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We analyse the problem of continuous elastic beam on unilateral elastic
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1. INTRODUCTION

In this paper we shall study a nonlinear problem of the theory of
structures: the continuous elastic beam on unilateral elastic supports. We
analyse, for the sake of simplicity, the two-spawn scheme.

� �The beam, of linearly elastic material, covers the interval � � a, c of
the real axis. The supported cross-sections have abscissa a, b, c with
a � b � c.

Ž � �.The cross section is variable: its bending stiffness B B � b � 0, ��0
is essentially bounded on �.

2Ž .The loading on the beam consists of distributed forces q � L �0
Ž . Žpositive downward . Furthermore, at abscissas x , . . . , x a � x � ���1 m 1

. Ž . Ž� x � c concentrated forces positive downward and couples positivem
. Žclockwise act upon, with intensities F , . . . , F and MM , . . . , MM with1 m 1 m

2 2 � 4.F � MM � 0 � i � 2, . . . , m 	 1 .i i
We assume that the bending moment is a linear function of the

linearised curvature.

1 Ž .Financial support from the National Research Council of Italy C.N.R. for this work is
gratefully acknowledged.
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Ž .Let us denote by u x the vertical displacement of the cross-section
Ž . Ž 2Ž ..whose abscissa is x positive downward and by q the element of H � �

m m
2² :q , � � q � dx � F � x � MM � � x �� � H � .Ž . Ž . Ž .Ý ÝH 0 i i i i

� i�1 i�1

The reacting behaviour of the elastic unilateral support can be described
by Winkler’s model

� � 4R � 	k u i i � a, b , c ,Ž . Ž .i i

Ž � 4.where elastic constant k of the support i i � a, b, c is an element ofi
� �0, �� .

Ž . 2The problem is to find the beam’s elastic line u, i.e., Problem 1 .
2Ž .Find u � H � such that

1.1 	Bu� � � q 	 k u� b � � 0 on � in the distribution senseŽ . Ž . Ž .b b

1.2 	Bu� a� � MMŽ . Ž . Ž . 1

1.3 	Bu� � a� � k u� a 	 FŽ . Ž . Ž . Ž .a 1

1.4 	Bu� c	 � 	MMŽ . Ž . Ž . m

1.5 	Bu� � c	 � F 	 k u� c .Ž . Ž . Ž . Ž .m c

Ž . Ž .In Section 2 we prove Theorem 1 the equivalence of Problem 1 with
Ž . Ž .a variational equation. We also prove Theorem 2 that Problem 1 is

equivalent to a variational inequality and to minimize the energy func-
tional.

In Section 3 we analyse existence and uniqueness of the solution. We
Ž . Ž .give a necessary condition Theorem 3 for Problem 1 to have a solution.

In Theorem 4 we obtain the existence and uniqueness results.

2. SOME EQUIVALENT FORMULATION

Ž Ž ..Let us consider the virtual works’ equation Problem 2

c
2 �² :u � H � : 	 Bu� � � dx � q , � 	 k u a � aŽ . Ž . Ž .H a

a

	k u� b � b 	 k u� c � c � 0 �� � H 2 � .Ž . Ž . Ž . Ž . Ž .b c

2 Let us denote � y � R by � the Dirac distribution relative to y.y
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We have

THEOREM 1. The following statements are equi�alent

Ž . Ž .i u is a solution to Problem 1
Ž . Ž .ii u is a solution to Problem 2 .

Ž . Ž . �Ž .3Proof. i � ii . First of all, let us observe that �	 � C �0

mc c
² :q , 	 � q 	 dx 	 F H x 	� x dxŽ . Ž .ÝH H0 i x i

a ai�1

m c
	 MM H x 	� x dxŽ . Ž .Ý Hi x i

ai�1

c
� � �² :k u b � , 	 � k u b 	 b � 	k u b H x 	� x dx .Ž . Ž . Ž . Ž . Ž . Ž .Hb b b b b

a

Ž .Therefore from 1.1 we get

D2T m � DT m � � 	TŽ	B u� .	Ý MM H Ž x . Ý F H Ž x .	k u Žb.H Ž x . qi�1 i x i�1 i x b b 0i i

from which
m m

3 	Bu� x � MM H x � F H x x 	 xŽ . Ž . Ž . Ž . Ž . Ž .Ý Ýi x i x ii i
i�1 i�1

� k u� b H x x 	 bŽ . Ž . Ž .b b

x t
	 q z dz dt � h x 	 a � h a.e. on � ,Ž . Ž .H H 0 1 2ž /a a

where h , h � R.1 2
� 4Now let us put � x � � 	 x , . . . , x2 m	1

m m
�f x � MM H x � F H x 	 x � k u b H x x 	 bŽ . Ž . Ž . Ž . Ž . Ž .Ý Ýi x i x i b bi i

i�1 i�1

x t
	 q z dz dt � h x 	 a � hŽ . Ž .H H 0 1 2ž /a a

Ž .and observe that, because of 3 , we have

	Bu� x � f x a.e. on � .Ž . Ž . Ž .

3 Ž . 2Let us put � y, z � R

1 if y � z
H y �Ž .z ½ 0 if y � z .
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Obviously, one of the following possibilities can occur
� �� 44 
 j � 1, . . . , m 	 1 : b � x , x orŽ . j j�1

� 45 
 j � 2, . . . , m 	 1 : b � x .Ž . j

Ž . 2Ž .In the 4 case we have �� � H �

	 Bu� � � dx � f� � dx � f� � dxH H H
� � � �� a , b b , x2

m	1

� f� � dx if j � 1Ý H
� �x , xi i�1i�2

j	1

	 Bu� � � dx � f� � dx � f� � dx � f� � dxÝH H H H
� � � � � �� x , x x , b b , xi i�1 j j�1i�1

m	1

� 4� f� � dx if j � 2, . . . , m 	 2 .Ý H
� �x , xi i�1i�j�1

m	2

	 Bu� � � dx � f� � dx � f� � dxÝH H H
� � � �� x , x x , bi i�1 m	1i�1

� f� � dx if j � m 	 1.H
� �b , c

Ž . 2Ž .In the 5 case we have �� � H �
m	1

	 Bu� � � dx � f� � dx � f� � dx .ÝH H H
� �� � x , xi i�1i�1

Ž . Ž .Consequently, by part integration, in either 4 or 5 cases we have

	 Bu� � � dxH
�

� h � a 	 h � � aŽ . Ž .1 2

m m	1
�� MM � F x 	 c � k u b c 	 bŽ . Ž . Ž .Ý Ýi i i bž

i�1 i�1

c t
	 q z dz dt � h c 	 a � h � � cŽ . Ž . Ž .H H 0 1 2ž / /a a

m c
�� F 	 k u b � q x dx 	 h � cŽ . Ž . Ž .Ý Hi b 0 1ž /ai�1

m m
�	 MM � � x 	 F � x 	 q �dx � k u b � bŽ . Ž . Ž . Ž .Ý Ý Hi i i i 0 b

�i�1 i�1
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from which

² : �6 	 Bu� � � dx � q , � 	 k u a � aŽ . Ž . Ž .H a
�

	k u� b � b 	 k u� c � cŽ . Ž . Ž . Ž .b c

� 	h � � a � h 	 k u� a � aŽ . Ž . Ž .Ž .2 1 a

m m	1
�� MM � F x 	 c � k u b c 	 bŽ . Ž . Ž .Ý Ýi i i bž

i�1 i�1

c t
	 q z dz dt � h c 	 a � h � � cŽ . Ž . Ž .H H 0 1 2ž / /a a

m c
� �� F 	 k u b � q x dx 	 h 	 k u c � c .Ž . Ž . Ž . Ž .Ý Hi b 0 1 cž /ai�1

Ž . Ž . Ž . Ž . Ž .Because of 3 , 1.2 , 1.3 , 1.4 , and 1.5 we have

h � 02

h � k u� aŽ .1 a

m	1 m	1 c t�MM � F x 	 c � k c 	 b u b 	 q z dz dtŽ . Ž . Ž . Ž .Ý Ý H Hi i i b 0ž /a ai�1 i�1

�h c 	 a � h � 	MMŽ .1 2 m

m	1 c
�	 F � k u b 	 q x dx � hŽ . Ž .Ý Hi b 0 1

ai�1

� F 	 k u� c .Ž .m c

Ž .Therefore ii is true.
Ž . Ž . �Ž .ii � i . Because u is solution to variational equation, �	 � C � we0

have

c
�² :	 Bu� 	� dx � q , 	 	 k u a 	 aŽ . Ž .H a

a

	 k u� b 	 b 	 k u� c 	 c � 0Ž . Ž . Ž . Ž .b c

Ž .so that 1.1 is proven.
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Ž .After that let us proceed as earlier in the proof. Then from 1.1 we get
Ž . Ž . Ž . 2Ž .3 and 6 . By using 6 we have �� � H �

	h � � a � h 	 k u� a � aŽ . Ž . Ž .Ž .2 1 a

m m	1
�� MM � F x 	 c � k u b c 	 bŽ . Ž . Ž .Ý Ýi i i bž

i�1 i�1

c t
	 q z dz dt � h c 	 a � h � � cŽ . Ž . Ž .H H 0 1 2ž / /a a

m c
� �� F 	 k u b � q x dx 	 h 	 k u c � c � 0.Ž . Ž . Ž . Ž .Ý Hi b 0 1 cž /ai�1

From this, for suitable choices of � , we have

h � 0 choosing � : � a � � � c � � c � 0, � � a � 0 ;Ž . Ž . Ž . Ž .Ž .2

h � k u� a choosing � : � � a � � � c � � c � 0, � a � 0 ;Ž . Ž . Ž . Ž . Ž .Ž .1 a

m m	1
�MM � F x 	 c � k u b c 	 bŽ . Ž . Ž .Ý Ýi i i b

i�1 i�1

c t
	 q z dz dt � h c 	 a � h � 0Ž . Ž .H H 0 1 2ž /a a

choosing � : � a � � � a � � c � 0, � � c � 0 ;Ž . Ž . Ž . Ž .Ž .
m c

� �F 	 k u b � q x dx 	 h 	 k u c � 0Ž . Ž . Ž .Ý Hi b 0 1 c
ai�1

choosing � : � a � � � a � � � c � 0, � c � 0 .Ž . Ž . Ž . Ž .Ž .
Ž . Ž . Ž . Ž . Ž .Consequently, because of 3 , 1.2 , 1.3 , 1.4 , and 1.5 are true. The

thesis follows.

Let us now consider the variational inequality

c
2 ² :7 u � H � : Bu� � � 	 u� dx 	 q , � 	 uŽ . Ž . Ž .H

a

1 2 2 2� � �� k � a � k � b � k � cŽ . Ž . Ž .Ž . Ž . Ž .Ž .a b c2

1 2 2 2� � �	 k u a � k u b � k u c �0Ž . Ž . Ž .Ž . Ž . Ž .Ž .a b c2

�� � H 2 � .Ž .
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Furthermore, let us consider the functional energy

1 22 ² :J : � � H � � B � � dx 	 q , �Ž . Ž .H2 �

1 2 2 2� � �� k � a � k � b � k � cŽ . Ž . Ž .Ž . Ž . Ž .Ž .a b c2

and the minimum problem of the functional J

8 u � H 2 � : J u 
 J � �� � H 2 � .Ž . Ž . Ž . Ž . Ž .

Let us now show

THEOREM 2. The following statements are equi�alent

Ž . Ž .9 u is a solution to �ariational equation 2
Ž . Ž .10 u is a solution to �ariational inequality 7
Ž . Ž .11 u is a solution to Problem 8

� �Proof. We proceed in a similar way as in 9 .

3. EXISTENCE AND UNIQUENESS RESULTS

2Ž .Let us now denote by P the subspace of H � given by not greater1
than first degree polynomials4 and let

� x � R 1 x � 1, � x , y � R2 p x � x 	 y.Ž . Ž . Ž .y

Moreover, let us denote by P and M the resultant and the moment0
with respect to the origin of the loads applied to the beam

m

P � q dx � FÝH 0 i
� i�1

m m

M � q x dx � F x � MM .Ý ÝH0 0 i i i
� i�1 i�1

Let us now show

Ž .THEOREM 3. A necessary condition for Problem 1 to ha�e a solution is
Ž .P � 0. If P � 0, M � 0 is a necessary condition so that Problem 1 admits0

a solution.

4 P can be used to describe the compatible rigid body displacements of the structure.1
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Ž .If P � 0, a necessary condition so that Problem 1 admits a solution is that
� �the point � � M �P belongs to a, c .0

Ž .Proof. Let us suppose that Problem 1 admits a solution. For � � 	1,
Ž .we obtain from variational inequality 2

² : � � �q , 1 � k u a � k u b � k u c � 0;Ž . Ž . Ž .a b c

i.e., P � 0.
Let us now deal with the case P � 0. We have

² : � � �q , p � k u a a � k u b b � k u c c.Ž . Ž . Ž .0 a b c

On the other hand, because

² : � � �P � q , 1 � k u a � k u b � k u c � 0Ž . Ž . Ž .a b c

�Ž . �Ž . �Ž .we have u a � u b � u c � 0, so that

² :M � q , p � 0.0 0

Finally, let us analyse the case P � 0.
Proceeding by contradiction, let us assume

M M0 0
� � � a resp. � � � c .

P P

� � � � ��Consequently a real number z � � , a resp. z � c, � exists and we
have

² : ² : ² :q , p � � 	 z q , 1 � 0 resp. q , p � � 	 z � q , 1 � 0 .Ž . Ž .z z

Ž .On the other hand, choosing � � p , from variational inequality 2 wez
obtain

² : � � �q , p � k u a a 	 z � k u b b 	 z � k u c c 	 zŽ . Ž . Ž . Ž . Ž . Ž .z a b c

from which

² : ² :q , p � 0 resp. q , p 
 0 .z z

The thesis follows.

Ž .By Theorem 3, for Problem 1 to have a solution, one of the following
possibilities must occur

Ž .12 P � 0, M � 00

Ž . � 413 P � 0, � � M �P � a, c0

Ž . � �14 P � 0, � � M �P � a, c .0
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The following theorem holds

Ž . Ž . Ž .THEOREM 4. In Cases 12 and 13 , Problem 1 has infinite solutions;
2Ž .their set is a subset of an element of H � �P .1

Ž .Furthermore in Case 13 the following results

Ž . Ž .15 e�ery solution u to Problem 1 is such that

P
� � a � u a � , u b 
 0, u c 
 0Ž . Ž . Ž .

ka

P
� � c � u a 
 0, u b 
 0, u c �Ž . Ž . Ž .

kc

Ž . Ž .16 each and e�ery solution to Problem 1 is of the type

u � h x 	 � ,Ž .0

Ž .where u is a whate�er solution to Problem 1 and0

u b u cŽ . Ž .0 0
� � a � h 
 min 	 ,½ 5b 	 a c 	 a

u b u aŽ . Ž .0 0
� � c � h � max 	 , .½ 5b 	 c a 	 c

Ž . Ž .In Case 14 Problem 1 has at least one solution. If � � b, the solution to
Ž .Problem 1 is unique.

Proof. At first let us study the problem

2 ² : 217 u � H � : 	 Bu� � � dx � q , � � 0 �� � H � .Ž . Ž . Ž .H
�

To this aim we consider the bilinear form

� � � � 2a: w , � � H � �P � Bw� � � dxŽ .Ž . H1
�

and the linear form

2 ² :� �g : � � H � �P � q , � .Ž . 1

Now let us notice that

2 � � 2� �
c , c � 0, �� : �� � H � c � �Ž . L Ž� .1 2 1

� � 2 � � 2� �
 � 
 c � � .H Ž� .� P L Ž� .21
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� �Then, by using the same method as in 8 , we prove that g is continuous,
Ž� � � �.a w , � is continuous and coercive.

2Ž .Obviously H � �P is an Hilbert space. Thus for the Lax�Milgram1
theorem the variational equation

2 ² : 2� � � � � � � � � �18 u � H � �P : a u , � � g , � � � � H � �PŽ . Ž . Ž .Ž .1 1

� �has a unique solution, which we denote with the symbol u .˜
� �Obviously every u* � u is such that˜

² : 2	 Bu*� � � dx � 	 q , � �� � H �Ž .H
�

Ž .and, consequently, is solution to 17 .
� �Thus, �u* � u the function˜

u* 	 max u* a , u* b , u* c� 4Ž . Ž . Ž .
Ž . Ž .is solution to the variational equation 2 , i.e., of Problem 1 .

Ž . Ž .Therefore in Case 12 , Problem 1 has infinite solutions. Let us now
Ž .prove that, if u , u are solutions to Problem 1 , then u 	 u � P .1 2 1 2 1

² :Because q, 1 � 0, we have

c
� � � ² :	 Bu u 	 u dx � q , u 	 u � 0Ž .H 1 1 2 1 2

a

c
� � � ² :	 Bu u 	 u dx � q , u 	 u � 0Ž .H 2 1 2 1 2

a

from which
c 2� �B u 	 u dx � 0Ž .H 1 2

a

from which

� � � � 2u 	 u � 0L Ž� .1 2

and consequently u 	 u � P .1 2 1
Ž .Let us now consider Case 13 .

� �Let us assume � � a resp. � � c and consider the set

H � � � H 2 � : � a � 0, � � a � 0� 4Ž . Ž . Ž .
2resp. H � � � H � : � c � 0, � � c � 0 .� 4Ž . Ž . Ž .

2Ž .Clearly H is a subspace of H � . Let H be equipped with the norm

� 2� � � �: � � H � � � .H L Ž� .



TOSONE AND MACERI312

Because �� � H

1�2
2� � � � � �� x 
 � � c 	 a a.e. on a, cŽ . Ž .L Ž� .

1�2
2� � � � � �� � x 
 � � c 	 a a.e. on a, c ,Ž . Ž .L Ž� .

we have

4 22
2 2� � � �� 
 c 	 a � c 	 a � 1 � � .Ž . Ž .Ž .H Ž� . L Ž� .

�
2� � Ž .Thus the norm is equivalent to the norm of H � .H

On the other hand, H, equipped with the inner product

� �, : u , � � H � H � u� � � dxŽ . Ž . HH
�

is a Hilbert space.
Moreover,

c
� �a , : u , � � H � H � Bu� � � dxŽ . Ž . H

a

is a bilinear form on H, continuous and coercive; q is a form on H linear
and continuous.

Thus for the Lax�Milgram theorem there exists an unique u � H such˜
that

c
² :q , � � Bu� � � dx �� � H .˜H

a

Let us now note with u the function u � � x � 
 , where˜

P 1 P 1
� 
 min 	 	 u b , 	 	 u cŽ . Ž .˜ ˜½ 5ž / ž /k b 	 a k c 	 aa a

P 1 P 1
resp. � � max 	 	 u b , 	 	 u aŽ . Ž .˜ ˜½ 5ž / ž /k b 	 c k a 	 cc c

and

P P

 � 	� a � resp. 
 � 	�c � .

k ka c

Ž .We will now verify that u is solution to variational inequality 2 and
Ž .consequently to Problem 1 .
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In fact we have

P
u a � resp. u a 
 0Ž . Ž .

ka

u b 
 0Ž .
P

u c 
 0 resp. u c � ,Ž . Ž .
kc

from which

P
� � � �u a � resp. u a � 0 , u b � 0, u c � 0Ž . Ž . Ž . Ž .

ka

P
�resp. u c � .Ž .

kc

2Ž . Ž . Ž . �Moreover �� � H � , putting � � � 	 � � a p 	 � a resp. � � � 	˜ ˜a
Ž . Ž .� Ž . Ž . � Ž . Ž . �� � c p 	 � c , it results � a � � � a � 0 resp. � c � � � c � 0 ; i.e.,˜ ˜ ˜ ˜c

� � H.˜
Thus we have

c
² :	 Bu� � � dx � q , �H

a

c
² : ² : ² : ² :� 	 Bu� � � dx � q , � � � � a q , p 	 a q , 1 � � a q , 1Ž . Ž .Ž .˜ ˜ ˜H 0

a

c
² :� � a P resp. 	 Bu� � � dx � q , � � � c P .Ž . Ž .H

a

and from this

c
² :	 Bu� � � dx � q , �H

a

� k u� a � a � k u� b � b � k u� c � c .Ž . Ž . Ž . Ž . Ž . Ž .a b c

Ž .Therefore Problem 1 has infinite solutions.
Ž .Let u , u be solutions to Problem 1 , with u such that0 0

P
� � a � u a � , u b 
 0, u c 
 0Ž . Ž . Ž .0 0 0ka

P
� � c � u a 
 0, u b 
 0, u c � .Ž . Ž . Ž .0 0 0 kc
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We have
c

� � � ² :	 Bu u 	 u dx � q , u 	 uŽ .H 0 0 0
a

� k u� a u a 	 u a � k u� b u b 	 u bŽ . Ž . Ž . Ž . Ž . Ž .Ž . Ž .a 0 0 b 0 0

� k u� c u c 	 u c ,Ž . Ž . Ž .Ž .c 0 0

c
� ² :	 Bu� u 	 u� dx � q , u 	 uŽ .H 0 0

a

� k u� a u a 	 u a � k u� b u b 	 u bŽ . Ž . Ž . Ž . Ž . Ž .Ž . Ž .a 0 b 0

� k u� c u c 	 u c ;Ž . Ž . Ž .Ž .c 0

hence
c 2� � �B u 	 u� dx � k u a 	 u a u a 	 u aŽ . Ž . Ž . Ž . Ž .Ž . Ž .H 0 a 0 0

a

� k u� b 	 u� b u b 	 u bŽ . Ž . Ž . Ž .Ž . Ž .b 0 0

� k u� c 	 u� c u c 	 u c � 0.Ž . Ž . Ž . Ž .Ž . Ž .c 0 0

This implies that
u 	 u � P ,0 1

u a 	 u a � 0 or u a 
 0, u a 
 0,Ž . Ž . Ž . Ž .0 0

u b 	 u b � 0 or u b 
 0, u b 
 0,Ž . Ž . Ž . Ž .0 0

u c 	 u c � 0 or u c 
 0, u c 
 0.Ž . Ž . Ž . Ž .0 0

Therefore we have

P
� � a � u a � , u b 
 0, u c 
 0Ž . Ž . Ž .

ka

P
� � c � u a 
 0, u b 
 0, u c � .Ž . Ž . Ž .

kc

Let us now observe that, because u is a solution to variational equation0
Ž .2 , for � � u 	 u we have0

² :q , u 	 u � 0.0

Ž . Ž . � �Hence by putting u x 	 u x � hx � f � x � a, c , where h, f � R,0
we have

² : ² : ² : ² :0 � q , u 	 u � h q , p � h� � f q , 1 � u � 	 u � q , 1Ž . Ž . Ž .Ž .0 � 0

Ž . Ž .from which it follows directly u � � u � .0
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Therefore, we have proven that

� �u x 	 u x � h x 	 � � x � a, c .Ž . Ž . Ž .0

Ž . Ž . Ž .Let us now observe that, if � � a, because u b � u b � h b 	 a 
0
Ž . Ž . Ž .0, u c � u c � h c 	 a 
 0, we have0

u b u cŽ . Ž .0 0
19 h 
 min 	 , 	 ,Ž . ½ 5b 	 a c 	 a

Ž . Ž . Ž . Ž . Ž . Ž .if � � c, because u a � u a � h a 	 c 
 0, u b � u b � h b 	 c0 0

 0, we have

u b u aŽ . Ž .0 0
20 h � max 	 , 	 .Ž . ½ 5b 	 c a 	 c

In the above discussion we have proven that, if u is a whatever solution0
Ž .to Problem 1 , every other solution is sum of u and of the polynomial0

hp , where h is a convenable real number.�

Ž .Let us now establish that, if u is a particular solution to Problem 10
Ž . � Ž .� �and hp is a polynomial such that h satisfies 19 resp. 20 , if � � a resp.�

� Ž .� � c , then function u � u � hp is a solution to Problem 1 .0 �

Indeed we have

� � � �u a � u a resp. u a � u a � 0 ,Ž . Ž . Ž . Ž .0 0

� � � �u b � u b � 0 resp. u b � u b � 0 ,Ž . Ž . Ž . Ž .0 0

� � � �u c � u c � 0 resp. u c � u c ;Ž . Ž . Ž . Ž .0 0

Ž .therefore u is a solution to variational equation 2 .
Ž .Finally, we are also concerned here with the proof that in Case 14 ,

Ž . Ž .Problem 1 has a solution unique if � � b .
Ž .To this aim let us consider variational inequality 7 . It is a known result

Ž .that, to prove that variational inequality 7 admits at least a solution, it is
sufficient establish that

� 2 � � 221 
 r � R : �� � H � with � � rŽ . Ž . H Ž� .

c 1 22 �² :B � � dx 	 q , � � k � aŽ . Ž .Ž .H a2a

1 12 2� �� k � b � k � c � 0.Ž . Ž .Ž . Ž .b c2 2
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Ž .Using a proof by contradiction, let us assume 21 to be false. Thus a
� 4 2Ž .sequence � of elements of H � exists such thatn

c 1 22� �2� ��n � N � � n �n � N B � dx � k � aŽ . Ž .Ž .H Ž� . Hn n a n2a

1 12 2� � ² :� k � b � k � c 
 q , �Ž . Ž .Ž . Ž .b n c n n2 2
�n

or, in terms of the notation w � ,n n

� � 222 w � 1 �n � NŽ . H Ž� .n

c 1 1 12 2 22� � � �B w dx � k w a � k w b � k w cŽ . Ž . Ž . Ž .Ž . Ž . Ž .H n a n b n c n2 2 2a

1
² :
 q , w �n � N.nn

Therefore we get

12�
2 2� � � �b w 
 q .L Ž� . ŽH Ž� ..�0 n n

which implies

� � � 223 lim w � 0.Ž . L Ž� .n
n���

Ž .On the other hand, since the first of 22 , it is possible to extract from
� 4 Ž .w a subsequence which we indicate by the same index weakly conver-n

2Ž . Ž 1Ž ..gent in H � and thus strongly in H � to an element w. Thus,

� � 124 lim w 	 w � 0.Ž . H Ž� .n
n���

Let us consider now the functional

c 1 222 � �� : � � H � � B � � dx � k � aŽ . Ž . Ž .Ž .H a2a

1 12 2� � � �� k � b � k � c .Ž . Ž .Ž . Ž .b c2 2

It is easy to verify that � is weakly lower semicontinuous.
Therefore

� w 
 lim�
� wŽ . Ž .n

n���
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Ž .and from 22 we get

c 2 2 22 � � �B w� dx � k w a � k w b � k w c � 0.Ž . Ž . Ž . Ž .Ž . Ž . Ž .H a b c
a

� � Ž . Ž . Ž .Hence w� � 0 a.e. on a, c , w a 
 0, w b 
 0, w c 
 0.
Ž . Ž .From this and taking into account 23 and 24 we have

lim w � w strongly in H 2 � .Ž .n
n���

Ž . � �Moreover because the first of 22 , w � 0 a.e. on a, c .
� � Ž .Let us prove that � x � a, c w x � 0.

By absurd, let us suppose that

� �
 x � a, c : w x � 0.Ž .0 0

� �Because w� � 0 a.e. on a, c , w is not greater than a first degree
polynomial; i.e., 
 l, m � R such that

� �w x � mx � l � x � a, c .Ž .

Ž .Clearly w is monotonic. As a consequence, if w x � 0, because0
Ž . Ž . Ž .w a 
 0 and w c 
 0, we have an absurd result. If w x � 0, we get0

� � � �w � 0 on a, c , which contradict the condition w � 0 a.e. on a, c .
Finally we observe that

² : ² : ² :q , w � m q , p � m� � 1 q , 1Ž .�

² : ² :� m� � l q , 1 � w � q , 1 � 0.Ž . Ž .

Ž .On the other hand, because of 22 we get

² : ² :q , w � lim q , w � 0.n
n���

Ž . Ž Ž .This absurd proves that variational inequality 7 and by Theorem 2 ,
Ž ..Problem 1 has at least a solution.

We must now study the uniqueness of the solution.
Ž .Let u , u be solutions to Problem 1 .1 2

Ž .By proceeding in a similar way as in Case 13 , we have

u 	 u � P , u � � u � .Ž . Ž .2 1 1 2 1

² :Moreover, because of the hypothesis P � q, 1 � 0, we get

� 4
 s � a, b , c : u s � u s .Ž . Ž .1 2
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Therefore, if � � b, because u 	 u belongs to P and has the distinct2 1 1
zeros s, � we get

u 	 u � 02 1

and the thesis follows.
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