∫
Ω

|∇aS |q + 1

⎞
⎠ for all t ∈ (0, Tmax). (3.17)

This in conjunction with (3.14) entails

‖∇v(·, t)‖L20(Ω) ≤ B0 for all t ∈ (0, Tmax). (3.18)

According to (3.18) and repeating above process, we further get

∥∥aD∥∥
W 2,1

20 (QTmax ) ≤ B0, and
∥∥aS∥∥

W 2,1
20 (QTmax ) ≤ B0. (3.19)

Thanks to the t-anisotropic embedding argument W 2,1
p (QT ) ↪→ Cα,α2 (Q̄T ) for any α ∈ (0, 2 − n+2

p ] if p > n+2
2

[19], this implies
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∥∥aD∥∥
C

7
4 , 78 (Q̄Tmax )

≤ B0, and
∥∥aS∥∥

C
7
4 , 78 (Q̄Tmax )

≤ B0. (3.20)

For m, we also have

‖m‖
C

7
4 , 78 (Q̄Tmax )

≤ B0. (3.21)

As for v, by the fourth equation of (3.1), we have

‖v(·, t)‖
C

3
4 (Ω̄)

+ ‖vt(·, t)‖
C

3
4 (Ω̄)

≤ B0 for all t ∈ (0, Tmax). (3.22)

From (3.15), (3.20) and (3.21), we obtain

‖∇v(·, t)‖
C

3
4 (Ω̄)

+ ‖∇vt(·, t)‖
C

3
4 (Ω̄)

≤ B0 for all t ∈ (0, Tmax). (3.23)

In virtue of (3.2), if we take β = min
{3

4 , α
}
, thus by using the regularities of aD, aS and v and the parabolic 

Schauder theory [19], we infer from the m-equations of (3.1) that

‖m‖
C2+β,

2+β
2 (Q̄Tmax )

≤ B0. (3.24)

Similar to m, it follows from (3.9) and (3.10) that

∥∥aD∥∥
C2+β,

2+β
2 (Q̄Tmax )

+
∥∥aS∥∥

C2+β,
2+β
2 (Q̄Tmax )

≤ B0. (3.25)

Therefore, a combination of (3.24), (3.25) and the v-equations of (3.1) immediately yields

‖v‖C2+β(Ω̄) + ‖vt‖C2+β(Ω̄) ≤ B0 for all t ∈ (0, Tmax). (3.26)

Recalling of the m-equations of (3.1) and applying the parabolic Schauder theory, we further have

‖m‖
C2+α, 2+α

2 (Q̄Tmax )
≤ B0. (3.27)

Going back to (3.9), (3.10) and in conjunction with (3.26), one can obtain

∥∥aD∥∥
C2+α, 2+α

2 (Q̄Tmax )
+
∥∥aS∥∥

C2+α, 2+α
2 (Q̄Tmax )

+ ‖v‖C2+β(Ω̄) + ‖vt‖C2+β(Ω̄) ≤ B0. (3.28)

But this contradicts the extensibility criterion (3.4) established in Lemma 3.1. Therefore, we assert that 
Tmax = ∞.

As for the case τ = 0, it is not hard to get it by proceeding as in the proof of case τ = 1, so we omit it 
for simplicity.

Thus, the proof of Lemma 3.3 is completed. �
Before finishing this section, let us give the following observations for the local classical solution of (3.1)

which will be used frequently below.

Lemma 3.4. Let 
(
aD, aS ,m, v

)
be the local classical solution of (3.1) constructed in Lemma 3.1 and 

Lemma 3.2. Suppose that the hypotheses of Theorem 1.1 hold. Then, for any p > 1, we have
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d

dt

∫
Ω

eχDv
(
aD
)p + 4(p− 1)

p

∫
Ω

eχDv
∣∣∣∇ (aD) p

2
∣∣∣2 + (pμD − (p− 1)χDμv)

∫
Ω

e2χDv
(
aD
)p+1

≤ (pμD + (p− 1)χDμv)
∫
Ω

eχDv
(
aD
)p + (p− 1)χD

∫
Ω

eχDv
(
aD
)p

m

+ ((p− 1)χDμv − pμD)
∫
Ω

eχDv+χSv
(
aD
)p

aS (3.29)

and

d

dt

∫
Ω

eχSv
(
aS
)p + 4(p− 1)

p

∫
Ω

eχSv
∣∣∣∇ (aS) p

2
∣∣∣2 + (pμS − (p− 1)χSμv)

∫
Ω

e2χSv
(
aS
)p+1

≤ (pμS + (p− 1)χSμv)
∫
Ω

eχSv
(
aS
)p + (p− 1)χS

∫
Ω

eχSv
(
aS
)p

m

+ ((p− 1)χSμv − pμS)
∫
Ω

eχDv+χSv
(
aS
)p

aD + pμM

∫
Ω

eχDvaD
(
aS
)p−1

. (3.30)

Proof. Multiplying the aD-equation in (3.1) by p 
(
aD
)p−1 with p > 1 and integrating the resulting equation 

over Ω by parts, then combining like terms, leaving out some negative terms and noting 0 < v ≤ 1, we 
obtain

d

dt

∫
Ω

eχDv
(
aD
)p

=
∫
Ω

χDeχDv
(
aD
)p

vt + p

∫
Ω

eχDv
(
aD
)p−1

aDt

= −χD

∫
Ω

eχDv
(
aD
)p

mv + χDμv

∫
Ω

eχDv
(
aD
)p

v
(
1 − eχDvaD − eχSvaS − v

)

−4(p− 1)
p

∫
Ω

eχDv
∣∣∣∇ (aD) p

2
∣∣∣2 + pχD

∫
Ω

eχDv
(
aD
)p

mv − p

∫
Ω

μEMT e
χDv

(
aD
)p

+p

∫
Ω

(μD − χDμvv) eχDv
(
aD
)p (1 − eχDvaD − eχSvaS − v

)

≤ −4(p− 1)
p

∫
Ω

eχDv
∣∣∣∇ (aD) p

2
∣∣∣2 + ((p− 1)χDμv − pμD)

∫
Ω

e2χDv
(
aD
)p+1

+ ((p− 1)χDμv − pμD)
∫
Ω

eχDv+χSv
(
aD
)p

aS + (pμD + (p− 1)χDμv)
∫
Ω

eχDv
(
aD
)p

+(p− 1)χD

∫
Ω

eχDv
(
aD
)p

m. (3.31)

Hence, (3.29) holds. Proceeding in a same way as (3.29), one can obtain (3.30) immediately.
Thus, the proof of Lemma 3.4 is completed. �

Lemma 3.5. Let 
(
aD, aS ,m, v

)
be the local classical solutions of (3.1) constructed in Lemma 3.1 and 

Lemma 3.2. Suppose that the hypotheses of Theorem 1.2 hold. Then, for any p > 1, we have
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d

dt

∫
Ω

eχDv
(
aD
)p + 4(p− 1)

p

∫
Ω

∣∣∣∇ (aD) p
2
∣∣∣2

≤ (χDμv + pμD) eχD

∫
Ω

(
aD
)p + pχDeχD

∫
Ω

(
aD
)p

m (3.32)

and

d

dt

∫
Ω

eχSv
(
aS
)p + 4(p− 1)

p

∫
Ω

∣∣∣∇ (aS) p
2
∣∣∣2

≤ [(χSμv + pμS) eχS + (p− 1)μMeχD ]
∫
Ω

(
aS
)p + μMeχD

∫
Ω

(
aD
)p + pχSe

χS

∫
Ω

(
aS
)p

m. (3.33)

Proof. The proof is similar to the proof of Lemma 3.4 but take the additional assumptions μD ≥ χDμv, μS ≥
χSμv into account, so we omit it here. �
4. Proof of Theorem 1.1

The key point in the proof of Theorem 1.1 is to derive a priori estimates of 
∥∥aD∥∥

L∞(Ω), 
∥∥aS∥∥

L∞(Ω) and 
‖∇v‖L5(Ω) on account of Lemma 3.3. To this end, enlightened by [25], we will develop a certain dissipative 

property of the functionals 
∫
Ω eχDv

(
aD
)2

, 
∫
Ω eχSv

(
aS
)2 which will serve as a starting point to establish 

an iteration step resulting in the L∞(Ω) boundedness of aD and aS . Furthermore, inspired by [33], we will 
build a bridge between ‖∇v(·, t)‖Lq(Ω) and 

∫ t

0

(∥∥∇aD(·, s)
∥∥
Lq(Ω) +

∥∥∇aS(·, s)
∥∥
Lq(Ω)

)
ds which is crucial of 

estimating ‖∇v‖L5(Ω).
For notational convenience, in what follows, we shall use Ci (i = 1, 2...) to denote the positive constants 

independent of time, whereas we use Ci(T ) (i = 1, 2...) to denote the positive constants depending on time. 
These constants Ci and Ci(T ) may vary from line to line. In addition, according to the above local existence 
results Lemma 3.1 and Lemma 3.2, without loss of generality, we can assume that

∥∥cD0 ∥∥C2(Ω̄) +
∥∥cS0 ∥∥C2(Ω̄) + ‖m0‖C2(Ω̄) + ‖v0‖C2(Ω̄) ≤ C1. (4.1)

4.1. The case of τ = 1

Firstly, based on the ideas of [15, Lemma 2.1], some basic but important properties of solutions of (1.1)
and (3.1) when τ = 1 are derived in the following Lemma.

Lemma 4.1. Let 
(
cD, cS ,m, v

)
and 

(
aD, aS ,m, v

)
be the classical solutions of (1.1) and (3.1) with τ = 1, 

respectively. Then we have
(i)
∥∥aD(·, t)

∥∥
L1(Ω) ≤

∥∥cD(·, t)
∥∥
L1(Ω) ≤ M1 := max

{
|Ω|,

∥∥cD0 ∥∥L1(Ω)

}
for all t ∈ (0, Tmax);

(ii)
∥∥aS(·, t)

∥∥
L1(Ω) ≤

∥∥cS(·, t)
∥∥
L1(Ω) ≤ M2 := max

{∥∥cS0 ∥∥L1(Ω) ,
|Ω|
2

(
1 +

√
1 + 4μMM1

μS |Ω|

)}
for all t ∈

(0, Tmax);

(iii)
t+θ∫
t

∥∥aD(·, s)
∥∥2
L2(Ω) ds ≤

t+θ∫
t

∥∥cD(·, t)
∥∥2
L2(Ω) ds ≤ M3 := |Ω| + 2M1

μD
for any 0 < θ ≤ min

{
1, Tmax

2

}

and all t ∈ (0, Tmax − θ);
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(iv)
t+θ∫
t

∥∥aS(·, s)
∥∥2
L2(Ω) ds ≤

t+θ∫
t

∥∥cS(·, t)
∥∥2
L2(Ω) ds ≤ M4 := |Ω| + 2 (μMM1 + M2)

μS
for any 0 < θ ≤

min
{

1, Tmax

2

}
and all t ∈ (0, Tmax − θ);

(v) ‖m(·, t)‖L1(Ω) ≤ M5 := max
{
‖m0‖L1(Ω) ,M1 + M2

}
for all t ∈ (0, Tmax);

(vi) ‖∇m(·, t)‖2
L2(Ω) ≤ M6 :=

(2+μD+μM )M1+(2+μS)M2+μ‖∇m0‖2
L2(Ω)

μ for all t ∈ (0, Tmax), where μ :=
min {μD, μS}.

Proof. (i) Integrating the cD-equation of (1.1) over Ω immediately yields

d

dt

∫
Ω

cD(x, t) ≤ μD

∫
Ω

cD(x, t) − μD

∫
Ω

∣∣cD(x, t)
∣∣2 (4.2)

by (3.3) and aD := e−χDvcD. Moreover, by the Cauchy-Schwartz inequality, we have

d

dt

∫
Ω

cD(x, t) ≤ μD

∫
Ω

cD(x, t) − μD

|Ω|

⎛
⎝∫

Ω

cD(x, t)

⎞
⎠

2

, (4.3)

which means from the ODE comparison principle that
∥∥cD(·, t)

∥∥
L1(Ω) ≤ max

{
|Ω|,

∥∥cD0 ∥∥L1(Ω)

}
:= M1, (4.4)

this together with aD := e−χDvcD and 0 < v ≤ 1 implies (i).
(ii) Integrating the cS-equation of (1.1) over Ω, due to (3.3) and aS := e−χSvcS as well as hypothesis 

(H2), we get

d

dt

∫
Ω

cS(x, t) ≤ μM

∫
Ω

cD(x, t) + μS

∫
Ω

cS(x, t) − μS

∫
Ω

∣∣cS(x, t)
∣∣2 , (4.5)

which, by means of (i) and the Cauchy-Schwartz inequality, yields

d

dt

∫
Ω

cS(x, t) ≤ μMM1 + μS

∫
Ω

cS(x, t) − μS

|Ω|

⎛
⎝∫

Ω

cS(x, t)

⎞
⎠

2

. (4.6)

Similarly, it follows from the ODE comparison principle that

∥∥cS(·, t)
∥∥
L1(Ω) ≤ max

{∥∥cS0 ∥∥L1(Ω) ,
|Ω|
2

(
1 +

√
1 + 4μMM1

μS |Ω|

)}
:= M2, (4.7)

which, combined with aS := e−χSvcS and 0 < v ≤ 1, gives (ii).
(iii) In view of (4.2), one infer from the Cauchy’s inequality that

d

dt

∫
Ω

cD(x, t) + μD

2

∫
Ω

(
cD(x, t)

)2 ≤ μD

2 |Ω|. (4.8)

Integrating (4.8) over (t, t + θ) for any 0 < θ ≤ min
{
1, Tmax

}
, and using (3.3) and (i), we have
2
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t+θ∫
t

∫
Ω

∣∣cD(x, s)
∣∣2 ≤ |Ω|θ + 2

μD

∫
Ω

cD(x, t) ≤ |Ω| + 2M1

μD
:= M3. (4.9)

Noting aD := e−χDvcD and the fact 0 < v ≤ 1, thus (iii) obviously holds.
(iv) Analogous to the proof of (iii), we obtain

d

dt

∫
Ω

cS(x, t) + μS

2

∫
Ω

(
cD(x, t)

)2 ≤ μM

∫
Ω

cD(x, t) + μS

2 |Ω| ≤ μMM1 + μS

2 |Ω|. (4.10)

Then we integrate above inequality over (t, t + θ) for any 0 < θ ≤ min
{
1, Tmax

2
}

to yield

t+θ∫
t

∫
Ω

(
cS(x, s)

)2 ≤ 2μMM1θ

μS
+ |Ω|θ + 2

μS

∫
Ω

cS(x, t) ≤ |Ω| + 2 (μMM1 + M2)
μS

:= M4. (4.11)

Thanks to aS := e−χSvcS and 0 < v ≤ 1, it is easy to find that (iv) is valid.
(v) Integrating the m-equation of (1.1) over Ω yields

d

dt

∫
Ω

m(x, t) +
∫
Ω

m(x, t) =
∫
Ω

cD(x, t) +
∫
Ω

cS(x, t) ≤ M1 + M2, (4.12)

which, applied to the Gronwall’s inequality, gives (v).
(vi) Testing the m-equation of (1.1) by −Δm and integrating the resulting equation over Ω by parts, 

and using the Cauchy’s inequality, we obtain

1
2
d

dt

∫
Ω

|∇m(x, t)|2 +
∫
Ω

|Δm(x, t)|2 +
∫
Ω

|∇m(x, t)|2

= −
∫
Ω

(
cDΔm

)
(x, t) −

∫
Ω

(
cSΔm

)
(x, t)

≤
∫
Ω

|Δm(x, t)|2 + 1
2

∫
Ω

∣∣cD(x, t)
∣∣2 + 1

2

∫
Ω

∣∣cS(x, t)
∣∣2 , (4.13)

which implies

d

dt

∫
Ω

|∇m(x, t)|2 +
∫
Ω

|∇m(x, t)|2 ≤
∫
Ω

∣∣cD(x, t)
∣∣2 +

∫
Ω

∣∣cS(x, t)
∣∣2 . (4.14)

Let us set μ := min {μD, μS}. (4.14) together with (4.2) and (4.5) directly yields

d

dt

∫
Ω

(
cD(x, t) + cS(x, t) + μ|∇m(x, t)|2

)
+
∫
Ω

(
cD(x, t) + cS(x, t) + μ|∇m(x, t)|2

)

≤ (1 + μD + μM )
∫
Ω

cD(x, t) + (1 + μS)
∫
Ω

cS(x, t)

≤ (1 + μD + μM )M1 + (1 + μS)M2, (4.15)

which, applied to the Gronwall’s inequality, yields
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μ

∫
Ω

|∇m(x, t)|2

≤ (1 + μD + μM )M1 + (1 + μS)M2 +
∥∥aD0 ∥∥L1(Ω) +

∥∥aS0 ∥∥L1(Ω) + μ ‖∇m0‖2
L2(Ω)

≤ (2 + μD + μM )M1 + (2 + μS)M2 + μ ‖∇m0‖2
L2(Ω) , (4.16)

that is, (vi) holds.
Thus, the proof of Lemma 4.1 is completed. �

Lemma 4.2. Let 
(
aD, aS ,m, v

)
be the classical solutions of (3.1) with τ = 1 constructed in Lemma 3.1. 

Suppose that the assumptions of Theorem 1.1 hold. Then there exists C2
(
min

{
1, Tmax

4
})

> 0 such that

∥∥aD(·, t)
∥∥
L2(Ω) +

∥∥aS(·, t)
∥∥
L2(Ω) ≤ C2

(
min

{
1, Tmax

4

})
for all t ∈ (0, Tmax). (4.17)

Proof. Let us take p = 2 in (3.29) and (3.30), we have

d

dt

∫
Ω

eχDv
(
aD
)2 + 2

∫
Ω

eχDv
∣∣∇aD

∣∣2 + (2μD − χDμv)
∫
Ω

e2χDv
(
aD
)3

≤ (2μD + χDμv)
∫
Ω

eχDv
(
aD
)2 + χD

∫
Ω

eχDv
(
aD
)2

m

+ (χDμv − 2μD)
∫
Ω

eχDv+χSv
(
aD
)2

aS (4.18)

and

d

dt

∫
Ω

eχSv
(
aS
)2 + 2

∫
Ω

eχSv
∣∣∇aS

∣∣2 + (2μS − χSμv)
∫
Ω

e2χSv
(
aS
)3

≤ (2μS + χSμv)
∫
Ω

eχSv
(
aS
)2 + χS

∫
Ω

eχSv
(
aS
)2

m + (χSμv − 2μS)
∫
Ω

eχDv+χSv
(
aS
)2

aD

+ 2μM

∫
Ω

eχDvaDaS , (4.19)

which, applied to the Young’s inequality, give

d

dt

∫
Ω

eχDv
(
aD
)2 +

∫
Ω

eχDv
∣∣∇ (aD)∣∣2 +

∫
Ω

eχDv
(
aD
)2

≤ C3
∥∥aD∥∥3

L3(Ω) + C3
∥∥aS∥∥3

L3(Ω) + C3‖m‖3
L3(Ω) + C3 (4.20)

and

d

dt

∫
Ω

eχSv
(
aS
)2 +

∫
Ω

eχSv
∣∣∇ (aS)∣∣2 +

∫
Ω

eχSv
(
aS
)2

≤ C4
∥∥aS∥∥3

3 + C4
∥∥aD∥∥3

3 + C4‖m‖3
L3(Ω) + C4. (4.21)
L (Ω) L (Ω)
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Noting n = 2, by the Sobolev embedding theorem, Lemma 2.1 and the facts of (v), (vi) in Lemma 4.1, we 
obtain

‖m‖L3(Ω) ≤ C5‖m‖W 1,2(Ω) ≤ C5A0
(
‖∇m‖L2(Ω) + ‖m‖L1(Ω)

)
≤ C6. (4.22)

Substituting (4.22) into (4.20) and (4.21), one can deduce that

d

dt

∫
Ω

eχDv
(
aD
)2 +

∫
Ω

eχDv
∣∣∇ (aD)∣∣2 +

∫
Ω

eχDv
(
aD
)2 ≤ C7

∥∥aD∥∥3
L3(Ω) + C7

∥∥aS∥∥3
L3(Ω) + C7 (4.23)

and

d

dt

∫
Ω

eχSv
(
aS
)2 +

∫
Ω

eχSv
∣∣∇ (aS)∣∣2 +

∫
Ω

eχSv
(
aS
)2 ≤ C8

∥∥aS∥∥3
L3(Ω) + C8

∥∥aD∥∥3
L3(Ω) + C8. (4.24)

Combining (4.23) and (4.24), and using the fact v > 0 gives

d

dt

∫
Ω

(
eχDv

(
aD
)2 + eχSv

(
aS
)2)+

∫
Ω

(∣∣∇ (aD)∣∣2 +
∣∣∇ (aS)∣∣2 +

(
aD
)2 +

(
aS
)2)

≤ (C7 + C8)
∥∥aD∥∥3

L3(Ω) + (C7 + C8)
∥∥aS∥∥3

L3(Ω) + C7 + C8. (4.25)

On the other hand, by using the Gagliardo-Nirenberg’s inequality [9,14] and the Young’s inequality, for any 
ε > 0, we have

‖a‖2
W 1,2(Ω) ≥

1
ε
‖a‖3

L3(Ω) −
C6

GN

ε2 ‖a‖4
L2(Ω) , (4.26)

which after inserting into (4.25) for a = aD and a = aS correspondingly, and taking ε = 1
2(C7+C8) yields

d

dt

∫
Ω

(
eχDv

(
aD
)2 + eχSv

(
aS
)2)+ (C7 + C8)

∥∥aD∥∥3
L3(Ω) + (C7 + C8)

∥∥aS∥∥3
L3(Ω)

≤ 4 (C7 + C8)2 C6
GN

∥∥aD∥∥4
L2(Ω) + 4 (C7 + C8)2 C6

GN

∥∥aS∥∥4
L2(Ω) + C7 + C8. (4.27)

Thanks to a3 ≥ 1
εa

2 − 1
ε3 for all a ≥ 0 and any ε > 0, we have

d

dt

∫
Ω

(
eχDv

(
aD
)2 + eχSv

(
aS
)2)+ 1

ε

∫
Ω

(
eχDv(aD)2 + eχSv(aS)2

)

≤ 4 (C7 + C8)2 C6
GN

(∥∥aD∥∥4
L2(Ω) +

∥∥aS∥∥4
L2(Ω)

)
+ C7 + C8 +

(
e3χD + e3χS

)
|Ω|

ε3 (C7 + C8)2

≤ 4 (C7 + C8)2 C6
GN

(∥∥aD∥∥2
L2(Ω) +

∥∥aS∥∥2
L2(Ω)

)⎛⎝∫
Ω

(
eχDv(aD)2 + eχSv(aS)2

)⎞⎠

+ C7 + C8 +
(
e3χD + e3χS

)
|Ω|

3 2 . (4.28)

ε (C7 + C8)
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Let θ = min
{
1, Tmax

4
}
, ε = θ

1+4(C7+C8)2C6
GN (M3+M4)

, a(t) := 1
ε , b(t) := 4 (C7 + C8)2 C6

GN

(∥∥aD∥∥2
L2(Ω) +∥∥aS∥∥2

L2(Ω)

)
, c(t) := C7 +C8 +

(
e3χD+e3χS

)
|Ω|

ε3(C7+C8)2 and y(t) :=
∫
Ω
(
eχDv(aD)2 + eχSv(aS)2

)
. Consequently, (4.28)

can be rewritten as the following ODE inequality

y′(t) + a(t)y(t) ≤ b(t)y(t) + c(t). (4.29)

Furthermore, by a simple calculation, using Lemma 2.3 to (4.28) with b1 = 4 (C7 + C8)2 C6
GN (M3 + M4), 

c1 = C7 + C8 +
(
e3χD+e3χS

)
|Ω|

ε3(C7+C8)2
and γ = 1 directly yields

∫
Ω

(
eχDv(aD)2 + eχSv(aS)2

)
≤
(
eχD

∥∥aD0 ∥∥L2(Ω) + eχS
∥∥aS0 ∥∥L2(Ω)

)
eb1 + c1e

2b1

1 − e−1 + c1e
b1 , (4.30)

which verifies (4.17).
Thus, the proof of Lemma 4.2 is completed. �
Now, we can raise the regularity of L2(Ω) to Lp(Ω) for any p > 1 with respect to the boundedness of aD

and aS .

Lemma 4.3. Assume that the hypotheses of Lemma 4.2 remains valid. Then for all p > 1, there exists 
C9
(
min

{
1, Tmax

4
})

> 0 such that

∥∥aD(·, t)
∥∥
Lp(Ω) +

∥∥aS(·, t)
∥∥
Lp(Ω) ≤ C9

(
min

{
1, Tmax

4

})
for all t ∈ (0, Tmax). (4.31)

Proof. Noting n = 2, then it follows from Lemma 4.2 and Lemma 2.4 that

‖m‖L∞(Ω) ≤ C10

(
min

{
1, Tmax

4

})
for all t ∈ (0, Tmax). (4.32)

Applying the Young’s inequality to (3.29) and (3.30) for any p > 1 and using the fact 0 < v ≤ 1, we derive

d

dt

∫
Ω

eχDv
(
aD
)p + 4(p− 1)

p

∫
Ω

eχDv
∣∣∣∇ (aD) p

2
∣∣∣2 +

∫
Ω

eχDv
(
aD
)p

≤ C11

(
min

{
1, Tmax

4

})∥∥aD∥∥p+1
Lp+1(Ω) + C12

∥∥aS∥∥p+1
Lp+1(Ω) + C12 (4.33)

and

d

dt

∫
Ω

eχSv
(
aS
)p + 4(p− 1)

p

∫
Ω

eχSv
∣∣∣∇ (aS) p

2
∣∣∣2 +

∫
Ω

eχSv
(
aS
)p

≤ C13

(
min

{
1, Tmax

4

})∥∥aS∥∥p+1
Lp+1(Ω) + C14

∥∥aD∥∥p+1
Lp+1(Ω) + C14. (4.34)

Now, it follows from Lemma 2.2 and Lemma 4.2 that

∥∥aD∥∥p+1
Lp+1(Ω) =

∥∥∥(aD) p
2
∥∥∥ 2(p+1)

p

L
2(p+1)

p (Ω)

≤ C15

(∥∥∥∇ (aD) p
2
∥∥∥λ 2(p+1)

p

L2(Ω)

∥∥∥(aD) p
2
∥∥∥(1−λ) 2(p+1)

p

L
4
p (Ω)

+
∥∥∥(aD) p

2
∥∥∥ 2(p+1)

p

L
4
p (Ω)

)
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≤ C16

(
min

{
1, Tmax

4

})(∥∥∥∇ (aD) p
2
∥∥∥λ 2(p+1)

p

L2(Ω)
+ 1
)
, (4.35)

where λ = p−1
p+1 , thus λ2(p+1)

p = 2 − 2
p ∈ (0, 2) for any p > 1. Hence, by the Young’s inequality and Lemma 4.2, 

we have
(
C11

(
min

{
1, Tmax

4

})
+ C14

)∥∥aD∥∥p+1
Lp+1(Ω)

≤ 4(p− 1)
p

∫
Ω

eχDv
∣∣∣∇ (aD) p

2
∣∣∣2 + C17

(
min

{
1, Tmax

4

})
. (4.36)

Analogous to (4.36), it is not hard to deduce that

(
C13

(
min

{
1, Tmax

4

})
+ C12

)∥∥aS∥∥p+1
Lp+1(Ω)

≤ 4(p− 1)
p

∫
Ω

eχSv
∣∣∣∇ (aS) p

2
∣∣∣2 + C18

(
min

{
1, Tmax

4

})
. (4.37)

Adding (4.33) to (4.34), and substituting (4.36) and (4.37) into the resulting inequality, this yields

d

dt

∫
Ω

(
eχDv

(
aD
)p + eχSv

(
aS
)p)+

∫
Ω

(
eχDv

(
aD
)p + eχSv

(
aS
)p)

≤ C19

(
min

{
1, Tmax

4

})
, (4.38)

which, applied to the Gronwall’s inequality and combined with the fact 0 < v ≤ 1, obviously gives (4.31).
Thus, the proof of Lemma 4.3 is completed. �
Next, we can establish the L∞(Ω)-boundedness of aD and aS by making a adaptation of the well-known 

Moser-Alikakos Lp iteration technique [1] (see also [17,33]).

Lemma 4.4. Under the hypotheses of Lemma 4.2. Then there exists C20(Tmax) > 0 such that

∥∥aD(·, t)
∥∥
L∞(Ω) +

∥∥aS(·, t)
∥∥
L∞(Ω) ≤ C20(Tmax) for all t ∈ (0, Tmax). (4.39)

Proof. Combining (3.29) and (3.30), noting (4.32), then using the Young’s inequality to the resulting in-
equality, for any p ≥ 3, we obtain

d

dt

∫
Ω

(
eχDv

(
aD
)p + eχSv

(
aS
)p)+

∫
Ω

(
eχDv

(
aD
)p + eχSv

(
aS
)p)

+
∫
Ω

(∣∣∣∇ (aD) p
2
∣∣∣2 +

∣∣∣∇ (aS) p
2
∣∣∣2)

≤ C21

(
min

{
1, Tmax

4

})
p
(∥∥aD∥∥p+1

Lp+1(Ω) +
∥∥aS∥∥p+1

Lp+1(Ω) + 1
)
, (4.40)

where C21
(
min

{
1, Tmax

})
is independent of p ≥ 3. On the other hand, from Lemma 2.2, we have
4
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C21

(
min

{
1, Tmax

4

})
p ‖a‖p+1

Lp+1(Ω)

= C21

(
min

{
1, Tmax

4

})
p
∥∥∥a p

2

∥∥∥ 2(p+1)
p

L
2(p+1)

p (Ω)

≤ C22

(
min

{
1, Tmax

4

})
p

(∥∥∥∇a
p
2

∥∥∥ p+2
p

L2(Ω)

∥∥∥a p
2

∥∥∥
L1(Ω)

+
∥∥∥a p

2

∥∥∥ 2(p+1)
p

L1(Ω)

)

≤
∥∥∥∇a

p
2

∥∥∥2

L2(Ω)
+ C23

(
min

{
1, Tmax

4

})
p

2p
p−2

(∥∥∥a p
2

∥∥∥ 2p
p−2

L1(Ω)
+ 1
)

≤
∥∥∥∇a

p
2

∥∥∥2

L2(Ω)
+ C24

(
min

{
1, Tmax

4

})
p6
(∥∥∥a p

2

∥∥∥ 2p
p−2

L1(Ω)
+ 1
)
. (4.41)

Here, we have used the Young’s inequality guaranteed by p+2
p ∈ (1, 53 ) and 2(p+1)

p < 2p
p−2 , we also used the 

fact 2p
p−2 ≤ 6 for p ≥ 3. Inserting (4.41) with a = aD, a = aS into (4.40), one has

d

dt

∫
Ω

(
eχDv

(
aD
)p + eχSv

(
aS
)p)+

∫
Ω

(
eχDv

(
aD
)p + eχSv

(
aS
)p)

≤ C25

(
min

{
1, Tmax

4

})
p6
(∥∥∥(aD) p

2
∥∥∥ 2p

p−2

L1(Ω)
+
∥∥∥(aS) p

2
∥∥∥ 2p

p−2

L1(Ω)
+ 1
)

≤ C26

(
min

{
1, Tmax

4

})
p6
(

max
{

1,
∥∥∥(aD) p

2
∥∥∥
L1(Ω)

+
∥∥∥(aD) p

2
∥∥∥
L1(Ω)

}) 2p
p−2

. (4.42)

Let pk := 3 · 2k, qk := 2pk

pk−2 and Mk(Tmax) := max
{

1, sup
t∈(0,Tmax)

(∥∥(aD)pk
∥∥
L1(Ω) +

∥∥(aS)pk
∥∥
L1(Ω)

)}
for 

k = 0, 1, 2... Therefore, upon the ODE comparison principle, we infer from (4.42) that there exists η > 1
depending on Tmax but independent of k such that

Mk(Tmax) ≤ max
{
ηkMqk

k−1(Tmax), eχD |Ω|
∥∥aD0 ∥∥pk

L∞(Ω) + eχS |Ω|
∥∥aS0 ∥∥pk

L∞(Ω)

}
for all k ≥ 1. (4.43)

Consequently, if ηkMqk
k−1(Tmax) ≤ eχD |Ω| 

∥∥aD0 ∥∥pk

L∞(Ω) +eχS |Ω| 
∥∥aS0 ∥∥pk

L∞(Ω) for infinitely many k ≥ 1, we have

sup
t∈(0,Tmax)

⎛
⎝∫

Ω

(
aD
)pk−1

⎞
⎠

1
pk−1

+ sup
t∈(0,Tmax)

⎛
⎝∫

Ω

(
aS
)pk−1

⎞
⎠

1
pk−1

≤
(
eχD |Ω|

∥∥aD0 ∥∥pk

L∞(Ω) + eχS |Ω|
∥∥aS0 ∥∥pk

L∞(Ω)

ηk

) 1
pk−1qk

, (4.44)

which implies

sup
t∈(0,Tmax)

∥∥aD(·, t)
∥∥
L∞(Ω) + sup

t∈(0,Tmax)

∥∥aS(·, t)
∥∥
L∞(Ω) ≤

∥∥aD0 ∥∥L∞(Ω) +
∥∥aS0 ∥∥L∞(Ω) . (4.45)

Conversely, if ηkMqk
k−1(Tmax) > eχD |Ω| 

∥∥aD0 ∥∥pk

L∞(Ω) + eχS |Ω| 
∥∥aS0 ∥∥pk

L∞(Ω) for all sufficiently large k, then it 
follows from (4.43) that

Mk(Tmax) ≤ ηkMqk (Tmax) for all sufficiently large k, (4.46)
k−1
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therefore, (4.46) still holds for all k ≥ 1 by enlarging η if necessary, this amounts to say,

Mk(Tmax) ≤ ηkMqk
k−1(Tmax) for all k ≥ 1. (4.47)

Thus, by a simple induction, we get

Mk(Tmax) ≤ ηk+
∑k

j=2(j−1)·
∏k

i=j qi ·M0(Tmax)
∏k

i=1 qi for all k ≥ 1. (4.48)

Let us set ζk := 2
pk−2 , then qk = 2pk

pk−2 = 2 
(
1 + 2

pk−2

)
= 2(1 + ζk) for k ≥ 1. In addition, thanks to 

pk := 3 · 2k, this means that ζk := 2
pk−2 = 2

3·2k−2 ≤ 2−k, which, combined with the fact ln(1 + x) ≤ x for 
any x ≥ 0, yields

k∏
i=j

qi = 2k+1−jeΣk
i=j ln(1+ζi) ≤ 2k+1−jeΣk

i=jζi

≤ 2k+1−jeΣk
i=j2

−i ≤ 2k+1−je for all k ≥ 1 and j ∈ {1, 2..., k}. (4.49)

Thus, we have

∑k
j=2(j − 1) ·

∏k
i=j qi

3 · 2k ≤
∑k

j=2(j − 1)2k+1−je

3 · 2k ≤ 2e
3

k∑
j=2

j − 1
2j ≤ 2e

3 · 3
4 = e

2 . (4.50)

Then, we deduce from (4.48) that

M
1
pk

k (Tmax) ≤ η
k

3·2k +
∑k

j=2(j−1)·
∏k
i=j qi

3·2k ·M
∏k
i=1 qi

3·2k
0 (Tmax) ≤ η

k

3·2k + e
2 ·M

e
3
0 (Tmax), (4.51)

which after passing to k → ∞ immediately entails

sup
t∈(0,Tmax)

∥∥aD(·, t)
∥∥
L∞(Ω) + sup

t∈(0,Tmax)

∥∥aS(·, t)
∥∥
L∞(Ω) ≤ η

e
2 ·M

e
3
0 (Tmax). (4.52)

Letting C20(Tmax) := max
{∥∥aD0 ∥∥L∞(Ω) +

∥∥aS0 ∥∥L∞(Ω) , η
e
2 ·M

e
3
0 (Tmax)

}
, hence a combination of (4.45) and 

(4.52) directly implies (4.39).
Thus, the proof of Lemma 4.4 is completed. �

Remark 4.1. Recalling the proof of Lemma 4.3 and Lemma 4.4, it is worth noting that the time-
dependent boundedness of 

∥∥aD(·, t)
∥∥
Lp(Ω) +

∥∥aS(·, t)
∥∥
Lp(Ω) for any p > 1 derived in Lemma 4.3 and ∥∥aD(·, t)

∥∥
L∞(Ω) +

∥∥aS(·, t)
∥∥
L∞(Ω) established in Lemma 4.4 are as a result of the time-dependent bounded-

ness of 
∥∥aD(·, t)

∥∥
L2(Ω) +

∥∥aS(·, t)
∥∥
L2(Ω) shown in Lemma 4.2.

According to the weakened extensibility criterion (3.7) of Lemma 3.3, it remains to derive a 
priori estimates for ‖∇v(·, t)‖L5(Ω). To this end, the following result bridging ‖∇v(·, t)‖qLq(Ω) with ∫ t

0

(
‖∇aD(·, s)‖qLq(Ω) + ‖∇aS(·, s)‖qLq(Ω)

)
ds is crucial.

Lemma 4.5. Under the assumptions of Lemma 4.2. Then for all t ∈ (0, Tmax) and q ≥ 2, there exists a 
C27(q) > 0 independent of time such that
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‖∇v(·, t)‖qLq(Ω) ≤ c27e
c27t

⎛
⎝‖∇v0‖qLq(Ω) + 1 +

t∫
0

(
‖∇aD(·, s)‖qLq(Ω) + ‖∇aS(·, s)‖qLq(Ω)

)
ds

⎞
⎠ . (4.53)

Proof. Proceeding in a same way as (3.15)–(3.17) in Lemma 3.3, it is easy to prove (4.53). We note 
‖m‖W 1,∞(Ω) ≤ C28(Tmax) for all t ∈ (0, Tmax) which can be ensured by combining Lemma 4.4 and 
Lemma 2.4 for n = 2.

Thus, the proof of Lemma 4.5 is completed. �
Furthermore, the following Lemma is also needed.

Lemma 4.6. Suppose that the assumptions of Lemma 4.2 are valid. Then, for all t ∈ (0, Tmax), there exists 
C29(Tmax) > 0 such that

∥∥∇aD(·, t)
∥∥2
L2(Ω) +

∥∥∇aS(·, t)
∥∥2
L2(Ω) +

t∫
0

(∥∥ΔaD(·, s)
∥∥2
L2(Ω) +

∥∥ΔaS(·, s)
∥∥2
L2(Ω)

)
ds

≤ C29(Tmax). (4.54)

Proof. Firstly, we have the following linear forms with respect to the aD, aS-equations of (3.1)

aDt = ΔaD + χD∇v∇aD + g12 (4.55)

and

aSt = ΔaS + χS∇v∇aS + g13, (4.56)

where g12 = (χDmv − μEMT ) aD + (μD − χDμvv) aD
(
1 − eχDvaD − eχSvaS − v

)
, g13 = χSa

Smv +
(μS − χSμvv) aS

(
1 − eχDvaD − eχSvaS − v

)
+ μEMT e

χDv−χSvaD.
Combining Lemma 4.4 and Lemma 2.4, we obtain

‖m(·, t)‖L∞(Ω) ≤ C30(Tmax) for all t ∈ (0, Tmax), (4.57)

which, combined with the assumption (H2) and 0 < v ≤ 1, yields

‖g12‖L∞(Ω) ≤ C31(Tmax) and ‖g13‖L∞(Ω) ≤ C31(Tmax) for all t ∈ (0, Tmax). (4.58)

Multiplying (4.55) by −ΔaD, integrating the resulting equation over Ω by parts and applying the Young’s 
inequality yields

1
2
d

dt

∫
Ω

∣∣∇aD
∣∣2 +

∫
Ω

∣∣ΔaD
∣∣2 = −

∫
Ω

χD∇v · ∇aDΔaD −
∫
Ω

g12ΔaD

≤ 1
2

∫
Ω

∣∣ΔaD
∣∣2 + ε

2

∫
Ω

∣∣∇aD
∣∣4 + C32(ε)

∫
Ω

|∇v|4 + C33(Tmax), (4.59)

which implies that

d

dt

∫ ∣∣∇aD
∣∣2 +

∫ ∣∣ΔaD
∣∣2 ≤ ε

∫ ∣∣∇aD
∣∣4 + 2C32(ε)

∫
|∇v|4 + 2C33(Tmax). (4.60)
Ω Ω Ω Ω
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By Lemma 2.2 and Lemma 4.4, we have

∥∥∇aD
∥∥4
L4(Ω) ≤ C4

GN

(∥∥ΔaD
∥∥2
L2(Ω)

∥∥aD∥∥2
L∞(Ω) +

∥∥aD∥∥4
L∞(Ω)

)
≤ C34(Tmax)

∥∥ΔaD
∥∥2
L2(Ω) + C34(Tmax). (4.61)

Substituting (4.61) into (4.60) and taking ε = 1
2C34(Tmax) , we get

d

dt

∫
Ω

∣∣∇aD
∣∣2 + 1

2

∫
Ω

∣∣ΔaD
∣∣2 ≤ C35(Tmax)

∫
Ω

|∇v|4 + C35(Tmax). (4.62)

Analogously, we obtain

d

dt

∫
Ω

∣∣∇aS
∣∣2 + 1

2

∫
Ω

∣∣ΔaS
∣∣2 ≤ C36(Tmax)

∫
Ω

|∇v|4 + C36(Tmax). (4.63)

Combining (4.62) and (4.63) gives

d

dt

∫
Ω

(∣∣∇aD
∣∣2 +

∣∣∇aS
∣∣2)+ 1

2

∫
Ω

(∣∣ΔaD
∣∣2 +

∣∣ΔaS
∣∣2) ≤ C37(Tmax)

∫
Ω

|∇v|4 + C37(Tmax). (4.64)

Inserting (4.53) with q = 4 into (4.64) and applying (4.61), we have

d

dt

∫
Ω

(∣∣∇aD
∣∣2 +

∣∣∇aS
∣∣2)+ 1

2

∫
Ω

(∣∣ΔaD
∣∣2 +

∣∣ΔaS
∣∣2)

≤ C37(Tmax)c27ec27t
⎛
⎝‖∇v0‖4

L4(Ω) + 1 +
t∫

0

(
‖∇aD(·, s)‖4

L4(Ω) + ‖∇aS(·, s)‖4
L4(Ω)

)
ds

⎞
⎠+ C37(Tmax)

≤ C37(Tmax)c27ec27t
(
‖∇v0‖4

L4(Ω) + 1 + C34(Tmax)
t∫

0

(∥∥ΔaD(·, s)
∥∥2
L2(Ω) +

∥∥ΔaS(·, s)
∥∥2
L2(Ω)

)
ds

+2C34(Tmax)t
)

+ C37(Tmax). (4.65)

Integrating (4.65) from 0 to t, we see that

∥∥∇aD(·, t)
∥∥2
L2(Ω) +

∥∥∇aS(·, t)
∥∥2
L2(Ω) + 1

2

t∫
0

(∥∥ΔaD(·, s)
∥∥2
L2(Ω) +

∥∥ΔaS(·, s)
∥∥2
L2(Ω)

)

≤ C37(Tmax)c27ec27t
(
t‖∇v0‖4

L4(Ω) + t + C34(Tmax)t
t∫

0

(∥∥ΔaD(·, s)
∥∥2
L2(Ω) +

∥∥ΔaS(·, s)
∥∥2
L2(Ω)

)
ds

+2C34(Tmax)t2
)

+ C37(Tmax)t +
∥∥∇aD0

∥∥2
L2(Ω) +

∥∥∇aS0
∥∥2
L2(Ω) . (4.66)

Let us take 0 < t1 < min {1, Tmax} such that C37(Tmax)C34(Tmax)c27ec27t1t1 ≤ 1
4 . Thus, by (4.66), for all 

t ∈ (0, t1], we have
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∥∥∇aD(·, t)
∥∥2
L2(Ω) +

∥∥∇aS(·, t)
∥∥2
L2(Ω) + 1

4

t∫
0

(∥∥ΔaD(·, s)
∥∥2
L2(Ω) +

∥∥ΔaS(·, s)
∥∥2
L2(Ω)

)

≤
∥∥∇aD0

∥∥2
L2(Ω) +

∥∥∇aS0
∥∥2
L2(Ω) + C38(Tmax)‖∇v0‖4

L4(Ω) + C38(Tmax). (4.67)

In virtue of (4.61), (4.67) and (4.53), we see that

‖∇v(·, t1)‖4
L4(Ω) ≤ C39(Tmax)

(∥∥∇aD0
∥∥2
L2(Ω) ,

∥∥∇aS0
∥∥2
L2(Ω) , ‖∇v0‖4

L4(Ω)

)
, (4.68)

which guarantee we can repeat the above procedure by taking t1 as the initial time. Consequently, it is 
not hard for us to extend the estimate (4.67) to the whole time interval (0, Tmax) after finitely many steps. 
Thus, (4.54) holds.

Thus, the proof of Lemma 4.6 is completed. �
Now, we are ready to prove Theorem 1.1 with τ = 1.

The proof of Theorem 1.1 in the case of τ = 1

Proof. Suppose to the contrary that the maximal existence time Tmax is finite. Thanks to Lemma 4.4, there 
exists a positive constant C40 such that

∥∥aD(·, t)
∥∥
L∞(Ω) +

∥∥aS(·, t)
∥∥
L∞(Ω) ≤ C40. (4.69)

On the other hand, a combination of Lemma 4.6 and (4.61) (we note that (4.61) remains valid when aD

replacing aD with aS) directly yields

t∫
0

(∥∥∇aD(·, s)
∥∥4
L4(Ω) +

∥∥∇aS(·, s)
∥∥4
L4(Ω)

)
ds ≤ C41, (4.70)

which, applied to Lemma 4.5 with q = 4, entails

‖∇v(·, t)‖4
L4(Ω) ≤ C42 for all t ∈ (0, Tmax). (4.71)

Recalling (4.58), and applying the parabolic Lp theory (see [19, Theorem IV.9.1] to (4.55) and (4.56) and 
the Sobolev embedding theorem (see [19, Lemma II.3.3]) yields

∥∥∇aD
∥∥
L5(QTmax ) +

∥∥∇aS
∥∥
L5(QTmax ) ≤ C43

∥∥aD∥∥
W 2,1

3 (QTmax ) +
∥∥aS∥∥

W 2,1
3 (QTmax ) ≤ C44, (4.72)

which, applied to Lemma 4.5 with q = 5, gives

‖∇v(·, t)‖5
L5(Ω) ≤ C45 for all t ∈ (0, Tmax). (4.73)

Combining (4.69) with (4.73), which contradicts the weakened extensibility criterion (3.7) established in 
Lemma 3.3 and thereby proves that Tmax = ∞. As for the uniform boundedness of aD and aS with respect 
to t ∈ (0, ∞) is a straightforward consequence of Remark 4.1. Indeed, thanks to Tmax = ∞, the positive 
constants C2

(
min

{
1, Tmax

4
})

and C9
(
min

{
1, Tmax

4
})

in (4.17) and (4.31) are independent of Tmax, thus 
the bounds in Lemmata 4.2-4.4 are time-independent. From the equivalent of (1.1) and (3.1), we have the 
uniform boundedness of cD and cS . Furthermore, the uniform boundedness of m in the sense of W 1,∞(Ω)
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with regard to t ∈ (0, ∞) is immediately obtained by Lemma 2.4 and the uniform boundedness of cD and 
cS . Indeed, let us consider the m-equations of (1.1) with τ = 1

⎧⎪⎪⎨
⎪⎪⎩
mt = Δm + cD + cS −m, x ∈ Ω, t > 0,
∂m
∂ν = 0, x ∈ ∂Ω, t > 0,
m(x, 0) = m0(x), x ∈ Ω.

(4.74)

By Duhamel’s principle, the solution of (4.74) can be expressed as follows

m(t) = e−tetΔm0 +
t∫

0

e−(t−s)e(t−s)Δ (cD + cS
)
(s)ds, (4.75)

where 
{
etΔ
}
t≥0 is the Neumann heat semigroup in Ω. By applying the well-known Lq − Lp estimates of 

the heat semigroup (see [38, Lemma 2.3] and [36, Lemma 1.3] or [26, Lemma 2.1]), for some γ > 0 and 
α ∈ (0, 1), we have

‖m(·, t)‖W 1,∞(Ω)

≤ e−t
∥∥etΔm0

∥∥
W 1,∞(Ω) +

t∫
0

∥∥∥e−(t−s)(−Δ+1) (cD + cS
)
(s)
∥∥∥
W 1,∞(Ω)

ds

≤ C46 ‖m0‖W 1,∞(Ω) + C46

t∫
0

∥∥∥(−Δ + 1)αe−(t−s)(−Δ+1) (cD + cS
)
(s)
∥∥∥
Lq(Ω)

ds

≤ C46 ‖m0‖W 1,∞(Ω) + C47

(∥∥cD(·, t
∥∥
L∞(Ω) +

∥∥cS(·, t)
∥∥
L∞(Ω)

) t∫
0

(t− s)−αe−γ(t−s)ds. (4.76)

Here, for estimating the first term of the second inequality in (4.76), we used the maximal principle of 
parabolic equations, the well-known results [36, (1.5) and (1.13)]. As to the second term of it, we used the 
result of [38, Lemma 2.3]. The second inequality of (4.76) holds if and only if α > 1

2 + 1
q . Thus, one can 

take α ∈
(

1
2 + 1

q , 1
)

provided q > 2 such that above integral is finite. Consequently, ‖m(·, t)‖W 1,∞(Ω) is 
uniformly bounded with respect to t ∈ (0, ∞). In conclusion, (1.2) holds.

4.2. The case of τ = 0

Analogous to Lemma 4.1, we have some essential results of solutions to the problems (1.1) and (3.1) with 
τ = 0 as follows.

Lemma 4.7. Let 
(
cD, cS ,m, v

)
and 

(
aD, aS ,m, v

)
be the classical solutions of (1.1) and (3.1) with τ = 0, 

respectively. Then we get
(i) 
∥∥aD(·, t)

∥∥
L1(Ω) ≤

∥∥cD(·, t)
∥∥
L1(Ω) ≤ M1 := max

{
|Ω|,

∥∥cD0 ∥∥L1(Ω)

}
for all t ∈ (0, Tmax);

(ii) 
∥∥aS(·, t)

∥∥
L1(Ω) ≤

∥∥cS(·, t)
∥∥
L1(Ω) ≤ M2 := max

{∥∥cS0 ∥∥L1(Ω) ,
|Ω|
2

(
1 +

√
1 + 4μMM1

μS |Ω|

)}
for all t ∈

(0, Tmax);

(iii) 
t+θ∫
t

∥∥aD(·, s)
∥∥2
L2(Ω) ds ≤

t+θ∫
t

∥∥cD(·, t)
∥∥2
L2(Ω) ds ≤ M3 := |Ω| + 2M1

μD
for any 0 < θ ≤ min

{
1, Tmax

2

}

and all t ∈ (0, Tmax − θ);
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(iv) 
t+θ∫
t

∥∥aS(·, s)
∥∥2
L2(Ω) ds ≤

t+θ∫
t

∥∥cS(·, t)
∥∥2
L2(Ω) ds ≤ M4 := |Ω| + 2 (μMM1 + M2)

μS
for any 0 < θ ≤

min
{

1, Tmax

2

}
and all t ∈ (0, Tmax − θ);

(v) ‖m(·, t)‖L1(Ω) ≤ M1 + M2 for all t ∈ (0, Tmax).

Proof. Thanks to the results of (i) − (iv) are the same as Lemma 4.1, we only need to prove (v) here. 
Integrating the m-equation of (1.1) over Ω and applying (i) and (ii), we have

∫
Ω

m(·, t) =
∫
Ω

cD(·, t) +
∫
Ω

cS(·, t) ≤ M1 + M2. (4.77)

Thus, the proof of Lemma 4.7 is completed. �
Retracing the proof of Lemma 4.2, the boundedness of ‖m(·, t)‖L3(Ω) plays an essential in the proof of 

the boundedness of 
∥∥aD(·, t)

∥∥
L2(Ω) +

∥∥aS(·, t)
∥∥
L2(Ω). Inspired by this point, we have following result which 

can guarantee the boundedness of ‖m(·, t)‖L3(Ω).

Lemma 4.8. Let 
(
cD, cS ,m, v

)
be the solutions of (1.1) with τ = 0. Assume that the hypotheses of Theo-

rem 1.1 are true. Then, for any q ∈ [1, 2), there exists C49 > 0 independent of time such that

‖m(·, t)‖W 1,q(Ω) ≤ C49 for all t ∈ (0, Tmax). (4.78)

Proof. Noting n = 2, let us consider the m-equation of (1.1), in view of (i) and (ii) in Lemma 4.7, (4.78)
is a straightforward consequence of the well-known regularity result on semi-linear second-order elliptic 
equations with L1 right hand term (see [4, Lemma 23]).

Thus, the proof of Lemma 4.8 is completed. �
Now, we can derive the following result of 

∥∥aD(·, t)
∥∥
L∞(Ω) +

∥∥aS(·, t)
∥∥
L∞(Ω) by proceeding as in the proof 

Lemma 4.2-Lemma 4.4.

Lemma 4.9. Let 
(
aD, aS ,m, v

)
be the classical solutions of (3.1) with τ = 0 constructed in Lemma 3.2. 

Suppose that the assumptions of Theorem 1.1 are valid. Then there exists C50(Tmax) > 0 such that

∥∥aD(·, t)
∥∥
L∞(Ω) +

∥∥aS(·, t)
∥∥
L∞(Ω) ≤ C50(Tmax) for all t ∈ (0, Tmax). (4.79)

Proof. Since this proof is very similar to that proof of Theorem 1.1 with τ = 1, we give the outline of it 
here. Firstly, on account of Lemma 4.8, by using the Sobolev embedding theorem W 1,p(Ω) ↪→ Lq(Ω) for 
q ∈ [1, np

n−p ] if p < n (see [12], pp. 171), we have

‖m(·, t)‖L3(Ω) ≤ C51 for all t ∈ (0, Tmax). (4.80)

In reality, we only need choose p ∈ [ 65 , 2) to ensure (4.80). Secondly, it is not hard to prove that

∥∥aD(·, t)
∥∥
L2(Ω) +

∥∥aS(·, t)
∥∥
L2(Ω) ≤ C52(Tmax) for all t ∈ (0, Tmax) (4.81)

by applying the same method as Lemma 4.2. Next, in view of (4.81), using the elliptic Lp theory to the 
m-equation of (3.1) with τ = 0, from the Sobolev embedding theorem, we can find that
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‖m(·, t)‖L∞(Ω) ≤ C53‖m(·, t)‖W 2,2(Ω)

≤ C54

(∥∥aD(·, t) + aS(·, t)
∥∥
L2(Ω)

)
≤ C55(Tmax) for all t ∈ (0, Tmax), (4.82)

which, applied to the similar way as the proof of Lemma 4.3, implies

∥∥aD(·, t)
∥∥
Lp(Ω) +

∥∥aS(·, t)
∥∥
Lp(Ω) ≤ C56(Tmax) for all t ∈ (0, Tmax) (4.83)

for any p > 1. Finally, we can derive (4.79) by making a adaptation of the well-known Moser-Alikakos Lp

iteration technique (see the proof of Lemma 4.4).
Thus, the proof of Lemma 4.9 is completed. �

Remark 4.2. Analogous to Remark 4.1, we also remark that the time-dependent boundedness of ∥∥aD(·, t)
∥∥
L∞(Ω) +

∥∥aS(·, t)
∥∥
L∞(Ω) established in Lemma 4.9 is due to the time-dependent boundedness 

of 
∥∥aD(·, t)

∥∥
L2(Ω) +

∥∥aS(·, t)
∥∥
L2(Ω), while the latter is as a result of the time-dependent of the choice of θ

(see the proof of Lemma 4.2). In addition, in the present paper, thanks to the absence of chemotaxis term, 
we do not need to deal with the 

∫
Ω ap|∇v|2 (see (3.21) of [33]), which is different from [33]. Therefore, we 

only need the boundedness of ‖m‖L3(Ω) other than ‖∇v‖L2(Ω) when establishing the a priori estimates of 
‖a(·, t)‖Lp(Ω) for all p > 2 (see [33, Lemma 3.11]).

Furthermore, based on (4.83), by the standard elliptic Lp theory and the Sobolev embedding theorem, it 
follows from the third equation of (3.1) with τ = 0 that ‖m(·, t)‖W 1,∞(Ω) ≤ C57‖m(·, t)‖W 2,p(Ω) ≤ C58(Tmax)
for all t ∈ (0, Tmax), which, combined with almost exactly the same arguments as that in the proof of 
Lemma 4.5 and Lemma 4.6, yields the following results.

Lemma 4.10. Under the hypotheses of Lemma 4.9. Then, for all t ∈ (0, Tmax) and q ≥ 2, there exists 
C59(q) > 0 independent of time such that

‖∇v(·, t)‖qLq(Ω) ≤ c59e
c59t

⎛
⎝‖∇v0‖qLq(Ω) + 1 +

t∫
0

(
‖∇aD(·, s)‖qLq(Ω) + ‖∇aS(·, s)‖qLq(Ω)

)
ds

⎞
⎠ . (4.84)

Lemma 4.11. Suppose that the assumptions of Lemma 4.9 are valid. Then, for all t ∈ (0, Tmax), there exists 
C60(Tmax) > 0 such that

∥∥∇aD(·, t)
∥∥2
L2(Ω) +

∥∥∇aS(·, t)
∥∥2
L2(Ω) +

t∫
0

(∥∥ΔaD(·, s)
∥∥2
L2(Ω) +

∥∥ΔaS(·, s)
∥∥2
L2(Ω)

)
ds

≤ C60(Tmax). (4.85)

The proof of Theorem 1.1 in the case of τ = 0

Proof. From the weakened existence criterion (3.32) in Lemma 3.3, the global existence of the unique 
classical solution to the system (1.1) with τ = 0 is a straightforward consequence of combining Lemma 4.9
with Lemma 4.10 and Lemma 4.11. Analogous to the proof of Theorem 1.1 in the case of τ = 1, for the 
uniform boundedness of aD, aS , from Remark 4.2, we can achieve it by taking θ = min

{
1, Tmax

4
}

= 1 when 
Tmax = ∞. As for the uniform boundedness of m, it is not hard to obtain by the standard elliptic Lp theory 
and the Sobolev embedding theorem. Consequently, (1.2) is true.
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5. Proof of Theorem 1.2

Analogous to the proof of Theorem 1.1, to extend the local solution established in Lemma 3.1 and 
Lemma 3.2, assuming on the contrary that Tmax < ∞, we need establish the boundedness of 

∥∥aD∥∥
L∞(Ω), ∥∥aS∥∥

L∞(Ω) and ‖∇v‖L5(Ω) by Lemma 3.3. In contrast to the proof of Theorem 1.1, inspired by [30], we 
will derive an adapted iteration criterion (see Lemma 5.1 and Lemma 5.2 below) to raise successfully the 
regularities of aD, aS from L1(Ω) to Lp(Ω) for any p > 1, then use the iterative technique of Alikakos [1] or 
[8,24] to obtain the boundedness of 

∥∥aD∥∥
L∞(Ω) and 

∥∥aS∥∥
L∞(Ω).

5.1. The case of τ = 1

Lemma 5.1. Let 
(
aD, aS ,m, v

)
be the classical solutions of (3.1) with τ = 1 constructed in Lemma 3.1. 

Suppose that the assumptions of Theorem 1.2 are valid. Then, for p = 7
6q, there exist some C61, C62 > 0

independent of time such that
∥∥aD(·, t)

∥∥
Lp(Ω) +

∥∥aS(·, t)
∥∥
Lp(Ω) ≤ C62 for all t ∈ (0, Tmax) (5.1)

provided 
∥∥aD(·, t)

∥∥
Lq(Ω) +

∥∥aS(·, t)
∥∥
Lq(Ω) ≤ C61 for all t ∈ (0, Tmax) and any q ≥ 1.

Proof. Noting n = 3, p = 7
6q for any q ≥ 1, then np

np+2q < 1 + 2
n − 1

q holds obviously. Therefore, one can 
find r > 1 such that

np

np + 2q <
1
r
< 1 + 2

n
− 1

q
. (5.2)

From np
np+2q < 1

r , we have nr − n < 2q
p . Thus, by the Gagliardo-Nirenberg’s inequality [9,14], we obtain

‖u‖2r
L2r(Ω) ≤ C63‖u‖2

W 1,2(Ω)‖u‖
2(r−1)
Lnr−n(Ω) ≤ C64‖u‖2

W 1,2(Ω)‖u‖
2(r−1)

L
2q
p (Ω)

for u ∈ W 1,2(Ω). (5.3)

On the other hand, from 1
r < 1 + 2

n − 1
q , we have 1

r′ > 1
q − 2

n for 1
r + 1

r′ = 1. Thus, by 
∥∥aD(·, t)

∥∥
Lq(Ω) +∥∥aS(·, t)

∥∥
Lq(Ω) ≤ C61 and Lemma 2.4, it follows from the m-equation of (3.1) that ‖m‖Lr′ (Ω) ≤ C65. 

Therefore, we infer from the Young’s inequality and (5.3) that
∫
Ω

(
aD
)p

m ≤ ε

∫
Ω

(
aD
)pr + C66(ε)

∫
Ω

mr′

≤ ε
∥∥∥(aD) p

2
∥∥∥2r

L2r(Ω)
+ C67(ε)

≤ εC64

∥∥∥(aD) p
2
∥∥∥2

W 1,2(Ω)

∥∥∥(aD) p
2
∥∥∥2(r−1)

L
2q
p (Ω)

+ C67(ε)

= εC64

∥∥∥(aD) p
2
∥∥∥2

W 1,2(Ω)

∥∥(aD)∥∥p(r−1)
Lq(Ω) + C67(ε)

≤ εC68

∫
Ω

(
aD
)p + εC68

∫
Ω

∣∣∣∇ (aD) p
2
∣∣∣2 + C67(ε). (5.4)

Similarly, we have
∫ (

aS
)p

m ≤ εC68

∫ (
aS
)p + εC68

∫ ∣∣∣∇ (aS) p
2
∣∣∣2 + C67(ε). (5.5)
Ω Ω Ω
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Substituting (5.3) and (5.4) into (3.32) and (3.33), then choosing ε > 0 sufficiently small such that 
εC68p max {χDeχD , χSe

χS} ≤ 2(p−1)
p , we obtain

d

dt

∫
Ω

eχDv
(
aD
)p + 2(p− 1)

p

∫
Ω

∣∣∣∇ (aD) p
2
∣∣∣2 ≤ C69

∫
Ω

(
aD
)p + C69 (5.6)

and

d

dt

∫
Ω

eχSv
(
aS
)p + 2(p− 1)

p

∫
Ω

∣∣∣∇ (aS) p
2
∣∣∣2 ≤ C70

∫
Ω

(
aS
)p + C70

∫
Ω

(
aD
)p + C70. (5.7)

Combining (5.6) with (5.7) and adding 
∫
Ω
((
aD
)p +

(
aS
)p) in both sides of the resulting inequality, we get

d

dt

∫
Ω

(
eχDv

(
aD
)p + eχSv

(
aS
)p)+ 2(p− 1)

p

∫
Ω

(∣∣∣∇ (aD) p
2
∣∣∣2 +

∣∣∣∇ (aS) p
2
∣∣∣2)

+
∫
Ω

((
aD
)p +

(
aS
)p)

≤ C71

∫
Ω

((
aD
)p +

(
aS
)p)+ C71. (5.8)

It follows from the Gagliardo-Nirenberg’s inequality [9,14] and the Young’s inequality that
∫
Ω

(
aD
)p =

∥∥∥(aD) p
2
∥∥∥2

L2(Ω)

=
∥∥∥(aD) p

2
∥∥∥2· 15

W 1,2(Ω)

∥∥∥(aD) p
2
∥∥∥2· 45

L
12
7 (Ω)

≤ ε
∥∥∥(aD) p

2
∥∥∥2

W 1,2(Ω)
+ C72(ε)

∥∥aD∥∥p
L

6p
7 (Ω)

≤ ε
∥∥∥(aD) p

2
∥∥∥2

W 1,2(Ω)
+ C72(ε)C61. (5.9)

Analogously, we have
∫
Ω

(
aS
)p ≤ ε

∥∥∥(aS) p
2
∥∥∥2

W 1,2(Ω)
+ C72(ε)C61. (5.10)

Substituting (5.9), (5.10) into (5.8), and taking sufficiently small ε > 0 such that C71ε ≤ 2
7 (we note that 

2(p−1)
p ∈

[2
7 , 2
)

for p = 7
6q and q ≥ 1). Then, from (5.8), we obtain

d

dt

∫
Ω

(
eχDv

(
aD
)p + eχSv

(
aS
)p)+ 5

7

∫
Ω

((
aD
)p +

(
aS
)p) ≤ C73. (5.11)

We derive from 0 < v ≤ 1 that

d

dt

∫ (
eχDv

(
aD
)p + eχSv

(
aS
)p)+ 5

7emax{χD,χS}

∫ (
eχDv

(
aD
)p + eχSv

(
aS
)p) ≤ C73. (5.12)
Ω Ω
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Consequently, by the Gronwall’s inequality, we get

∫
Ω

(
eχDv

(
aD
)p + eχSv

(
aS
)p) ≤ C74, (5.13)

which implies (5.1).
Thus, the proof of Lemma 5.1 is completed. �

Lemma 5.2. Suppose that the assumptions of Lemma 5.1 remain valid. Then, for all p > 1, there exists 
C75 > 0 independent of time such that

∥∥aD(·, t)
∥∥
Lp(Ω) +

∥∥aS(·, t)
∥∥
Lp(Ω) ≤ C75 for all t ∈ (0, Tmax). (5.14)

Proof. From Lemma 4.1 (i) and (ii), we have 
∥∥aD(·, t)

∥∥
L1(Ω)+

∥∥aS(·, t)
∥∥
L1(Ω) ≤ M1+M2 for all t ∈ (0, Tmax). 

Therefore, we infer from Lemma 5.1 that

∥∥aD(·, t)
∥∥
L

7
6 (Ω)

+
∥∥aS(·, t)

∥∥
L

7
6 (Ω)

≤ C76 for all t ∈ (0, Tmax). (5.15)

Using a bootstrap argument to raise the regularity estimate of 
∥∥aD(·, t)

∥∥
Lp(Ω) +

∥∥aS(·, t)
∥∥
Lp(Ω) as above, 

which proves (5.14).
Thus, the proof of Lemma 5.2 is completed. �
Now, let us make a priori estimates of 

∥∥aD∥∥
L∞(Ω) and 

∥∥aS∥∥
L∞(Ω) by the iterative technique of Alikakos.

Lemma 5.3. Under the assumptions of Lemma 5.1. Then there exists C77 > 0 independent of time such that

∥∥aD(·, t)
∥∥
L∞(Ω) +

∥∥aS(·, t)
∥∥
L∞(Ω) ≤ C77 for all t ∈ (0, Tmax). (5.16)

Proof. From Lemma 5.2, we can obtain that there exists a p > 3
2 such that 

∥∥aD(·, t)
∥∥
Lp(Ω)+

∥∥aS(·, t)
∥∥
Lp(Ω) ≤

C78. Hence, by using Lemma 2.4, we get

‖m(·, t)‖L∞(Ω) ≤ C79 for all t ∈ (0, Tmax). (5.17)

Combining (3.32) with (3.33), inserting (5.17) into the resulting equation, and adding 
∫
Ω
(
eχDv

(
aD
)p

+ eχSv
(
aS
)p) to both sides of the final result yields

d

dt

∫
Ω

(
eχDv

(
aD
)p + eχSv

(
aS
)p)+

∫
Ω

(∣∣∣∇ (aD) p
2
∣∣∣2 +

∣∣∣∇ (aS) p
2
∣∣∣2)

+
∫
Ω

(
eχDv

(
aD
)p + eχSv

(
aS
)p)

≤ C80p
(∥∥aD∥∥p

Lp(Ω) +
∥∥aS∥∥p

Lp(Ω)

)
(5.18)

for any p ≥ 2, where C80 is independent of p. On the other hand, by Lemma 2.2 and the Young’s inequality, 
we obtain
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C80p ‖a‖pLp(Ω) = C80p
∥∥∥a p

2

∥∥∥2

L2(Ω)

≤ C81p

(∥∥∥∇a
p
2

∥∥∥ 6
5

L2(Ω)

∥∥∥a p
2

∥∥∥ 4
5

L1(Ω)
+
∥∥∥a p

2

∥∥∥2

L1(Ω)

)

≤
∥∥∥∇a

p
2

∥∥∥2

L2(Ω)
+ C82p

5
2

∥∥∥a p
2

∥∥∥2

L1(Ω)
. (5.19)

Inserting (5.19) with a = aD, a = aS into (5.18), we can conclude that

d

dt

∫
Ω

(
eχDv

(
aD
)p + eχSv

(
aS
)p)+

∫
Ω

(
eχDv

(
aD
)p + eχSv

(
aS
)p)

≤ C82p
5
2

(∥∥∥(aD) p
2
∥∥∥2

L1(Ω)
+
∥∥∥(aS) p

2
∥∥∥2

L1(Ω)

)

≤ C83p
5
2

(
max

{
1,
∥∥∥(aD) p

2
∥∥∥
L1(Ω)

+
∥∥∥(aD) p

2
∥∥∥
L1(Ω)

})2

. (5.20)

Let pk := 2k and Mk := max
{

1, sup
t∈(0,Tmax)

(∥∥(aD)pk
∥∥
L1(Ω) +

∥∥(aS)pk
∥∥
L1(Ω)

)}
for k = 1, 2... Therefore, 

upon the ODE comparison principle, we infer from (5.20) that there exists η > 1 independent of k such that

Mk ≤ max
{
ηkM2

k−1, e
χD |Ω|

∥∥aD0 ∥∥pk

L∞(Ω) + eχS |Ω|
∥∥aS0 ∥∥pk

L∞(Ω)

}
for all k ≥ 1. (5.21)

Consequently, if ηkM2
k−1 ≤ eχD |Ω| 

∥∥aD0 ∥∥pk

L∞(Ω) + eχS |Ω| 
∥∥aS0 ∥∥pk

L∞(Ω) for infinitely many k ≥ 1, it is not hard 
to obtain

sup
t∈(0,Tmax)

⎛
⎝∫

Ω

(
aD
)pk−1

⎞
⎠

1
pk−1

+ sup
t∈(0,Tmax)

⎛
⎝∫

Ω

(
aS
)pk−1

⎞
⎠

1
pk−1

≤
(
eχD |Ω|

∥∥aD0 ∥∥pk

L∞(Ω) + eχS |Ω|
∥∥aS0 ∥∥pk

L∞(Ω)

ηk

) 1
2pk−1

, (5.22)

which implies that

sup
t∈(0,Tmax)

∥∥aD(·, t)
∥∥
L∞(Ω) + sup

t∈(0,Tmax)

∥∥aS(·, t)
∥∥
L∞(Ω) ≤

∥∥aD0 ∥∥L∞(Ω) +
∥∥aS0 ∥∥L∞(Ω) . (5.23)

Conversely, if ηkM2
k−1 > eχD |Ω| 

∥∥aD0 ∥∥pk

L∞(Ω) + eχS |Ω| 
∥∥aS0 ∥∥pk

L∞(Ω) for all sufficiently large k, then it follows 
from (5.21) that

Mk ≤ ηkM2
k−1 for all sufficiently large k, (5.24)

therefore, (5.24) still holds for all k ≥ 1 by enlarging η if necessary. By a straightforward induction, we get

Mk ≤ ηk+2+2k+1
M2k

0 for all k ≥ 1, (5.25)

which implies that

M
1
pk ≤ η

k+2
2k

+2M0 for all k ≥ 1, (5.26)
k
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which after passing to k → ∞ immediately entails that

sup
t∈(0,Tmax)

∥∥aD(·, t)
∥∥
L∞(Ω) + sup

t∈(0,Tmax)

∥∥aS(·, t)
∥∥
L∞(Ω) ≤ η2 ·M0. (5.27)

Letting C77 := max
{∥∥aD0 ∥∥L∞(Ω) +

∥∥aS0 ∥∥L∞(Ω) , η
2 ·M0

}
, hence a combination of (5.23) and (5.27) and by 

Lemma 4.1 (i) and (ii) immediately implies (5.16).
Thus, the proof of Lemma 5.3 is completed. �
Now, we are ready to prove Theorem 1.2 in the case of τ = 1.

The proof of Theorem 1.2 in the case of τ = 1

Proof. Since this proof is very similar to the proof of Theorem 1.1 in the case of τ = 1, we omit it here (see 
Lemma 4.5 and Lemma 4.6 and the proof of Theorem 1.1 in the case of τ = 1, we note that Lemma 4.5
holds for any dimension if only ‖m‖W 1,∞(Ω) ≤ C84, in addition, Lemma 4.6 holds if only ‖m‖L∞(Ω) ≤ C85).

5.2. The case of τ = 0

As opposed to the proof of Theorem 1.1 in the case of τ = 0, we can not use the well-known regularity 
result on semi-linear second-order elliptic equations with L1 right-hand term [4] (see Lemma 4.8 for details). 
Indeed, for the case of n = 3, on account of [4, Lemma 23] and the facts of (i) and (ii) in Lemma 4.7, 
we can only obtain the estimates of ‖m(·, t)‖W 1,q(Ω) for all p ∈ [1, 32 ), but by the Sobolev embedding 
theorem, the boundedness of ‖m(·, t)‖L3(Ω) is guaranteed by the boundedness of ‖m(·, t)‖W 1,q(Ω) for q ≥ 3

2 . 
However, by the standard elliptic Lp theory, we transform the estimate of ‖m(·, t)‖L3(Ω) into the estimate 
of 
∥∥aD(·, t)

∥∥
L3(Ω) +

∥∥aS(·, t)
∥∥
L3(Ω) which can be controlled by some terms successfully (see the proof of 

Lemma 5.4 below).

Lemma 5.4. Let 
(
aD, aS ,m, v

)
be the classical solutions of (3.1) with τ = 0 constructed in Lemma 3.2. 

Suppose that the assumptions of Theorem 1.2 hold. Then there exists C86 > 0 independent of time such that

∥∥aD(·, t)
∥∥
L2(Ω) +

∥∥aS(·, t)
∥∥
L2(Ω) ≤ C86 for all t ∈ (0, Tmax). (5.28)

Proof. Multiplying the first equation of (3.1) by 2aD and the second equation of (3.1) by 2aS , adding ∫
Ω eχDv

(
aD
)2 and 

∫
Ω eχSv

(
aS
)2 to both sides of the resulting equalities, then integrating the results over 

Ω by parts and using the Young’s inequality yields correspondingly

d

dt

∫
Ω

eχDv
(
aD
)2 + 2

∫
Ω

∣∣∇aD
∣∣2 +

∫
Ω

eχDv
(
aD
)2

≤ (χDμv + 2μD + 1) eχD

∫
Ω

(
aD
)2 + χDeχD

∫
Ω

(
aD
)2

m− μD

∫
Ω

(
aD
)3

≤ ε1

∫
Ω

(
aD
)3 + C87(ε1) + ε2

∫
Ω

(
aD
)3 + C88(ε2)

∫
Ω

m3 − μD

∫
Ω

(
aD
)3 (5.29)

and

d

dt

∫
eχSv

(
aS
)2 + 2

∫ ∣∣∇aS
∣∣2 +

∫
eχSv

(
aS
)2
Ω Ω Ω
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≤ ((χSμv + 2μS + 1) eχS + μMeχD)
∫
Ω

(
aS
)2 + χSe

χS

∫
Ω

(
aS
)2

m

+ μMeχD

∫
Ω

(
aD
)2 − μS

∫
Ω

(
aS
)3

≤ ε3

∫
Ω

(
aS
)3 + C89(ε3) + ε4

∫
Ω

(
aS
)3 + C90(ε4)

∫
Ω

m3

+ ε5

∫
Ω

(
aD
)3 + C91(ε5) − μS

∫
Ω

(
aS
)3

. (5.30)

Combining (5.29) with (5.30) entails

d

dt

∫
Ω

(
eχDv

(
aD
)2 + eχSv

(
aS
)2)+ 2

∫
Ω

(∣∣∇aD
∣∣2 +

∣∣∇aS
∣∣2)+

∫
Ω

(
eχDv

(
aD
)2 + eχSv

(
aS
)2)

≤ (ε1 + ε2 + ε5 − μD)
∫
Ω

(
aD
)3 + (ε3 + ε4 − μS)

∫
Ω

(
aS
)3 + (C88(ε2) + C90(ε4))

∫
Ω

m3

+ C87(ε1) + C89(ε3) + C91(ε5). (5.31)

It follows from the Gagliardo-Nirenberg’s inequality, the standard elliptic Lp theory and the fact of (v) in 
Lemma 4.7 as well as the Young’s inequality that

(C88(ε2) + C90(ε4))
∫
Ω

m3

= (C88(ε2) + C90(ε4)) ‖m‖3
L3(Ω)

≤ C92(ε2, ε4) ‖m‖2
W 1,3(Ω) ‖m‖L1(Ω) ≤ C92(ε2, ε4)(M1 + M2) ‖m‖2

W 1,3(Ω)

≤ C93(ε2, ε4)
(∥∥aD∥∥2

L3(Ω) +
∥∥aS∥∥2

L3(Ω)

)
≤ ε6

(∥∥aD∥∥3
L3(Ω) +

∥∥aS∥∥3
L3(Ω)

)
+ C94(ε6). (5.32)

Substituting (5.32) into (5.31) gives

d

dt

∫
Ω

(
eχDv

(
aD
)2 + eχSv

(
aS
)2)+

∫
Ω

(
eχDv

(
aD
)2 + eχSv

(
aS
)2)

≤ (ε1 + ε2 + ε5 + ε6 − μD)
∫
Ω

(
aD
)3 + (ε3 + ε4 + ε6 − μS)

∫
Ω

(
aS
)3 + C95(ε1, ε3, ε5, ε6). (5.33)

Taking sufficiently small εi > 0, (i = 1, 2, ..., 6) such that ε1+ε2+ε5+ε6−μD < 0 and ε3+ε4+ε6−μS < 0, 
then by the Gronwall’s inequality and the fact 0 < v ≤ 1, we conclude from (5.33) that (5.28) is valid.

Thus, the proof of Lemma 5.4 is completed. �
Based on the estimate of Lemma 5.4, by applying the standard elliptic Lp theory to the m-equation 

of (3.1) and the Sobolev embedding theorem, it is not hard to show the boundedness of ‖m(·, t)‖L∞(Ω) ≤
C96‖m(·, t)‖W 2,2(Ω) ≤ C97 for all t ∈ (0, Tmax). Consequently, using the same arguments that for the case 
τ = 1 (we note (5.4) obviously holds on account of ‖m(·, t)‖L∞(Ω) ≤ C97), we can obtain the estimate of ∥∥aD(·, t)

∥∥
∞ +

∥∥aS(·, t)
∥∥

∞ as follows.

L (Ω) L (Ω)
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Lemma 5.5. Under the assumptions of Lemma 5.4. Then there exists a constant C98 > 0 independent of 
time such that

∥∥aD(·, t)
∥∥
L∞(Ω) +

∥∥aS(·, t)
∥∥
L∞(Ω) ≤ C98 for all t ∈ (0, Tmax). (5.34)

Now, one can prove the main result.

The proof of Theorem 1.2 in the case of τ = 0

Proof. Proceeding in a same way as the proof of Theorem 1.1 in the case τ = 0, one can complete this 
proof, we omit it here for simplicity. �
6. Conclusions

This paper is concerned with the global solvability of the two species cancer invasion haptotaxis-only 
system in two and three dimensional spatial settings. We obtained the global existence and boundedness 
of unique classical solution for arbitrary μD, μS > 0 in dimension 2, this result improves the existing result 
in [10]. Moreover, the global existence and boundedness of unique classical solution for large μD, μS in 
dimension 3 are investigated, which extend the previous result [10]. Unfortunately, we can not get rid of 
the technical assumption μD ≥ χDμv, μS ≥ χSμv for the case of dimension 3. It is worth noting that some 
recent works are dedicated to investigate the global boundedness of solutions in 3-dimensional setting for the 
chemotaxis-haptotaxis model with tissue remodeling. Undoubtedly, since the chemotaxis-haptotaxis model 
with tissue remodeling is more complicated than the chemotaxis-only model, the researches of the global 
bounded solutions in dimension 3 are more challenging. For instance, the paper [16] studied the global 
solvability under some strong restriction on generalized logistic damping of cell for q > 8

7 in dimension 
3 (see [16, Theorem 1.1] for its details), but the cases q ≤ 8

7 or q = 1 are open. In [25], the authors 
used a sufficient small birth-rate parameter of cell r and suitable small initial data to control the quantity ∫
Ω a2(t) +

∫
Ω |∇v(t)|4 such that it satisfies an autonomous ordinary differential inequality, then established 

the global solvability for n = 3 (see [25, Theorem 1.2] for its details), but the case r = 1 is open. Inspired by 
[16,25], we expect that the similar results for our haptotaxis-only model (1.1) can be obtained. Furthermore, 
we hope that we can solve the open questions in [16,25] mentioned above for our haptotaxis-only model. 
Therefore, some of further explorations are as follows:

(1) Introducing the generalized logistic damping as [16] into two cancer cell equations of model (1.1), for 
the case of arbitrary μD, μS > 0, discussing the global boundedness of solution in the n-dimensional setting 
(n ≥ 1), especially in the physically most relevant case n = 3.

(2) Taking the logistic type as [25] into account for model (1.1), studying the global boundedness of 
solution in the n-dimensional setting (n ≥ 3).
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