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The linear Boltzmann equation describing electron flow in a semiconductor is
considered. The Cauchy problem for space-independent solutions is investigated,
and without requiring a bounded collision frequency the existence of integrable
solutions is established. Mass conservation, an H-theorem, and moment estimates
also are obtained, assuming weak conditions. Finally, the uniqueness of the
solution is demonstrated under a suitable hypothesis on the collision frequency.
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1. INTRODUCTION

The classical Boltzmann equation for a perfect rarefied gas has been
studied extensively by many authors, and many interesting results have

Ž � �.been obtained see for example 1, 2, and 3 . In contrast, the Boltzmann
equation describing electron flow in semiconductors has only recently
become a subject of research. For a wide range of applications, it has
proved a useful model for studying hot electrons or high field effects in
semiconductors. Due to the particular nature of the scattering mechanisms
in the semiconductor case, the collision operator assumes a distinct aspect.
In common with the classical Boltzmann equation, even in relatively
simple cases many mathematical difficulties arise. The existence of solu-

� �tions to the initial value problem was proved in 10�12 . However, in order
to obtain general results, in these papers smooth kernels for the collision
operator were assumed. In fact, physical kernels contain the Dirac distri-
bution, and so spaces of continuous functions are the most natural frame-
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work. A collision operator based on these kernels was studied in detail in
� �5 , where space homogeneous continuous solutions to the Cauchy problem
were found.

The existence and uniqueness of space homogeneous continuous solu-
� � � �tions to the linear Boltzmann equation were proved in 6 and 7 . These

results were obtained under the assumption of a bounded collision fre-
quency. This holds, for example, if the collision kernels are based on polar

� �optical phonon or impurity scattering rates 4 . However, other important
scattering processes give unbounded collision frequencies. In applications,

Žthe choice of kernel depends on the material considered silicon, germa-
.nium, etc. .

In this paper we relax the assumption on the collision frequency so that
it can be unbounded. This allows us to prove the existence of Lebesgue
integrable solutions, but not their continuity. If additional hypotheses hold,
uniqueness is also demonstrated.

� �Recently, Banasiak 13, 14 obtained very general results concerning the
existence and uniqueness of integrable solutions to linear transport equa-
tions. As a particular case, the Boltzmann equation for semiconductor
devices in the parabolic band approximation was included. The main tools
of those papers are interesting new theorems of the semigroup theory. Our
existence theorem seems not to be a direct consequence of Banasiak’s
results, because in our case one of the hypotheses concerning mass
conservation does not hold in general.

The plan of this paper is as follows. In Section 2 we briefly introduce the
semiconductor Boltzmann equation and describe the collision operator. In
Section 3 we write a truncated kinetic equation and solve a Cauchy
problem. Moreover, some properties of the solutions are characterized. In
Section 4 existence and uniqueness results are presented.

2. BASIC EQUATIONS

In the low density case the Boltzmann equation for an electron gas in a
semiconductor is

� f
t , k � S k�, k f t , k� � S k, k� f t , k dk�. 1Ž . Ž . Ž . Ž . Ž . Ž .H

3� t �

Here we consider the case of no electric field and we look for space
homogeneous solutions. The unknown is the electron probability density f ,

� � .which is a function of the time t � � � 0, �� and the wave vector0
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k � �3. The kernel S is given by

S k, k� � GG k, k� n � 1 � � k� � � k � ��Ž . Ž . Ž . Ž .Ž .Ž .q

�n � � k� � � k � ��Ž . Ž .Ž .q

� GG k, k� � � k� � � k , 2Ž . Ž . Ž . Ž .Ž .0

Ž . Ž . 3 3where the functions GG k, k� and GG k�, k are continuous on � � � and0
Ž . Ž . Ž .satisfy the symmetry conditions GG k, k� � GG k�, k and GG k, k� �0

Ž .GG k�, k . The constant positive parameter n is given by0 q

�1
��

n � exp � 1 , 3Ž .q ž /k TB L

where � is the Planck constant divided by 2	 , � is the positive constant
phonon frequency, k is the Boltzmann constant, and T is the latticeB L

Ž .temperature. The symbol � denotes the Dirac distribution and � k is the
electron energy. The latter is a continuous function and it will be defined

Ž Ž . Ž . .later in this section. As an example, the expression � � k� � � k � ��
is a new distribution given by the composition of the delta distribution and
the continuous function � . The meaning of the collision operator on the

Ž . � �right-hand side of 1 and some of its properties may be found in 5 .
The collision operator describes the scattering processes between free

electrons and phonons. In this model the ensemble of phonons is assumed
to be in thermal equilibrium. The electrons move inside the crystal and
collide with the phonons. Hence, the electron distribution function changes
over time. When an electron collides, it may gain or lose a quantum of
energy ��, according to the probability scattering rates depending on the

� � � �functions GG and GG . For further details, we refer the reader to 4 and 8 .0
From the mathematical point of view, the main difficulties in studying this
transport equation arise from these irregular integral kernels.

The form of the electron energy function � depends on the band
structure of the crystal. Many simple analytical expressions are used in
applications. The most common are the parabolic band approximation and

� �the Kane model 4 . The formula

2 � � 2� k
� k � 4Ž . Ž .

2 2� �'m* � m* m* � 2 k 
 �Ž .

gives the electron energy for both models. The real number 
 is called the
non-parabolicity parameter. It is positive for the Kane model, while 
 � 0
gives the parabolic band approximation. The constant m* is the effective
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� �electron mass, and k denotes the modulus of the vector k. It is possible to
Ž � � � �. Ž .consider other expressions see 4 or 5 instead of Eq. 4 . Our results

hold in these cases also without essential differences, but for the sake of
Ž .clarity we refer to Eq. 4 in the following.

It is useful to introduce the collision frequency

� k � S k, k� dk� 5Ž . Ž . Ž .H
3�

and the gain operator

J f t , k � S k�, k f t , k� dk�. 6Ž . Ž . Ž . Ž . Ž .H
3�

Ž .Thus, Eq. 1 becomes

� f
t , k � � k f t , k � J f t , k . 7Ž . Ž . Ž . Ž . Ž . Ž .

� t

� �It is easy to verify 7, 9 that the function

� kŽ .
M k � exp � 8Ž . Ž .

k TB L

Ž . Ž . Ž .is a solution of 7 , because J M � � M. The function M k is called the
Maxwellian distribution and describes the equilibrium state of the electron
gas.

Ž .In this paper, we look for solutions of Eq. 7 satisfying the initial
condition

f 0, k � � k , 9Ž . Ž . Ž .

Ž . 3where � k is an assigned non-negative continuous function on � .

3. TRUNCATED EQUATIONS

Let 
 be a closed subset of a finite dimensional Euclidean space. We
Ž .denote by C 
 the set of all continuous functions g : 
 � �. Moreover,
Ž . Ž . Ž .the spaces C 
 and C 
 are the subsets of C 
 of all boundedb c

1Ž .functions or having compact support, respectively. L 
 is the set of
Lebesgue integrable functions on 
.

Ž . Ž .In order to prove the existence of a solution to 7 satisfying 9 , we
Ž .introduce a modified equation, where the gain term J f is replaced by a
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Ž � 3.bounded operator in C � � � . We define, for every n � �,0

u	1 if 
 n
k TB L

u u�1 � n � if n � � n � 1� u � 10Ž . Ž .n k T k TB L B L

u
0 if � n � 1,
 k TB L

3Ž . Ž Ž .. Ž Ž ..and � k, k� � � � k � � k� , for every k, k� � � .n n n
Ž � 3.For every f � C � � � , we define0

J f t , k � S k�, k f t , k� � k, k� dk�. 11Ž . Ž . Ž . Ž . Ž . Ž .Hn n
3�

Ž . � �Using Lemma B.4 of 5 , it is immediate to prove that the operator Jn
Ž � 3. Ž 3. Ž .Ž .maps C � � � into itself and that � � C � . Moreover, J f t, � �0 n

Ž 3. � Ž .C � for every t � � , and J f is non-negative if f is, too. Wec 0 n
consider the Cauchy problem

� f
t , k � � k f t , k � J f t , kŽ . Ž . Ž . Ž . Ž .n� t 12Ž .

f 0, k � � k ,Ž . Ž .n

where

� k � � k � � k . 13Ž . Ž . Ž . Ž .Ž .n n

Ž . Ž � 3.We look for solutions of problem 12 belonging to the space C � � � .0
Ž .We remark that only the gain term of the true equation 7 is changed.

ŽThe use of truncated kernels is well known in the literature see, for
� �.instance, Ref. 2 , but usually both terms of the collision operator are

modified.

Ž 3.THEOREM 3.1. If � � C � and it is non-negati�e, then the problem
Ž .12 admits a unique global non-negati�e continuous solution.

Proof. Let � be a real non-negative parameter, to be chosen later. By
Ž � 3.C � � � we denote the linear space of all continuous real-valued� 0

functions g defined in �� � �3, such that0

�� t � � � 3sup e g t , k : t � � , k � � � ��.Ž .� 40
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If we define

� � �� t � � � 3g � sup e g t , k : t � � , k � �Ž .� 4� 0

Ž � 3. � �for all g � C � � � , then it is simple to see that � is a norm and�� 0
Ž � 3.C � � � is a Banach space.� 0

Ž . Ž � 3.Of course, the Cauchy problem 12 is equivalent in C � � � to the� 0
integral equation

t�� Žk . t �� Žk . t � Žk . rf t , k � e � k � e e J f r , k dr . 14Ž . Ž . Ž . Ž . Ž .Hn n
0

Ž . Ž . Ž .We denote by T f the right-hand side of Eq. 14 . We prove that T fn n
admits a unique fixed point by using the well-known Banach�Caccioppoli
Theorem.

Ž . Ž � 3.It is a simple matter to show that T f maps C � � � into itself.n � 0
Ž . Ž Ž . � 3. Ž .Ž .Moreover, f t, k � 0 for every t, k � � � � implies that T f t, k0 n

� 0 for every t � �� and k � �3. Setting0

j k � J 1 t , k � S k�, k � k, k� dk�,Ž . Ž . Ž . Ž . Ž .Hn n n
3�

we have

� �J f t , k � J g t , kŽ . Ž . Ž . Ž .n n

� �
 S k�, k � k, k� f t , k� � g t , k� dk�Ž . Ž . Ž . Ž .H n
3�

� � �t
 f � g S k�, k � k, k� e dk�Ž . Ž .�H n
3�

�t � �� j k e f � gŽ . �n

Ž � 3.for every f and g belonging to C � � � . Hence,� 0

t�� Žk . t � Žk . r � r� � � �T f t , k � T g t , k 
 e e j k e f � g drŽ . Ž . Ž . Ž . Ž .H �n n n
0

e�� Žk .���t � 1
�� Žk . t � �� e j k f � gŽ . �n � � � kŽ .

j kŽ .n � t� �
 f � g e .�
� � � kŽ .
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Ž 3.Since j � C � , it is possible to choose � such thatn c

j kŽ .n 3max : k � � � 1.½ 5� � � kŽ .

Ž � 3.Therefore T is a contraction in C � � � . It is evident that the uniquen � 0
Ž .solution of 14 can be obtained by iteration starting from f � 0. Hence

Ž .the solution of Eq. 14 is non-negative and the proof is accomplished.

Ž . Ž . Ž .We denote by f t, k the solution of Eq. 14 . Taking into account 10 ,n
Ž . Ž . Ž . Ž .we note that, for every t, k such that � k � n � 1 k T , Eq. 14 isB L

Ž .simply f t, k � 0.n

3.1. Mass Inequality

Ž .Since in the first equation of 12 only the gain term is truncated, mass
conservation does not hold in general. Setting

� k � S k, k� � k, k� dk�,Ž . Ž . Ž .Hn n
3�

Ž . Ž . 3it is clear that � k 
 � k for every k � � .n

Ž 3.THEOREM 3.2. If � � C � and it is non-negati�e, then

f t , k dk 
 � k dk for all t � �� .Ž . Ž .H Hn n 0
3 3� �

Proof. Since

t
f t , k � � k � J f r , k � � k f r , k drŽ . Ž . Ž . Ž . Ž . Ž .Hn n n n n

0

� Ž . Ž 3.and for each t � � the function f t, � � C � , it follows that0 n c

f t , k dk � � k dkŽ . Ž .H Hn n
3 3� �

t
� dk J f r , k � � k f r , k drŽ . Ž . Ž . Ž .H H n n n

3� 0

t
� dr J f r , k � � k f r , k dkŽ . Ž . Ž . Ž .H H n n n

30 �

t

 dr J f r , k � � k f r , k dk � 0.Ž . Ž . Ž . Ž .H H n n n n

30 �
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Then

0 
 f t , k dk 
 � k dk,Ž . Ž .H Hn n
3 3� �

which is the desired conclusion.

3.2. Monotonic Property

� 4Since n is an arbitrary integer, we have obtained a sequence f ofn
Ž . Ž � 3.solutions of problem 12 belonging to C � � � . We prove that the0

� 4sequence f is monotonically increasing.n
We first establish the following Gronwall-type lemma.

Ž � 3.LEMMA 3.1. If h � C � � � �erifies the inequality0

t�� Žk . t � Žk . r � 3h t , k 
 e e J h r , k dr for e�ery t , k � � � � ,Ž . Ž . Ž . Ž .H n 0
0

Ž . 3 Ž . Ž . � 3and h 0, k 
 0 for all k � � , then h t, k 
 0 for all t, k � � � � .0

Proof. Let � be a positive parameter. For every t � �� and k � �3,0
we have

t�� Žk . t �� Žk . t � Žk . r� M k � e � M k � e e J � M k drŽ . Ž . Ž . Ž .H
0

t�� Žk . t �� Žk . t � Žk . r� e � M k � e e J � M k dr .Ž . Ž . Ž .H n
0

Let

t� � sup t � �� : h t , k 
 � M k for all k � �3 .Ž . Ž .� 40

We note that the above set is not empty because

h 0, k 
 � M k for all k � �3.Ž . Ž .

Ž .Ž . Ž 3.If t� � ��, since J h t, � � C � , then there exists � � 0 such thatn c

t���
� Žk . re J h r , k dr 
 � M k .Ž . Ž . Ž .H n

t�
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Now,

t����� Žk .Ž t��� . � Žk . rh t� � � , k 
 e e J h r , k drŽ . Ž . Ž .H n
0

t����� Žk . t� � Žk . r
 e e J h r , k drŽ . Ž .H n
0

t��� Žk . t� � Žk . r� e e J h r , k drŽ . Ž .H n
0

t����� Žk . t� � Žk . r� e e J h r , k drŽ . Ž .H n
t�

t��� Žk . t� � Žk . r �� Žk . t�
 e e J � M k dr � e � M kŽ . Ž . Ž .H n
0


 � M k .Ž .

This contradicts the assumption that t� is finite. Thus t� � ��, i.e.,

h t , k 
 � M k for every t , k � �� � �3.Ž . Ž . Ž . 0

Since � is an arbitrary positive real number, the assertion is achieved.

� 4THEOREM 3.3. The sequence f is monotonically increasing.n

Proof. We have

f t , k � f t , kŽ . Ž .n n�1

� e�� Žk . t� k � e�� Žk . t� kŽ . Ž .n n�1

t�� Žk . t � Žk . r� e e J f r , k � J f r , k drŽ . Ž . Ž . Ž .H n n n n�1
0

t�� Žk . t � Žk . r� e e J f r , k � J f r , k drŽ . Ž . Ž . Ž .H n�1 n�1 n n�1
0

t�� Žk . t � Žk . r
 e e J f r , k � J f r , k dr .Ž . Ž . Ž . Ž .H n n n n�1
0

Therefore,

t�� Žk . t � Žk . rf t , k � f t , k 
 e e J f � f r , k drŽ . Ž . Ž . Ž .Hn n�1 n n n�1
0

for all n � �.
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Putting

h t , k � f t , k � f t , k for every t , k � �� � �3Ž . Ž . Ž . Ž .n n�1 0

and taking into account Lemma 3.1, the proof is complete.

3.3. H-Theorem and Moment Estimates

� �In Ref. 6 it was shown that the H-Theorem can be used to obtain an
estimate of the hydrodynamic energy. The H-Theorem was generalized in

� �a simple way by Markowich and Schmeiser 9 . We use this to derive upper
bounds for the moments.

Ž .LEMMA 3.2. Let G � C � be a monotonically increasing function. If
Ž 3.g � C � then

G g k �M k J g k � � k g k dk 
 0. 15Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .H n n
3�

Ž . Ž .Proof. It is evident that the integral in 15 exists because J g � � gn n
Ž 3.� C � . In order to make the formulas of this proof compact, we willc

often omit the argument k of the functions and only the prime symbol will
indicate that a function depends on k�. So, we have

G g k �M k J g k � � k g k dkŽ . Ž . Ž . Ž . Ž . Ž .Ž .H n n
3�

g k� g kŽ . Ž .
� S k, k� � k, k� g k G � G dk dk�Ž . Ž . Ž .H n

6 ž / ž /M k� M kŽ . Ž .�

g � g
� GG n � 1 � � � � � � � �� g G � G dk dk�Ž .Ž .H q n ž /ž /6 M� M�

g � g
� GGn � � � � � � � �� g G � G dk dk�Ž .H q n ž /ž /6 M� M�

g � g
� GG � � � � � � g G � G dk dk�Ž .H 0 n ž /ž /6 M� M�

g g �
� GG� � � � � � � �� Mn G � GŽ .H n q ž / ž /6 M M��

g � g 1
� � dk dk� � GG � � � � � � MŽ .H 0 n

6M� M 2 �

g � g g g �
� G � G � dk dk�ž /ž /M� M M M�


 0,
Ž . Ž .where we used Eq. 3 and Eq. 8 .
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Ž .THEOREM 3.4. Let G � C � be non-negati�e and monotonically increas-
ing. Then

Ž . Ž .f t , k �M knt � M k G x dx dk 16Ž . Ž . Ž .H H
3� 0

is a monotonic decreasing function on ��.0

Ž .Proof. From the first part of Eq. 12 , we have

f t , k � f t , k f t , kŽ . Ž . Ž .n n n
G 
 G J f t , k � � k f t , k ,Ž . Ž . Ž . Ž .n n n nž / ž /M k � t M kŽ . Ž .

which is equivalent to

� Ž . Ž .f t , k �M knM k G x dxŽ . Ž .H½ 5� t 0

f t , kŽ .n
 G J f t , k � � k f t , k .Ž . Ž . Ž . Ž .n n n nž /M kŽ .

By integrating with respect to k and taking into account Lemma 3.2, this
yields

� Ž . Ž .f t , k �M knM k G x dx dk 
 0,Ž . Ž .H H½ 53� t � 0

which completes the proof.

COROLLARY 3.1. Putting

f t , kŽ .n
S t � f t , k � M k log � 1 dk,Ž . Ž . Ž .Hn n ½ 53 M kŽ .�

then

0 
 S t 
 S 0 for all t � �� .Ž . Ž .n n 0

Proof. If we consider the function

log x � 1 if x � 0Ž .G x � ,Ž . ½ 0 if x 
 0

then the assumptions of Theorem 3.4 are verified. Now the integral of G



MAJORANA AND MILAZZO620

Ž .in Eq. 16 is elementary. Hence the function

f t , k f t , k f t , kŽ . Ž . Ž .n n n
t � M k � 1 log � 1 � dkŽ .H ½ 53 M k M k M kŽ . Ž . Ž .�

is decreasing in time. This implies that

f t , kŽ .n
f t , k � M k log � 1 � f t , k dkŽ . Ž . Ž .H n n½ 53 M kŽ .�

� kŽ .n
 � k � M k log � 1 � � k dk.Ž . Ž . Ž .H n n½ 53 M kŽ .�

Now it is immediate to see that

0 
 S t 
 S 0 � f t , k dk � � k dk 
 S 0 .Ž . Ž . Ž . Ž . Ž .H Hn n n n n
3 3� �

This proves the assertion.

Note that we have actually proved that the function

t � S t � f t , k dkŽ . Ž .Hn n
3�

� � �is decreasing in � . This differs from the H-theorem of Ref. 7 . In fact, it0
is not true in general that mass conservation holds. The next result shows
that upper bounds to the thermodynamical energy and higher order
moments can be derived by means of Theorem 3.4.

LEMMA 3.3. If � is a real number greater than or equal to 1, then the
function

�
f t , k f t , kŽ . Ž .n n

t � M k � 1 log � 1 dkŽ .H ½ 53 M k M kŽ . Ž .�

Ž �.belongs to C � .b 0

Proof. Let us consider the function
�

log x � 1 , if x � 0,Ž .G x �Ž . ½ 0, if x 
 0.

It verifies the assumptions of Theorem 3.4, so that the function

Ž . Ž .f t , k �M k �nM k log x � 1 dx dk 17Ž . Ž . Ž .H H
3� 0

is decreasing on ��.0



THE SEMICONDUCTOR BOLTZMANN EQUATION 621

Letting

z � kŽ .� n
I z � log x � 1 dx and c � M k I dk,Ž . Ž . Ž .H H� � �

3 ž /M kŽ .0 �

18Ž .

then

f t , kŽ .n
M k I dk 
 c � t � 0.Ž .H � �

3 ž /M kŽ .�

By simple calculus, it is easy to see that

�
I z � �I z � z � 1 log z � 1 ,Ž . Ž . Ž . Ž .� ��1

and so, for all t � 0,

�
f t , k f t , kŽ . Ž .n n

0 
 M k � 1 log � 1 dkŽ .H ½ 53 M k M kŽ . Ž .�

f t , k f t , kŽ . Ž .n n� M k I � �I dk 
 c � �c .Ž .H � ��1 � ��1
3 ž / ž /M k M kŽ . Ž .�

This concludes the proof.

� � �THEOREM 3.5. If p � 0, 1 then for all t � � 0

�
f t , k � k dkŽ . Ž .H n

3�

�k T p �B L
 c � �c � M k � k dk, 19Ž . Ž . Ž . Ž .H� ��1 ž / 31 � p �

Ž .where c is gi�en by 18 .�

Proof. For every t � �� , let us define0

p3 c 3D t � k � � : f t , k � M k and D t � � � D t .Ž . Ž . Ž . Ž . Ž .� 4n n n n
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From Lemma 3.3, if � � 1 then we have

�
f t , k � M kŽ . Ž .n

c � �c � M k � f t , k log dkŽ . Ž .H� ��1 n
3 M kŽ .�

�p�1� f t , k log M k dkŽ . Ž .� 4H n
Ž .D tn

�
1 � p �� f t , k � k dk.Ž . Ž .H nž /k T Ž .D tB L n

Therefore

�
f t , k � k dkŽ . Ž .H n

3�

� �� f t , k � k dk � f t , k � k dkŽ . Ž . Ž . Ž .H Hn n
cŽ . Ž .D t D tn n

�k T p �B L
 c � �c � M k � k dk,Ž . Ž . Ž .H� ��1 ž / 31 � p �

which gives immediately the claim.

4. EXISTENCE AND UNIQUENESS

� 4 Ž �We have determined an increasing sequence of functions f � C �n 0
3. Ž . 1Ž 3.� � which satisfy Eq. 14 . If � � L � then Theorem 3.2 and the

Monotone Convergence Theorem tell us that there exists a function
Ž . 1Ž 3. �f t, � � L � such that, for each t � � ,0

f t , k � lim f t , k for almost every k � �3 20Ž . Ž . Ž .n
n���

and

lim f t , k dk � f t , k dk 
 � k dk.Ž . Ž . Ž .H H Hn
3 3 3n��� � � �

We prove that the function f satisfies the equation

t�� Žk . t �� Žk . t � Žk . rf t , k � e � k � e e J f r , k dr . 21Ž . Ž . Ž . Ž . Ž .H
0
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Since the continuity of the function f is not guaranteed, we must define
the gain term J also for Lebesgue integrable functions. This is possible by
the same arguments as those used for the classical Boltzmann equation
Ž .see Appendix A .

Ž 3. 1Ž 3.THEOREM 4.1. If � � C � � L � and it is non-negati�e, then the
Ž . Ž .function f of Eq. 20 is a non-negati�e solution of Eq. 21 for almost e�ery

Ž . � 3t, k � � � � .0

Proof. We have

t�� Žk . t �� Žk . t � Žk . rf t , k � e � k � e e J f r , k dr .Ž . Ž . Ž . Ž .Hn n n n
0

Since

� �J f t , k � J f t , kŽ . Ž . Ž .Ž .n n

� � � �
 J f t , k � J f t , k � J f t , k � J f t , kŽ . Ž . Ž . Ž . Ž . Ž . Ž . Ž .n n n n

� S k�, k f t , k� � f t , k� dk�Ž . Ž . Ž .H n
3�

� S k�, k 1 � � k, k� f t , k� dk�,Ž . Ž . Ž .H n n
3�

it is a simple matter to prove that

lim J f � J f a.e. on �� � �3.Ž . Ž .n n 0
n���

So, using again the Monotone Convergence Theorem, we obtain the
assertion.

Of course the function f satisfies almost everywhere the problem

� f
t , k � � k f t , k � J f t , k ,Ž . Ž . Ž . Ž . Ž .

� t 22Ž .
f 0, k � � k .Ž . Ž .

Ž .Moreover, the upper bounds for the moments of f see Theorem 3.5 cann
Ž .give analogous estimates for the solution f to the Cauchy problem 22 . As

an example, the thermodynamical energy

f t , k � k dkŽ . Ž .H
3�

is bounded in time whenever

� k and M k I � k �M k belong to L1 �3 .Ž . Ž . Ž . Ž . Ž .Ž .1

Ž .This follows immediately from Eq. 19 and the definition of c .�
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We are not able to prove the uniqueness of the solution of the Cauchy
Ž .problem 22 without assuming further hypotheses.

THEOREM 4.2. Assume that � satisfies the inequality

�
� kŽ .

� k 
 � 1 � ,Ž . 0 ½ 5k TB L

Ž .where � � 0 and � � 1 are constants. If the initial datum � and MI ��M0 �

Ž . 1Ž 3.and MI ��M belong to L � , then there exists a unique solution to the��1
Ž . � 1Ž� � 3.Cauchy problem 22 such that f and f� belong to L 0, T � � for e�ery

T � ��.

Proof. The assumptions on � generate the existence of a solution f
1Ž� � 3. � 1Ž� � 3. �such that f � L 0, T � � and f� � L 0, T � � for every T � � .

Since the equation is linear, it is sufficient to prove that the only
Ž .solution of the problem 22 with initial condition � 	 0 is the function

Ž . � 3 Žf t, k � 0 almost everywhere on � � � . It is easy to prove see, also0
.Appendix B that

f t , kŽ .
sgn J f t , k � � k f t , k dk 
 0, 23Ž . Ž . Ž . Ž . Ž .H

3 ž /M kŽ .�

Ž . Ž Ž . . Ž .where sgn z is the sign of the real number z sgn 0 � 0 . In fact, 23
Ž . Ž .follows as in Lemma 3.2 and by observing that lim tanh nz � sgn z .n���

Ž .Now, 23 implies

� f t , k f t , kŽ . Ž .
sgn dk 
 0,H

3 ž /� t M kŽ .�

i.e.,

� �� f t , kŽ .
dk 
 0.H

3 � t�

Fix T � 0. Since

t
f t , k � J f r , k � � k f r , k dr ,Ž . Ž . Ž . Ž . Ž .H

0

Ž . � � 3then f �, k is absolutely continuous in 0, T for almost all k � � . Hence

� �� f t , kŽ .t
� �0 � dr dk � f t , k dk,Ž .H H H

3 3� t0 � �

and the conclusion is achieved.
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COROLLARY 4.1. Under the same assumptions as those in Theorem 4.2,
mass conser�ation holds.

Proof. We have

t
f t , k dk � � k dk � dr � k � � k f r , k dk.Ž . Ž . Ž . Ž . Ž .H H H Hn n n n

3 3 3� � 0 �

Now

lim � k � � k f r , k � 0 pointwiseŽ . Ž . Ž .n n
n���

for almost all r , k � �� � �3.Ž . 0

Moreover,

�
� kŽ .

� �� k � � k f r , k 
 2� k f r , k 
 2� 1 � f r , k ,Ž . Ž . Ž . Ž . Ž . Ž .n n n 0 ž /��

and the Lebesgue Dominated Convergence Theorem gives

f t , k dk � � k dk � 0.Ž . Ž .H H
3 3� �

This is precisely the assertion of the corollary.

The last results show that the same assumptions guarantee uniqueness
and mass conservation. Then, it is reasonable to think that both properties
are related. This recalls to mind the uniqueness and energy conservation

� �relation proved by Wennberg in Ref. 15 in the case of the classical
Boltzmann equation. It is not clear if in the present case it is possible to
have more than one solution having different masses for some t � 0. In

1Ž 3. Ž .Appendix C we show a simple example where � � L � but Q f is not
integrable in �3.

APPENDIX A

Ž .Here we give the meaning of J f for f Lebesgue integrable. In order
to do this, first we consider the integral

p k � � k � k T q dk, A.1Ž . Ž . Ž .Ž .H B L
3�

Ž � 3.where p � C � � � and q is a real number. We consider the Kane0
model, and we introduce the new dimensionless variables w, �, and �
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instead of k by means of the formula

2m*k T' B L 2 2' 'k � w 1 � 
 w 1 � � cos � , 1 � � sin � , � ,' Ž . ž /k�

where 
 � k T 
 . We denote by p the function p in terms of the newˆk B L
variables. We obtain

p k � � k � q dkŽ . Ž .Ž .H
3�

�� 1 2	
� dw d� d� p w , � , � � w � q D w , A.2Ž . Ž . Ž . Ž .ˆH H H

0 �1 0

where

3'm* 'D w � 2k T w 2
 w � 1 
 w � 1Ž . Ž .' 'B L k kž /�

is the Jacobian of the transformation.
Ž .Since p is a continuous function, the integral in Eq. A.2 is simply equalˆ

to

1 2	
H q D q d� d� p q , � , � ,Ž . Ž . Ž .ˆH H

�1 0

Ž . 1Ž 3.with H q being the Heaviside function. Now, if p � L � then

�� 1 2	
p k dk � k T dw d� d� p w , � , � D w .Ž . Ž . Ž .ˆH H H HB L

3� 0 �1 0

Therefore, by using Fubini’s Theorem, it follows that

1 2	
d� d� p q , � , �Ž .ˆH H

�1 0

1Ž 3.exists for almost every w � 0. Hence, for every p � L � , we define

1 2	
p k � � k � qk T dk � H q D q d� d� p q , � , � .Ž . Ž . Ž . Ž . Ž .Ž . ˆH H HB L

3� �1 0
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APPENDIX B

1Ž 3. 1Ž 3. Ž .We prove that if g � 0, g � L � , and � g � L � , then J g �
1Ž 3.L � . In fact, using Fubini’s Theorem, we have

� � k J g k dk � � � k S k�, k g k� dk� dkŽ . Ž . Ž . Ž . Ž . Ž .Ž . Ž .H H Hn n
3 3 3� � �

� dk�g k� S k�, k � � k dkŽ . Ž . Ž .Ž .H H n
3 3� �


 g k� � k� dk�Ž . Ž .H
3�

for all n � �.
Then

J g k dk 
 � k g k dk.Ž . Ž . Ž . Ž .H H
3 3� �

APPENDIX C

Ž Ž ..Let � � k be a bounded measurable function having compact support.
If

GG k, k� 	 0, GG k, k� � � � k , � � k� ,Ž . Ž . Ž . Ž .Ž .0

and � � k belongs to L1 �3 ,Ž . Ž .Ž .
then

Q � k � � k dkŽ . Ž . Ž .Ž .H
3�

� � � �, � n � 1 � � � � � � �� � n � � � � � � ��Ž . Ž . Ž .Ž .H q q
6�

� �� � � � � � � dk dk�Ž . Ž .Ž .

� � � �, � � � � � � � �� � � � � � �Ž . Ž . Ž . Ž .Ž .H
6�

� n � 1 �� � n � dk dk�Ž .q q

� � � , � � �� � � � � � � ��Ž . Ž . Ž .Hž /3�

� n � 1 � � � �� � n � � dk � � � � � � �� dk .Ž . Ž . Ž .Ž . Hq qž /3�
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Let

� k � � � , � � �� � � � � � � �� dk�.Ž . Ž . Ž .H
3�

Then we have

Q � � � dk � � k � � � � � � ��Ž . Ž . Ž . Ž . Ž .H H
3 3� �

� n � 1 � � � �� � n � � dk.Ž . Ž .Ž .q q

Ž Ž .. Ž Ž .. ŽChoosing � � k � � � k where � is the characteristic func-�0, n� � �0, n� �
� �.tion of the interval 0, n� , we obtain

Q � � � dk � � k � �Ž . Ž . Ž . Ž .H H�0 , n� � � n� � , Žn�1.� � �
3 3� �

� n � � � n � 1 � � � �� dk. C.1Ž . Ž . Ž .Ž .q q

Since � is positive, the signs of the above integrals depend on � only. It is
Ž Ž .. Žeasy to see that there exist functions � such that n � � k � n �q q

. Ž Ž . . 31 � � k � �� is always positive or negative for each k � � and n � �.
Ž .Moreover, suitable choices of � and � make C.1 greater than a positive

constant for every n or less than a negative constant for every n. Hence, it
1Ž 3. Ž . 1Ž 3.is evident that � � L � does not imply Q � � L � .
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