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1. Introduction

Aim at bypassing the obstacle of drug transfer in traditional chemotherapy ([10], [6]), oncolytic virother-
apy becomes an alternative treatment for cancer and it has been undergoing clinical trials (cf. [2] and [9], for
instance). Very recently, in order to explore efficiency of this novel therapy, Alzahrani et al. in [1] proposed
the following haptotaxis model
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up = Au—V - (uVv) —uz + pu(l — u), xeQ, t>0,

vy = —(u+ w)v, e, t>0,

wy = Dy Aw —w + uz, e, t>0, (L.1)
2z = D, Az — 2z — uz + pw, xeN, t>0,
(Vuquv)'z/:g—f:%:(), x e, t>0,

u(z,0) =ug(z), wv(z,0)=uvo(z), w(x,0)=wo(x), z(zx,0)=z2(x), ze€Q,

with positive parameters p, 3, D, and D,. Throughout this work we shall assume that Q C R? is a bounded
domain with smooth boundary. Here u, w, z and v represent the densities of uninfected tumor cells, infected
tumor cells, virus particles and normal tissue, respectively. Besides random motion, the uninfected tumor
cells direct their movement toward the higher densities of tissue, they are assumed to follow a logistic growth
and their number could be reduced due to infection by virus, while the infected cells randomly diffuse and
have a natural death; the virus is released by infected cells and it experiences diffusion and loss due to decay
and infection; and the tissue is degraded upon contact with cancer cells. The readers may refer to [1] for
more detailed biological backgrounds behind (1.1).

Different from standard reaction-diffusion equations, the cross-diffusion term in chemotactic or haptotactic
systems like (1.1) may exhibit a destabilizing feature ([5], [22]). Previous qualitative studies on such types
of cross-diffusion systems mainly concentrate on global existence ([20], [11], [26], [25], [8]) and only a few
address the large time behavior of solutions ([7], [13], [24]).

In contrast to preceding haptotaxis systems, (1.1) contains a nonlinear zero-order interaction term wuz in
the third equation that gives rise to a new challenge in analysis of this system. Although (1.1) is indeed
globally well-posed ([15]), a novel critical parameter phenomenon for infinite-time blow-up was recently
detected for (1.1) without any growth or sink term ([17]) and a critical virus production rate for efficiency
of this treatment was also analytically verified for (1.1) without any proliferation source ([19]). Moreover,
the global existence and large time behavior of classical solutions was also discussed for (1.1) provided that
B < 1 and p = 0 ([16]). Very recently, an asymptotic stability property of the homogeneous distribution
(u,v,w, z) = (7,0,0,0) with v € (0, ﬁ) for any 8 > 0, particularly for 8 > 1, was asserted in ([18]).

The purpose of this work is to identify the stabilization effect of the logistic dampening term in (1.1). To
this end, we assume that

(1.2)

ug, Vg and wg are nonnegative functions from Cz“‘ﬂ(ﬁ) for some ¥ > 0,
with ug > 0, wo # 0,29 Z 0, \/vg € WH%(Q) and % = % = % =0 on 0.

We shall prove that whenever p > 0, for any 8 > 0 the classical solution of (1.1) is uniformly bounded;
furthermore, it is claimed that if 8 < 1, then the solution (u,v,w, z) stabilizes to the constant stationary
solution (1,0,0,0) in L* topology. More precisely, we have the following:

Theorem 1.1. Let y > 0, and let 2 C R? be a smoothly bounded domain. Then for any given (uo, vo, wo, 2o)
satisfying (1.2), the solution (u,v,w, z) of (1.1) is bounded in the sense that

sup { -, )l @) + 0 )@ + o )@y + 120w | < oo (13)

If

Be(0,1),
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then furthermore

u(-,t) > 1 in LP(Q) forallp>1

and

v(,t) =0 in L*(Q)
as well as

w(-,t) =0 in L>°(£2)
and

z(-,t) =0 in L>°(Q)
as t — oo.

In contrast to previous studies on the asymptotic behavior of solutions to chemotaxis-haptotaxis or pure
chemotaxis systems in which certain requirements of the minimal size of the logistic dampening coefficient
w are indispensably demanded (cf. [23], [12] and [13], for instance), no any restrictions on the size of y seem
necessary for the stabilization result obtained in Theorem 1.1.

2. LP bounds for w

Let us begin with the global smooth solvability of (1.1) previously asserted in [15], together with one
basic solution property.

Lemma 2.1. Let Q C R? be a bounded domain with smooth boundary, and assume that (uo,vo,wo, 2o)
fulfills (1.2). Then the problem (1.1) admits a uniquely determined classical solution (u,v,w,z) € (C*(Qx
[0,00)))* for which v is nonnegative, and for which u,w and z are positive in Q x (0,00). Moreover,

||’U(-,t)||Loo(Q) < HUO(')HLOQ(Q) fOT‘ allt > 0. (21)

The presence of logistic dampening in the first equation in (1.1) will be decisive for us to further verify the
uniform boundedness of the global solution constructed in Lemma 2.1, and correspondingly the assumption
that g > 0 will play a key role in deriving the following L' bounds for u,w and z and a space-time L?
bound for u, which serve as a starting point of our subsequently reasoning.

Lemma 2.2. There exists C > 0 such that

/m@gc,/@@@gcam /4ﬁgo (2.2)

Q Q Q

as well as

! u? < C (2.3)

for allt > 0.
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Proof. We firstly assume that 5 > 0 and use (1.1) to compute

%{zﬁﬂ/quQﬁQ/erQ/Z}:{—25Q/UZ+23/L/U—25N/U2}

Q Q

—&-{—26!10—&-25!%}
+{!2Juz+/89/w}
:muﬂ/u_gg/w_ﬂ/z—ﬂ/uz—wun/ﬁ

for all ¢ > 0, so that by Young’s inequality,

%{2B!u+2ﬂﬂ/w+!2}—l—%-{?ﬂﬂ/u—l—?ﬁﬂ/w-i-ﬂ/z}"‘ﬁﬂﬂ/UQ
:5(1+2u)/u—ﬁ,u/u2—%/z—/uz
Q Q Q Q
§6(1+2M)Q/u—6u9/u2

o Ba+2p)? 0

< for all ¢t > 0.
ap

Upon an ODE comparison, this readily implies (2.2) due to § > 0 and thereby a further integration over
time yields (2.3) thanks to the fact that g > 0. If 8 = 0, by estimating %{ Jow+ [, z} and 24 [ u we still

can arrive at (2.2) and (2.3) in a same manner. 0O

With the help of parabolic smooth properties in the spatial two-dimensional setting, the L' bound of w
actually implies L? integrability of z for arbitrarily large finite p.

Lemma 2.3. Let p € (1,00). Then there exists C(p) > 0 such that
lz(. )|l Lr ) < C(p) for allt > 0. (2.4)

Proof. By nonnegativity of uz and z, in light of the order preserving property of e?® for ¢ > 0 we firstly
find that

t t
Z(,t) e et(DzAfl)ZO — /e(tf‘s)(DzAfl)u(.7 5)2(7 S)ds + ﬁ/e(tfs)(DzAfl)ru)(.7 S)ds
0 0

t
< etP=2z + ,6’/6(“3)(1%&71)11)(-7 s)ds in Q for all ¢t > 0,
0

and hence, by well-known smoothing properties of the Neumann heat semigroup (e?2),>o ([21]) and
Lemma 2.2, secondly see that
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— 1 —(t—
I llr @) <l 20l ooy +ea8 [ (1 (6= 975 ) Ol 5) 13 s

< lzollzr oy + clcgﬁ/ (1 +(t— 8)71+%)6_(t_5)d8 forallt >0

with some ¢; > 0 and ¢z > 0. This entails (2.4), because

t

/(1+(t—5)_1+% ds < /1+0_1+ “do <2+p forallt>0. O
0 0

In light of the above LP integrability information of z along with a space-time L? bound for u in (2.3) and
according to parabolic smooth estimates in the two-dimensional case once again, we also obtain L? bounds
of w for arbitrary p > 2.

Lemma 2.4. Let p € (2,00). Then there exists C(p) > 0 with the property

|lw(-,t)|| Ly ) < C(p) for allt > 0. (2.5)
Proof. Given p > 2, we choose ¢ := 2f1 € (1,2). We then recall known smoothing estimates for the

Neumann heat semigroup on  ([21]) to obtain positive constants ¢; = ¢1(p) and ¢o = ¢a(p) satisfying

[P 2] oy < erllgllii@  forall p € CO@) (2:6)
and

€720 Loy < cao” s el Laco) for all o € (0,1) and each ¢ € C°(Q). (2.7)

Now in light of a variation-of-constants representation of w solving the third equation in (1.1), we can invoke
(2.6) and (2.7) to estimate

t
||’lU(',t)||Lp(Q) — eDwA—lw(,vt _ 1) + / e(tfs)(D,wAfl)u(.vS)Z(.’S)ds
t=1 Lr()
t
<e tallwlt =Dl + e /(f —5)7 7 |[u(-, 5)2(, 8) || Loy ds (2.8)

t21
for all ¢ > 1, where according to the Holder inequality and Lemma 2.3, we find ¢3 = ¢3(p) > 0 such that

t
_p—1 I
e / (t= )5 )20, 9)llaceyds < e | (=) ) [yl pa  ds
1

t— t

_p-1
<cz | (t—=s)" 2 ||lu(:,8)|L2Q)ds

Lo— L~

t
t

ch-{/us>—‘°771ds}5~{/t|u<o,s>||%2<mds}é

t—1
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t 1
2
= pcs - { / [lu(-, s)|%2(9)d8} for all t > 1.
t=1

Since

t t
sup |w(-,t — 1) 1) < o0 and / [lu(-, S)H%Q(Q)ds = / /u2 < o0 for all t > 1
t>1

=1 t=1 0

by Lemma 2.2, (2.8) yields (2.5), because w is bounded in Q x [0,1] by Lemma 2.1. O
3. L°° estimates on u

In this section we shall establish the boundedness of u in L. For this purpose, as performed in [3], [4],
[20] and [11] which dealt with haptotaxis-related systems, we introduce the variable change

a:=ue "’ (3.1)
and then in view of (1.1),

ar =€ "V - (e'Va) + a(ae’ + w)v —az + pa(l —ae’), z €, t>0,

vy = —(ae’ + w)v, xeQ, t>0, (3.2)
20 _, v €99, t>0, '
a(x,0) = up(z)e @) =: ag(z), v(z,0) = vo(x), x € .

A direct testing procedure leads to the following primary inequality which will be invoked in Lemma 3.2
and Lemma 3.4 below.

Lemma 3.1. Let p > 1. Then
d
pn /e“ap < —p(p— 1)/6”(L”_2|Va|2 +(p— 1)/e”ap(ae” + w)v + ,up/e”ap forallt>0. (3.3)
Q Q Q Q
Proof. From (3.2) we infer that (ae” + w)v = —v; in  x (0,00) and that

d
a/e“ap :p/e”ap*1 . {eﬂ’V - (e’Va) — avy — az + pa — uaze”} + /e”a”vt
Q Q Q

— b= 1) [ VAP~ (p=1) [ earu b [ e

Q Q Q

—pp/e”a”z—mr)/ezvapJrl

Q Q

for all ¢ > 0, this leads to (3.3) upon abandoning the rightmost two nonpositive summands. 0O

Using a bootstrap LP-estimate technique developed in [14, Lemma 3.8] and relying on (2.3), Lemma 2.4
and Lemma 2.1, an application of Lemma 3.1 to p = 2 can yield a bound for a in L2.
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Lemma 3.2. There exists C > 0 fulfilling
lla(-, O)llz2@) < C for all t > 0. (3.4)
Proof. Lemma 2.1 guarantees the existence of ¢; > 0 such that
||1)(', t)”Loo(Q) <c for all t > 0, (35)
whereas Lemma 2.4 provides co > 0 satisfying
/w3(~,t) < ey for all ¢ > 0. (3.6)
Q
Now from Lemma 3.1 we infer the inequality
d
7 /e”a2 + 2/@”|Va|2 < /ezvasv + /e”anuw + 2u/e”a2 for all ¢t > 0, (3.7
Q Q Q Q Q
where by Young’s inequality, (3.5) and (3.6),

/62”a3v+/e”a2vw+2u/e”a2 < ¢1e?@ /(13—1—01661 /agw—i—Quec1 /a2

Q Q Q Q Q Q

< {016261 +cre® + 2uecl} . /a3 + c1e® /w3 + 2uet - Q]
Q Q

SC3/a3+C4 forall t >0
Q

with c3 1= c1€2°1 +c1et +2uet and ¢y := c1e ey +2uect - |Q)]. As the Gagliardo-Nirenberg inequality along
with Young’s inequality yields that

03/a3 = C3||a||3is(9) < c5||va||L2(Q)||aH%2(Q) + C5||a||i2(n)
Q

< {21Valsq) + lalltz | + {lalltz + i}

< 2/6“\Va|2 + c6||a||i2(9) + ¢ forall t >0
Q

with some ¢5 > 0 and ¢g := max{c + 1, ¢i}, by [, a* < [, e"a® we thus infer from (3.7) that

%/e”a2 < {ca/a2(.7t)} . /e“a2 + ¢ for all t > 0. (3.8)

Q Q Q

Letting

h(t) := 66/a2(-,t) for all ¢ > 0,
Q
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we may apply Lemma 2.2 along with (2.1) to find ¢7 > 0 fulfilling

t+1
/ h(s)ds < c¢;  forall ¢ > 0, (3.9)
t

and thereby for any given ¢ > 1, it is possible to fix tg = to(t) € (¢t — 1,¢) such that ¢, > 0 and

/a2(~,t0) < cg:i= max{/ag, 67},
Q Q

so that integrating (3.8) shows that

t

/ev("t)ClQ(',t) < (/e”("tO)a2(~,to)> . eftto h(s)ds +CG/€J: h(a)dads
Q

Q to

< e“cg - €7 + cge” forallt > 1

due to (3.5), (3.9) and the fact that t — ¢y < 1. Since €’ > 1 and a is bounded in Q x [0, 1] by Lemma 2.1,
this proves (3.4). O

Using this L? bound of a together with the smoothing properties of the Neumann heat semigroup on (2
once more, we can further improve the regularity of w and z in the following sense.

Lemma 3.3. There exists C > 0 with the property that

lw(-,t)|lwis@) <C forallt >0 (3.10)
and

llz(-, t)[[wrs) < C for allt > 0. (3.11)

Proof. Combining Lemma 3.2, Lemma 2.4 and Lemma 2.3 with (3.1) and (2.1) we can fix positive constants
c1,co and cg satisfying

Hu(~,t)||Lz(Q) S C1, ||w(-,t)HL2(Q) S C2 and ||Z('7t)HL4(Q) S C3 for all t > 0.

Since well-known smoothing properties of the Neumann heat semigroup on € ([21]) ensure the existence of
cq > 0 and c¢5 > 0 such that

||eDwA<pHW1,s(Q) < C4H<pHL2(Q) for all ¢ € Co(ﬁ)
and
”eaD,,,A

ellwis@) < e 12 H@HL%(Q) for all ¢ € (0,1) and any ¢ € C°(Q),

we thus see that by the Holder inequality,
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=) (PuA=1)y () 2(-, 8)ds

—

||w(-, t)HWl,B(Q) = eD“’A_lw(-,t — 1) +

2 W13(Q)

=

< 046_1||w(~,t — D2 +cs

t

(t —s) 12 ||u(-, 8)z(-, s)||L%(Q)ds

L~

t

<cie Mwlt=Dlz@ +es | (=572l s)]2o)l2(:9) |1 @ds
t—

—

< cqcget +12¢1 e3¢5 for all t > 1,
which entails (3.10), while (3.11) can be proved in a quite similar manner. O

Lemma 3.3 actually implies the boundedness of w in L> due to the Sobolev embedding W1?(Q) — C°(Q)
for p > n, with n denoting the space dimension. Depending on this and Lemma 3.2, we can achieve the
boundedness of a in L via a Moser iteration technique.

Lemma 3.4. There exists C' > 0 such that

lla(-,t)||Loe () < C for allt > 0. (3.12)

Proof. According to Lemma 2.1 and Lemma 3.3 along with the Sobolev embedding W'3(Q) < C°(Q), we
can pick ¢; > 0 and ¢z > 0 such that v < ¢; and w < ¢p on Q x (0, 00). Combining these with the fact that
%e” > 3 when p > 4, from Lemma 3.1 together with Young’s inequality we obtain that for all p > 4,

d »
dt/e ap+3/\Va5|2+/e”ap§ (p—1)/e”a”(aev—|—w)v+(MP—FI)/e”ap

Q Q Q Q

< 01620117/@’7*1 + {(Clczecl + pe)p + ecl} /ap

Q

ap+1+03 p+1)/
Q

J
Q
aP™ fes(p+1 {p/ap+1+|}
p/ P+ 1\
Q

p+1
Q

| /\

203p/ap+1 +cy for all ¢t > 0, (3.13)
Q

where c3 := max{c1€%°!, cjcaet + pet, et} > 0 and ¢4 := ¢3|€2| > 0 are independent of p. Since Lemma 3.2
provides c5 > 0 such that

/a2(~,t) < ecs for all ¢t > 0,
Q

we thus can invoke a Moser-type iteration method to derive (3.12) (cf. [16, Lemma 6.4] for details). O
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4. Stabilization when 8 < 1

Throughout this section we shall suppose that 8 < 1, and we shall investigate the asymptotic behavior
of the global classical solution constructed in Lemma 2.1. In fact, the assumption that g < 1 readily results
in the exponential decay property of w and z.

Lemma 4.1. Let 8 < 1. Then there exist v € (0,1) and C > 0 such that

Jw(-, )| oo () < Ce forallt >0 (4.1)
and

[2(-, )| oo () < Ce™ forallt >0 (4.2)

Proof. We use the third and fourth equations in (1.1) to compute

S for [ o [ oo frevs

Q
=—-(1-0) w—/z
Q Q
g—(l—,@)~{!w+ﬂ/z} forallt >0

which implies that

/w—l—/zg{/wo—l—/zo}-e_(l_mt for all t > 0.
Q Q Q

Q

This in conjunction with Lemma the Gagliardo-Nirenberg inequality and Lemma 3.3 yields ¢; > 0 and
co > 0 such that

6 1
o Bll ey < exllwl, Ollfns oy It Ol e
< 026_#t for all t > 0,
and thus the proof is complete with ~ := # and C :=cy. O

Since z eventually vanishes in L* due to (4.2), from (3.2) and the parabolic comparison principle we can
infer that a has a positive lower bound, and thus so does u in view of (3.1) and (2.1).

Lemma 4.2. If 3 < 1, then one can find § > 0 fulfilling
u(z,t) >0 for all (x,t) € Q x (0,00). (4.3)
Proof. According to Lemma 4.1 and Lemma 2.1, it is possible for us to pick tg > 0 and ¢; > 0 such that
2(z,t) <cre” < g for all z € Q and t > tg.

From the first equation in (3.2) along with this and Lemma 2.1 once again we infer that a satisfies
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—v v 1 [lvol| oo
a; > e V-(eVa)+ua<§—e oliz “”a) for all z € Q and t > tg
with % = 0 throughout 92 x (tp,0). On the other hand, for

a(z,t) == y(t), T Gﬁ, t > o,

with y € C'([tg, >0)) denoting the solution of

{y’(t) =uy(% —Czy>, t > to,

y(to) = infweﬂ a(l‘,to) > 0)
where ¢y 1= ellvollz=@  Then we have
—v(z,t) v(z,t) 1
a, —e "IV - (e VQ)—,UQ<§—C2Q)

=y'(t) - uy(% - 021/)

=0 for all x € Q and t > t,
and since clearly g—% =0 on 90 x (tg,00) and
a(x,tg) = y(to) = ;Ielifl a(z,to) < a(z,to) for all x € Q,
an application of the comparison principle readily shows that a > a in Q X (¢g,00) and hence

w(z,t) = a(z, t)e’ ™D > a(z,t) > y(t) for all x € Q and t > to. (4.4)

Since we have y(t) — ﬁ as t — oo due to y(tp) > 0, we can conclude that there exists t1 > to such that

1
y(t) = — for all t > t;. (4.5)
402

Finally, the positivity and continuity of u(z,t) in Q x (0,00) by Lemma 2.1 guarantees the existence of
c3 > 0 fulfilling

cg:=_ min u(x,t) > 0. (4.6)
Qx[0,t1]

So that (4.3) results from (4.4)-(4.6) with ¢ := min {i, 03} >0. O

According to the second equation in (1.1), Lemma 4.2 along with Lemma 2.1 immediately leads to the
following.

Corollary 4.3. Let § < 1. Then we have
v(z,t) < [lvo(-) | L) - e ot for allx € Q and t > 0, (4.7)

where 0 > 0 is defined by Lemma 4.2.
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Proof. From (1.1), Lemma 4.2 and the nonnegativity of v and w we obtain that
vy = —(u+w)v < —dv for all zx € Q and ¢ > 0,
from which (4.7) readily follows. O

With the outcomes of Lemma 3.4, Lemma 4.1 and Corollary 4.3, we firstly obtain the following weak
convergence information of a, which is based on a specific testing procedure.

Lemma 4.4. If 5 < 1, then there holds

/(ae” _1)? < 0, (4.8)

Proof. Clearly, Lemma 3.4, Lemma 4.1 and Corollary 4.3 ensure the existence of ¢; > 0, c2 > 0, ¢35 > 0,
c4 > 0 and ¢5 > 0 such that

a<cy, v<c, and w<cs in  x (0, 00) (4.9)

as well as

//11304 and //z§05. (4.10)
0 0 Q

According to the basic inequality: s — 1 —1Ins > 0 for all s > 0 and in view of the fact that v; < 0, we use

(3.2) to estimate
ar + / a—1—Ina)v

d . B
7 e(aflflna)f/ (
Q
e”(
(1
2

= / |Va\ +/ (a—1)( ae”er)vf/e”(afl)z

Q Q

u/ae —e")(1 — ae’)

Q

/e a(ae’ +w v—i—/e”z—i—,u/(l—e“)(l—ae”)
Q

Q Q

Q\'—‘

QI'—‘

)
o2
o}

{e 'V - (e"Va) + a(ae’ + w)v — az + pa(l — ae’ )}

+

—u/(ae” —1)? forallt >0
Q

due to the nonnegativity of a,v,w and z. Here by the elementary inequality: 1 —e™® < s for all s > 0, we
have (e¥ — 1) = e¥(1 — e ") < €"v, and thus in light of this and (4.9) we see that
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/eva(ae” +ww +/evz + u/u — (1 — ae?)

Q Q Q

</eaa6 +wv+/ez+u/ Y(ae’ — 1)v
Q

Q

/ (a262” + awe” + ua62”>v + / €'z

Q

Q
< (c%eQC2 + c1c3e®? + ucleZCQ) /v + e /z for all t > 0.
Q Q

IN

Therefore, we arrive at

/ (a—1—1Ina) +u/ae —1)? <06/ /z forallt >0
Q Q

Q

&‘g‘

with cg := c2e?°2 + cie3e + pcie®? and c; = e°2. Integrating this in time entails that

t
/e”("t){a(-,t) —1—Ina(,t)} Jr,u//(ae”fl)2
Q 0 Q
g/e”o(ao—l—lnao + ¢

/v+07 /z
Q

/e (ap — 1 —Inag) —1—06//1)—1—07//2
Q

Q
/e (a0 — 1 —Inag) + cac6 + 507 for all ¢t > 0.
Q

g o\w
8 O\w

IN
o
=}

Since s — 1 —1Ins > 0 for all s > 0 as mentioned before and since a(z,t) > 0 in © x (0,00) by Lemma 2.1,

this implies that
v 2 1 v
(ae’ —1)* < cg:=—- € (ap — 1 —Inag) + cac6 + c5¢7 p < 00
"
0 Q Q

thanks to p > 0 and the fact that ag := uge™"° > 0 by (1.2), and thereby completes the proof. O

In order to improve the above weak stabilization information, we need further regularity properties of a,
which can be obtained through another testing procedure.

Lemma 4.5. Let 5 < 1, then

//af < o0 (4.11)
0 Q
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and

t>0

sup/|Va(',t)|2 < 00.
Q

(4.12)

Proof. Lemma 3.4, Lemma 4.1 and Corollary 4.3 warrant the boundedness of a,v,w and z as well as the

exponential decay of v and z, which enables us to find ¢; > 0,i € {1,--- ,5}, fulfilling
26”@2(%” —|—w2) <c¢1, 2%a?<c¢y and eYa® <cg in Q x (0,00)

and moreover

o0 o0

2 2
//v <c¢g4 and //z < cs.
0 Q 0 Q

Lemma 4.4 also provides c¢g > 0 satisfying

/(ae” —1)? < cs.
Q

Next, multiplying the first equation in (3.2) by e”a; and integrating by parts, we have

/e“at2 = /atV - (e"Va) + /e”ata(ae” + w)v — /e”ataz +u | €ara(l — ae)
)

Q Q Q Q

= —/e”Va -Va, + /e”ata,(ae” + w)v — /evataz + u/e”ata(l —ae’)
Q

Q Q Q

e~

for all ¢ > 0, where by nonpositivity of v,

1
—/e”Va-Vat:—i/e”(MVa\z
Q Q
o 1 d v 2 1 v 2
—2dt/e|Va\+2/e|Va\vt
Q Q
1d ,
<= [e .
< 2dt/e|Va\ forallt >0

Q

Moreover, in view of Young’s inequality and (4.13),

| =

/e“ata(ae” +w)v < /e”af + Z/e"az(ae” + w)?v?

Q Q Q

/e”af—!—cl/vQ forallt >0

Q Q

<

| =

and similarly,

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)
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1
,/evatazgg/eatJrQ/ a2

Q Q Q
1
< g/e“af + co /z2 forallt >0 (4.19)
Q Q

as well as

IN
-

e’a? / a*(1 — ae’)?

eval + pPes /(1 — ae”)? for all £ > 0. (4.20)

u/e”ata(l — ae’)

! [
[

IA
Ry

Collecting (4.16)-(4.20) and integrating in time we obtain

t
1 of-
5// / C9|Va(. 1)
0

¢ ¢ ¢
1
g§/e“°|Va0|2+cl//v2+02//z2+u203//(1—ae”)2
Q 0 Q 0 Q 0 Q
1 o0 oo oo
§5/6”°|Va0|2+61//112+02//22+u203//(1—ae”)2
Q 0 Q 0O 00
1
< 5/6”°|Va0|2+clc4+0205—|—u26306 forallt >0

Q

due to (4.14) and (4.15), which immediately entails (4.11) and (4.12) because e’ > 1. O

Now using Lemma 4.4 in conjunction with the compactness properties implied by Lemma 4.5 we can claim
the following L? stabilization feature of a.

Lemma 4.6. If 8 < 1, then we have
la(-,t) = 1f|z2() — 0 as t — oo. (4.21)

Proof. Combining Lemma 4.4 with Lemma 3.4 and Corollary 4.3 we readily see that

j/al e

Relying on this basic decay information together with the relative compactness properties implied by (4.11)
and (4.12), we use a straightforward argument by contradiction to achieve (4.21); we may refer to [17,
Lemma 3.5] for details in a quite similar setting. O

A simple interpolation yields a slightly stronger convergence statement in the sense:
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Lemma 4.7. Let 8 < 1. Then the solution of (1.1) has the property
u(-,t) =1 in LP(Q) for allp € (2,00) as t — oo. (4.22)

Proof. Since

p=2 2
lu = lze) = llu = 1l &% o) llu = LI 72 (o
p=2 2
= |le"a — 1||L§O(Q)||e”a - 1”22(9)

p=2

D P
< {GHUOHL‘”(Q) ||a||Loo(Q) + 1} . {||a - 1||L2(Q) + ||e”a(1 — €_v)||L2(Q)}
p—2

p
S {eHUOHLOO(Q) ||a||Loo(Q) + ]_} . {||a - ]-||L2(Q) —+ eH'UOHLOO(Q) ||a||L°°(Q)||U||L2(Q)}

SN

for all ¢ > 0 due to the Holder inequality, (3.1), (2.1) and the basic inequality 1 —e™* < s for all s > 0, this
straightly results from Lemma 4.6, Corollary 4.3 and Lemma 3.4. O

Up to now, we have achieved all goals in Theorem 1.1.

Proof of Theorem 1.1. This immediately is the outcomes of Lemma 2.1, Lemma 3.4, Lemma 4.1, Corol-
lary 4.3 and Lemma 4.7. 0O
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