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We extend the usual notion of orthogonality to Banach spaces. We show that
the extension is quite rich in structure by establishing some of its main proper-
ties and consequences. Geometric characterizations and comparison results with
other extensions are established. Also, we establish a characterization of compact
operators on Banach spaces that admit orthonormal Schauder bases. Finally, we
characterize orthogonality in the spaces lp2 �C�.  2002 Elsevier Science (USA)
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1. INTRODUCTION

Throughout this paper K is the field of real or complex numbers, E is
a Banach space over K with unit ball denoted by B and norm denoted by
� · �, and �xn� �= �xn�Nn=1 �= �xn�n∈L is a finite or infinite sequence in E,
where either N is a positive integer and L �= �1� 2� � � � �N	, or N = ∞
and L �= �1� 2� � � �	. For J��= �� ⊂ L, the closure of the span of the set
�xn � n ∈ J	 is denoted by �xn � n ∈ J�. The unit ball in �xn � n ∈ J� is
denoted by BJ .
The notion of orthogonality goes a long way back in time. Usually this

notion is associated with Hilbert spaces or, more generally, inner product
spaces. Various extensions have been introduced through the decades. Thus,
for instance, x is orthogonal to y in E

(a) in the sense of G. Birkhoff [1], if for every α ∈ K

�x+ αy� ≥ �x��
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(b) in the sense of B. D. Roberts [5], if for every α ∈ K

�x+ αy� = �x− αy��
(c) in the isosceles sense (R. C. James [4]), if

�x+ y� = �x− y��
(d) in the Pythagorean sense (R. C. James [4]), if

�x− y�2 = �x�2 + �y�2�
(e) in the sense of I. Singer [8], if∥∥∥∥ x

�x� +
y

�y�

∥∥∥∥ =
∥∥∥∥ x

�x� −
y

�y�

∥∥∥∥�
More recently, the following two definitions were introduced in [6]:

Definition 1. A finite or infinite sequence �xn�n∈L in E is said to be
semi-orthonormal if �xn� = 1 for all n ∈ L and if∥∥∥∥∑

n∈L
anxn

∥∥∥∥ ≥ sup
n∈L

�an�� for each
∑
n∈L

anxn ∈ E�(1.1)

Note that if �xn�n∈L is semi-orthonormal then �xn � n ∈ L	 is linearly
independent, and, for each i ∈ L, if we set(

x∗i �
∑
n∈L

anxn

)
�= ai�(1.2)

then x∗i is the unique element in �xn � n ∈ L�∗ that satisfies, for all j ∈ L,

�x∗i � xj� = δi�j �=
{
1 if i = j
0 if i �= j�

where �x∗i � xj� �= x∗i �xj�. By the Hahn Banach theorem, each x∗n can be
extended to an element of E∗, denoted also by x∗n, without changing its
norm. The sequence �x∗n�n∈L in E∗ is called a sequence of associated (or
corresponding) coefficient functionals for the sequence �xn�n∈L. Note that
the sequence of extensions �x∗n�n∈L is not unique. Now we state the defini-
tion of orthogonality introduced in [6]:

Definition 2. Let �xn�n∈L be a semi-orthonormal sequence in E, and
let �x∗n�n∈L be a sequence of corresponding coefficient functionals. The
sequence �xn�n∈L is said to be orthonormal if, for any �λn�n∈L ∈ �∞ and
any x ∈ E,

∑
n∈L λn�x∗n� x�xn converges and∥∥∥∥∑

n∈L
λn�x∗n� x�xn

∥∥∥∥ ≤ �x� sup
n∈L

�λn��(1.3)

The sequence �xn�n∈L is said to be orthogonal if the sequence �xn/�xn��
obtained from the sequence �xn�n∈L after the trivial terms are deleted is
orthonormal.
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In Section 3, we show that this definition of orthogonality does indeed
depend on the choice of coefficient functionals.
The object of this paper is to introduce a new but simple and natural

extension of the notion of orthogonality that is quite rich in structure and
that can be useful in the study of various classes of function spaces and
operators.
In Section 2, we introduce the new definition together with some of

its main properties and consequences. Among other things, we show
that if �xn� is orthonormal in the sense of our definition, then �xn� is
semi-orthonormal. Also we show that if �xn� is orthogonal in the sense
of Definition 2, then �xn� is orthogonal in the sense of our definition
(Definition 3). Moreover, we prove that most of the results established in
[6] still hold true under the weaker condition that �xn� is orthogonal in
our sense.
In Section 3, we establish some geometric characterizations for the vari-

ous notions. An example is constructed to show that it is possible for �xn� to
be orthonormal in our sense while, for any choice of corresponding coeffi-
cient functionals, �xn� is not orthogonal in the sense of Definition 2. More-
over, we give a necessary and sufficient condition under which orthogonality
in our sense implies (hence is equivalent to) orthogonality in the sense of
Definition 2. We finish by constructing another example that shows that we
could have xi orthogonal to xj for all i �= j while �xn� is not orthogonal.

Let L�F�E� denote the set of bounded linear operators from the normed
space F into the Banach space E. It is known that, if F and E are Hilbert
spaces then the set of compact operators in L�F�E� is the closure in L�F�E�
of the set of finite-rank operators. This gives a convenient and practi-
cal characterization of compact operators. In Section 4, we show that this
characterization still holds true when F is any normed space and E is any
Banach space that admits an orthonormal Schauder basis.
Finally, in Section 5, we establish a characterization for orthogonality in

the spaces lp2 �C�, where C is the set of complex numbers.

2. ORTHOGONALITY IN BANACH SPACES

One of the natural and simple properties of orthogonality in a Hilbert
space H that one would like to hold true in a Banach space is that x is
orthogonal to y in H if and only if

�x+ λ1y� = �x+ λ2y�� for all λ1� λ2 ∈ K� �λ1� = �λ2��(2.1)

Clearly, in any Banach space, Eq. (2.1) is equivalent to

�λx+ µy� = ��λ�x+ �µ�y�� for all λ�µ ∈ K�(2.2)
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Hence, we introduce the following definition:

Definition 3. A finite or infinite sequence �xn�n∈L in a Banach space
E is said to be orthogonal if∥∥∥∥∑

n∈L
anxn

∥∥∥∥ =
∥∥∥∥∑
n∈L

�an�xn
∥∥∥∥� for each

∑
n∈L

anxn ∈ E�(2.3)

If, in addition, �xn� = 1 for all n ∈ L, then �xn�n∈L is said to be orthonor-
mal. We write x ⊥ y if x is orthogonal to y.

It is clear from the definition that �xn�n∈L is orthogonal in E if and only
if �xn�n∈L is orthogonal in �xn � n ∈ L�.

For the remainder of this paper, to avoid confusion, we reserve the
word “orthogonal” for a sequence �xn�n∈L that is orthogonal in our sense
(Definition 3). If �xn�n∈L is orthogonal in the sense of Definition 2, then
�xn�n∈L is said to be (∗)-orthogonal.
Note that Definition 3 is an extension of the usual notion of orthogonality

since in a Hilbert space H, x ⊥ y in our sense if and only if �x� y� = 0,
where �·� ·� denotes the inner product in H. Indeed, simple calculations
after both sides of Eq. (2.2) are squared give that x ⊥ y if and only if
Re�λµ̄�x� y�� = Re��λ��µ��x� y�� for all scalars λ�µ. But this is true if and
only if �x� y� = 0. Here, Re�z� is the real part of z and z̄ is the conjugate
of z.

Remark 1. If �xn�n∈L is orthogonal then, for each pair of sequences
�bn�n∈L and �cn�n∈L in K satisfying �bn� = �cn� for all n ∈ L, we have∑

n∈L
bnxn converges if and only if

∑
n∈L

cnxn converges�(2.4)

and, if both summations converge, then∥∥∥∥∑
n∈L

bnxn

∥∥∥∥ =
∥∥∥∥∑
n∈L

cnxn

∥∥∥∥�
Proof. It follows directly from Eq. (2.3) that, if �xn�n∈L is orthogonal,

then, for every nonempty and finite set I ⊂ L, we have∥∥∥∥∑
n∈I

bnxn

∥∥∥∥ =
∥∥∥∥∑
n∈I
�bn�xn

∥∥∥∥ =
∥∥∥∥∑
n∈I
�cn�xn

∥∥∥∥ =
∥∥∥∥∑
n∈I

cnxn

∥∥∥∥�(2.5)

The remark follows directly from Eq. (2.5).

Equation (2.2) is clearly equivalent to

�x+ λy� = �x+ �λ�y�� for all λ ∈ K�λ �= 0�(2.6)
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Two nonempty subsets F and G of E are said to be orthogonal, and we
write F ⊥ G� if x ⊥ y for all x ∈ F and all y ∈ G. In particular, if F = �x	,
then we write x ⊥ G.

When extending the notion of orthogonality, one of the main properties
that one would like to have is that �∑n∈I anxn� ⊥ �∑n∈J anxn� whenever
I and J are disjoint subsets of L and �xn�n∈L is orthogonal in E. In that
respect we have

Theorem 1. Given a sequence �xn�n∈L in E, the following are equivalent:

(i) The sequence �xn�n∈L is orthogonal in E.

(ii) For each pair of nonempty and disjoint sets I� J ⊂ L,

�xn � n ∈ I� ⊥ �xn � n ∈ J��

(iii) For each i ∈ L,

xi ⊥ �xn � n ∈ L� n �= i��(2.7)

Proof. (i)⇒ (ii) and (ii)⇒ (iii) are trivial.
(iii) ⇒ (i): Let l and m be any two positive integers satisfying 1 ≤ l ≤

m ≤ N . Using (2.7) successively for i = l� l + 1� � � � �m, we get
∥∥∥∥

m∑
n=l

anxn

∥∥∥∥ =
∥∥∥∥�al�xl +

m∑
n=l+1

anxn

∥∥∥∥ = · · · =
∥∥∥∥
m−1∑
n=l

�an�xn + amxm

∥∥∥∥(2.8)

=
∥∥∥∥

m∑
n=l
�an�xn

∥∥∥∥�
This implies, since

∑
n∈L anxn converges, that the sequence �∑m

n=1 �an�×
xn�m∈L is Cauchy. Hence,

∑
n∈L �an�xn converges and, again by Eq. (2.8),∥∥∥∥

N∑
n=1

anxn

∥∥∥∥ =
∥∥∥∥

N∑
n=1
�an�xn

∥∥∥∥�
which implies that the sequence �xn�n∈L is orthogonal.

A function g defined on the field K is said to be radial if

g�z� = g��z��� for all z ∈ K�

The following lemma is interesting in itself:

Lemma 1. If g is a convex real-valued function defined on the field K,
then g is radial if and only if g�z� is nondecreasing as �z� increases in �0�∞�.
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Proof. First suppose that g is radial. Since g is convex, we have

g�0� ≤ 1
2g�z� + 1

2g�−z� for all z ∈ K�

But g�z� = g�−z�� since g is radial. Therefore g�0� ≤ g�z� for all z ∈ K.
This implies that the restriction of g to the set of real numbers is a convex
function attaining its minimum at zero. Therefore g� �0�∞� → �−∞�∞�
is nondecreasing. Hence, for all z1� z2 ∈ K� �z1� ≤ �z2�, we have

g�z1� = g��z1�� ≤ g��z2�� = g�z2��
Conversely, suppose that g�z� is nondecreasing as �z� increases in �0�∞�,

and let zo ∈ K be fixed. We need to prove that g�zo� = g��zo��. Suppose
that g�zo� �= g��zo��, say g�zo� < g��zo�� (the case g�zo� > g��zo�� is simi-
lar). Then, since g is convex (hence continuous), there exists z, �z� > �zo� ,
such that

�g�z� − g�z0�� < �g��zo�� − g�z0���
Hence, since g�zo� < g��zo��, we get that g�z� < g��zo�� while �z� > �zo�.
This contradicts the assumption.

Using the previous lemma, we can now establish some useful necessary
and sufficient conditions for �xn�n∈L to be orthogonal. We have

Theorem 2. Given a sequence �xn�n∈L in E, the following are equivalent:

(i) The sequence �xn�n∈L is orthogonal in E.
(ii) For each pair of sequences �bn�n∈L and �cn�n∈L in K satisfying

�bn� ≤ �cn� for all n ∈ L, if
∑

n∈L cnxn converges then
∑

n∈L bnxn converges,
and ∥∥∥∥∑

n∈L
bnxn

∥∥∥∥ ≤
∥∥∥∥∑
n∈L

cnxn

∥∥∥∥�(2.9)

(iii) For each pair of sequences �bn�n∈L and �cn�n∈L in K satisfying
�bn� = �cn� for all n ∈ L,

∑
n∈L cnxn converges, if and only if

∑
n∈L bnxn con-

verges, and, if both converge,∥∥∥∥∑
n∈L

bnxn

∥∥∥∥ =
∥∥∥∥∑
n∈L

cnxn

∥∥∥∥�
Proof. (i) ⇒ (ii): Suppose that �xn�n∈L is orthogonal and let �bn�n∈L

and �cn�n∈L be two sequences in K satisfying �bn� ≤ �cn� for all n ∈ L
and such that

∑
n∈L cnxn converges. For each i ∈ L and each vi ∈ �xn �

n ∈ L� n �= i�, the function g�λ� �= �λxi + vi� is convex and radial, since
by Theorem 1 (iii), xi ⊥ vi� Hence, by Lemma 1 and since �bi� ≤ �ci�,
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we obtain that g�bi� ≤ g�ci�. In other words, for each i ∈ L and each
vi ∈ �xn � n ∈ L� n �= i�, we have

�bixi + vi� ≤ �cixi + vi��(2.10)

Applying Eq. (2.10) successively, we obtain, for any finite set �l� l +
1� ����m	 ⊂ L, that

∥∥∥∥
m∑
n=l

bnxn

∥∥∥∥ ≤
∥∥∥∥clxl +

m∑
n=l+1

bnxn

∥∥∥∥ ≤ · · · ≤
∥∥∥∥
m−1∑
n=l

cnxn + bmxm

∥∥∥∥(2.11)

≤
∥∥∥∥

m∑
n=l

cnxn

∥∥∥∥�
Part (ii) follows directly from Eq. (2.11).
(ii)⇒ (iii) and (iii)⇒ (i) are trivial.

The following lemma will enable us to state a uniqueness property.

Lemma 2. Let F and G be two subspaces of E. If F ⊥ G and u ∈ F +G,
then

(i) F ∩G = �0	.
(ii) u ⊥ F if and only if u ∈ G.

Proof. (i) Let v ∈ F ∩G. Then v ⊥ v, and consequently we have

2�v� = �v + v� = �v − v� = 0�

(ii) Clearly, if u ∈ G then u ⊥ F , since G ⊥ F . Conversely, suppose
that u ⊥ F . By (i), u can be written uniquely as u = u1 + u2, where u1 ∈ F
and u2 ∈ G. We must show that u1 = 0. Note that u2 ⊥ u1 and u ⊥ u1. It
follows that, for every r ∈ �0�∞�,

�u2 + ru1� = �u2 − ru1� = �u− �r + 1�u1�
= �u+ �r + 1�u1� = �u2 + �r + 2�u1��

Considering the cases where r = 0� 2� 4� � � � � we obtain that

�u2� = �u2 + 2ku1�

for all positive integers k, which is possible only if �u1� = 0.

As an immediate consequence of Lemma 2 we obtain that every nonzero
element x of a two-dimensional subspace F of E admits at most one
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orthogonal direction in F . More precisely, we have

Corollary 1. Let x and y be two nonzero elements in E satisfying x ⊥ y�
Then we have

�z ∈ span �x� y	 � z ⊥ x	 = span �y	�
Now we give some comparison results. First we start with the simple

observation that

Lemma 3. If �xn�n∈L is an orthonormal sequence in E, then �xn�n∈L is
semi-orthonormal.

Proof. Let
∑

n∈L anxn ∈ E. Then for each i ∈ L we have, by Theorem 2,

�ai� = �aixi� ≤
∥∥∥∥∑
n∈L

anxn

∥∥∥∥�
Therefore supn∈L �an� ≤ �

∑
n∈L anxn�, which ends the proof.

In Section 3, Example 1, we will show that the reverse of Lemma 3 is
not true.
Recall that if a sequence �xn�n∈L is orthogonal in the sense of Definition

2, then �xn�n∈L is said to be (*)-orthogonal.
Another comparison result is

Lemma 4. If the sequence �xn�n∈L is �∗�-orthonormal with respect to some
sequence of corresponding coefficient functionals �x∗n�n∈L, then �xn�n∈L is
orthonormal.

Proof. Let �xn�n∈L be �∗�-orthonormal with respect to a sequence
�x∗n�n∈L of corresponding coefficient functionals. Also, let

∑
n∈L anxn,∑

n∈L bnxn ∈ E satisfy �an� ≤ �bn� for all n ∈ L. For each n there exists
λn ∈ K such that

an = λnbn and �λn� ≤ 1�

If x �= ∑
n∈L bnxn then, for all n ∈ L, we have �x∗n� x� = bn. Therefore, by

assumption and since �λn� ≤ 1 for all n ∈ L, we get∥∥∥∥∑
n∈L

anxn

∥∥∥∥ =
∥∥∥∥∑
n∈L

λnbnxn

∥∥∥∥ =
∥∥∥∥∑
n∈L

λn�x∗n� x�xn
∥∥∥∥

≤ �x� sup
n∈L

�λn� ≤ �x� =
∥∥∥∥∑
n∈L

bnxn

∥∥∥∥�
Therefore, by Theorem 2, �xn�n∈L is orthonormal.
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Before we continue, we mention that in Section 3, Example 2, we will
show that the reverse of Lemma 4 is not true.
Recall that, given a semi-orthonormal sequence �xn� in E, there exists a

unique sequence �x∗n�n∈L in �xn � n ∈ L�∗ satisfying
�x∗i � xj� = δi�j�

It follows from [6, Lemma 1.9] that if �xn�n∈L is �∗�-orthonormal then
the sequence �x∗n�n∈L in �xn � n ∈ L�∗ is �∗�-orthonormal. We prove the
stronger result:

Theorem 3. Let �xn�n∈L be a finite or infinite sequence in E. The follow-
ing are equivalent:

(i) �xn�n∈L is orthonormal.

(ii) �xn�n∈L is semi-orthonormal and �x∗n�n∈L is orthonormal in �xn �
n ∈ L�∗.
Proof. (i)⇒ (ii): First, by Lemma 3 we get that �xn�n∈L is semi-

orthonormal. Also, by the definition of �x∗n�n∈L, �x∗n� = 1 for all n ∈ L.
Now, let x∗ �= ∑

n∈L anx∗n and y∗ �= ∑
n∈L bnx∗n be two elements in

�x∗n � n ∈ L� satisfying �an� ≤ �bn� for all n ∈ L. For each n there exists
λn ∈ K such that

an = λnbn and �λn� ≤ 1�

We need to show that �x∗� ≤ �y∗�. Let x ∈ �xn � n ∈ L�, x �= ∑
n∈L µnxn.

Then, since �λn� ≤ 1,
∑

k∈L λkµkxk converges and∥∥∥∥∑
k∈L

λkµkxk

∥∥∥∥ ≤
∥∥∥∥∑
k∈L

µkxk

∥∥∥∥�
Therefore, since

∑
n∈L λnbnx∗n is a continuous functional and since

�x∗i � xj� = δi� j , we get

��x∗� x�� =
∣∣∣∣
(∑
n∈L

λnbnx
∗
n�
∑
k∈L

µkxk

)∣∣∣∣ =
∣∣∣∣∑
n∈L

λnbnµn�x∗n� xn�
∣∣∣∣

=
∣∣∣∣
(∑
n∈L

bnx
∗
n�
∑
k∈L

λkµkxk

)∣∣∣∣ =
∣∣∣∣
(
y∗�

∑
k∈L

λkµkxk

)∣∣∣∣
≤ �y∗�

∥∥∥∥∑
k∈L

λkµkxk

∥∥∥∥ ≤ �y∗�
∥∥∥∥∑
k∈L

µkxk

∥∥∥∥ = �y∗��x��
Therefore �x∗� ≤ �y∗�, and, consequently, �x∗n�n∈L is orthonormal in �xn �
n ∈ L�∗.
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(ii)⇒ (i): Let �xn�n∈L be semi-orthonormal and suppose that �x∗n�n∈L
is orthonormal in �xn � n ∈ L�∗. Now let x �= ∑

n∈L anxn and y �=∑
n∈L bnxn be two elements in E satisfying �an� ≤ �bn� for all n ∈ L and let

λn be as above. We need to show that �x� ≤ �y�. This follows immediately
from the proof of �x∗� ≤ �y∗� in (i)⇒ (ii) by interchanging y∗ with y, x∗

with x, and x∗n with xn.

3. GEOMETRIC CHARACTERIZATIONS

We start this section with a geometric characterization for the notion of
semi-orthonormality.
Recall that B is the unit ball in E and that, if J is a nonempty subset of

L, then BJ is the unit ball in �xn � n ∈ J�.
Lemma 5. Let �xn�n∈L be a sequence in E satisfying �xn� = 1 for all

n ∈ L. The following are equivalent:

(i) �xn�n∈L is semi-orthonormal.

(ii) For each
∑

n∈L anxn ∈ B, we have supn∈L �an� ≤ 1.

Proof. (i)⇒ (ii): This is direct since, by (i), supn∈L �an� ≤ �
∑

n∈L anxn�.
(ii)⇒ (i): Let x �= ∑

n∈L anxn ∈ E. The case where x = 0 is trivial
since (ii) implies that the set �xn � n ∈ L	 is linearly independent. If x �= 0
then

∑
n∈L an/�x� xn ∈ B, and, consequently, by (ii), supn∈L �an/�x�� ≤ 1.

Hence supn∈L �an� ≤ �x�.
Note that we may replace B by BL in Lemma 5. Also, note that if �xn�n∈L

is a finite sequence, then Lemma 5 says that �xn�n∈L is semi-orthonormal if
and only if the unit ball BL of �xn � n ∈ L� is contained in the l∞-unit ball
B∞ defined by the sequence �xn�n∈L,

B∞ �=
{∑
n∈L

anxn � sup
n∈L

�an� ≤ 1
}
�

Another geometric observation that follows directly from Theorem 1 is

Lemma 6. If �xn�n∈L is orthogonal in E then, for each I�L, I �= �, the
projection PI � �xn � n ∈ L� → �xn � n ∈ I� defined by

PI

(∑
n∈L

anxn

)
=∑

n∈I
anxn

has norm one.
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We note that a similar result was shown in [6, Lemma 1.5] under the
assumption that �xn�n∈L is �∗�-orthogonal.
Also, we note that the reverse of Lemma 6 is not true in general. Indeed,

consider the following example in the real plane �2:

Example 1. Let �x1� x2	 be the standard basis of �2. We can easily
check that the following defines a norm on �2:

�a1x1 + a2x2� = max��a1�� �a2�� �a1 + a2�	�
Simple calculations give

�P�1	� = �P�2	� = 1�

while

�x1 − x2� = 1 < 2 = �x1 + x2��
Therefore the set �x1� x2	 is not orthogonal. Note that the set �x1� x2	
is semi-orthonormal, and hence semi-orthonormality is weaker than
orthonormality.

In Lemma 4 we proved that, if �xn�n∈L is �∗�-orthonormal with respect
to some sequence of associated coefficient functionals, then �xn�n∈L is
orthonormal. Before showing that the reverse is not true in general, we
give here a necessary and sufficient condition under which the reverse of
Lemma 4 is true. We have

Theorem 4. Let �xn�n∈L be an orthonormal sequence in E satisfying �xn �
n ∈ L��E. Then we have

(i) For each sequence of corresponding coefficient functionals �x∗n�n∈L
in E∗, �xn�n∈L is �∗�-orthonormal with respect to �x∗n�n∈L if and only if the
projection P� E → �xn � n ∈ L�, defined by P�x� �= ∑

n∈L�x∗n� x�xn, is well
defined and has norm 1.

(ii) There exists a sequence of corresponding coefficient functionals
�x∗n�n∈L in E∗ such that �xn�n∈L is �∗�-orthonormal with respect to �x∗n�n∈L if
and only if there exists a projection P� E → �xn � n ∈ L� of norm 1.

Proof. It follows by Lemma 3 that the sequence �xn�n∈L is semi-
orthonormal, since it is orthonormal .

(i) Let P�x� �= ∑
n∈L�x∗n� x�xn. If �xn�n∈L is �∗�-orthonormal with

respect to �x∗n�n∈L, then it follows directly fromDefinition 2, by taking λn �= 1
for all n ∈ L, that P�x� is well defined for each x ∈ E, i.e.,

∑
n∈L�x∗n� x�xn

converges for each x ∈ E, and that �P� = 1.
For the converse, suppose that P is well defined and that �P� = 1.

Then
∑

n∈L�x∗n� x�xn is convergent for each x ∈ E. Therefore it follows,
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by Theorem 2 and since �xn�n∈L is orthonormal, that, for any �λn�n∈L ∈ �∞

and any x ∈ E,
∑

n∈L λn�x∗n� x�xn converges, since �λn�x∗n� x�� ≤ ��x∗n� x��,
and that ∥∥∥∥∑

n∈L
λn�x∗n� x�xn

∥∥∥∥ ≤
(
sup
n∈L

∣∣∣∣λn
∣∣∣∣
)∥∥∥∥∑

n∈L
�x∗n� x�xn

∥∥∥∥
=
(
sup
n∈L

∣∣∣∣λn
∣∣∣∣
)
�P�x�� ≤ �x�

(
sup
n∈L

∣∣∣∣λn
∣∣∣∣
)
�

Therefore �xn�n∈L is �∗�-orthonormal with respect to �x∗n�n∈L.
(ii) If there exists a sequence of corresponding coefficient functionals

�x∗n�n∈L in E∗ such that �xn�n∈L is �∗�-orthonormal with respect to �x∗n�n∈L,
then, by part (i), P�x� �= ∑

n∈L�x∗n� x�xn is a well-defined projection of
norm 1 from E onto �xn � n ∈ L�.

Conversely, suppose that there exists a projection P� E → �xn � n ∈ L�
satisfying �P� = 1. Then every x ∈ E can be written uniquely in the form

x = ux + vx�

where ux ∈ �xn � n ∈ L� and vx ∈ kerP . Since �xn�n∈L is semi-orthonormal,
there exists a unique sequence �x∗n�n∈L in �xn � n ∈ L�∗ satisfying
�x∗i � xj� = δi�j . Extend each x∗n ∈ �xn � n ∈ L�∗ to an element of E∗ by

�x∗n� x� �= �x∗n� ux��(3.1)

for every x ∈ E. Then �xn�n∈L is orthonormal with respect to the sequence
of coefficient functionals defined by Eq. (3.1). Indeed, let �λn�n∈L ∈ �∞ and
let x ∈ E. Then

P�x� = ux �=
∑
k∈L

akxk�

and, for all n ∈ L, we have

�x∗n� x� �= �x∗n� ux� = an�

It follows that, for all n ∈ L,

�λn�x∗n� x�� ≤
(
sup
k∈L

�λk�
)
�an��

Therefore, since �xn�n∈L is orthogonal, we obtain, by Theorem 2 and since∑
n∈L anxn converges, that

∑
n∈L λn�x∗n� x�xn converges and that∥∥∥∥∑

n∈L
λn�x∗n� x�xn

∥∥∥∥ ≤
∥∥∥∥∑
n∈L

(
sup
k∈L

�λk�
)
anxn

∥∥∥∥ =
∥∥∥∥∑
n∈L

anxn

∥∥∥∥ sup
k∈L

�λk�

= �P�x�� sup
k∈L

�λk� ≤ �x� sup
k∈L

�λk��

This completes the proof.
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Now, we construct a finite-dimensional example that shows that it is pos-
sible for �xn�n∈L to be orthonormal, while, for any choice of corresponding
coefficient functionals, �xn�n∈L is not �∗�-orthonormal.

Example 2. In �3 as a real vector space, let �x1� x2� x3	 be the standard
basis. It easy to check that the following defines a norm on �3:

�a1x1 + a2x2 + a3x3� �= max
{�a1� + �a2�� �a3�� 1

3 �4a2 − a3�
}
�(3.2)

Setting a3 = 0 in Eq. (3.2), We obtain that

�a1x1 + a2x2� = max
{�a1� + �a2�� 4

3 �a2�
}
�

which clearly implies that the set �x1� 3
4x2	 is orthonormal, since

�x1� =
∥∥ 3
4x2

∥∥ = �x3� = 1�

We claim that for any choice of coefficient functionals �x∗1� x∗2	 associated
with �x1� 3

4x2	, the set �x1� 3
4x2	 is not �∗�-orthogonal. By Theorem 4, it is

enough to show that there are no projections of norm 1 on span�x1� x2	.
Indeed, let P� �3 → span�x1� x2	 be any projection onto span�x1� x2	, and
let u �= u1x1 + u2x2 + u3x3 be a nonzero element of ker P . Then

P�a1x1 + a2x2 + a3x3� = �a1 − u1a3�x1 + �a2 − u2a3�x2�
Therefore we have, if w �= a1x1 + a2x2 + a3x3,

�P�w�� = max
{�a1 − u1a3� + �a2 − u2a3�� 4

3 �a2 − u2a3�
}
�(3.3)

Case 1. If u1 �= 0, say u1 > 0 (the case u1 < 0 is similar). Then setting
a1 = −1, a2 = 0, and a3 = 1 in Eqs. (3.2) and (3.3), we get

� − x1 + x3� = 1

and

�P�−x1 + x3�� = ��−1− u1�x1 − u2x3�
= max

{� − 1− u1� + � − u2�� 4
3 � − u2�

} ≥ �1+ u1� > 1�

Hence �P� > 1.

Case 2. If u1 = 0 and u2 �= 0, say u2 > 0 (the case u2 < 0 is similar).
Then setting a1 = 1, a2 = 0, and a3 = 1 in Eqs. (3.2) and (3.3), we get

�x1 + x3� = 1

and

�P�x1 + x3�� = �x1 − u2x2�
= max

{�1� + � − u2�� 4
3 � − u2�

} ≥ �1� + � − u2� > 1�

Hence �P� > 1.



42 fathi b. saidi

Case 3. If u1 = u2 = 0, then, setting a1 = 0 and a2 = a3 = 1 in
Eqs. (3.2) and (3.3), we get

�x2 + x3� = 1

and

�P�x2 + x3�� = �x2� = 4
3 > 1�

Hence �P� > 1.

Therefore, in all cases, we obtain that �P� > 1. This implies that there
are no projections of norm 1 onto span�x1� x2	.

We finish by presenting another example that shows that we could have
xi ⊥ xj for all i �= j, while �xn�n∈L is not orthogonal.

Example 3. Again in �3 as a real vector space, let �x1� x2� x3	 be the
standard basis. It easy to check that the following defines a norm on �3:

�a1x1 + a2x2 + a3x3� �= max
{�a1�� �a2�� �a3�� 1

2 �a1 + a2 − a3�
}
�

Then we have, for all 1 ≤ i �= j ≤ 3,

�aixi + ajxj� = max��ai�� �aj�	�

and, consequently,

xi ⊥ xj for all 1 ≤ i �= j ≤ 3�

On the other hand, we have

�x1 + x2 + x3� = 1 and �x1 + x2 − x3� = 3/2�

Therefore �x1� x2� x3	 is not orthogonal.

Note that, in general,

�x ⊥ v1 and x ⊥ v2�� �x ⊥ span�v1� v2	��

since, in the previous example, we have x3 ⊥ x1 and x3 ⊥ x2, but x3 is not
orthogonal to �x1 + x2�, since

��x1 + x2� + x3� = 1 and ��x1 + x2� − x3� = 3/2�
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4. CHARACTERIZATION OF COMPACT OPERATORS

Let L�F�E� denote the set of bounded linear operators from the normed
space F into the Banach space E. It is known that if F and E are Hilbert
spaces, then T ∈ L�F�E� is compact if and only if T is the limit in L�F�E�
of a sequence of finite-rank operators [2, p. 42 ]. This gives a convenient
and practical characterization of compact operators in Hilbert spaces. We
show here that the same characterization still holds true for any Banach
space E that admits an orthonormal Schauder basis and any normed space
F . More precisely, we have

Theorem 5. Suppose that �en	∞n=1 is an orthonormal Schauder basis of
the Banach space E and that F is a normed space. For each positive integer
k, let Pk be the projection on �en � 1 ≤ n ≤ k� defined by

Pk

( ∞∑
n=1

αnen

)
=

k∑
n=1

αnen�
∞∑
n=1

αnen ∈ E�

Then, an operator T ∈ L�F�E� is compact if and only if Pk ◦ T converges to
T in L�F�E�.
Proof. The sufficiency part follows from the fact that for every Banach

space E and every normed space F , the limit in L�F�E� of a sequence of
finite-rank operators is a compact operator [3, p. 215].
Now, suppose that T ∈ L�F�E� is compact. For each positive integer

k, let Tk �= Pk ◦ T . Note that since �en	∞n=1 is orthonormal, it follows by
Theorem 2 that Pk ∈ L�E� and �Pk� = 1 for all k. Clearly we have, since
�en	∞n=1 is a Schauder basis of E,

lim
k
Pk�y� = y� for each y ∈ E�

Let B be the closed unit ball in F . Since T is compact, it follows that
K �= cl�T �B�� is a compact subset of E. We need to show that

lim
k

sup
x∈B

�Tk�x� − T �x�� = 0�

Suppose this is not true. Then there exist ε > 0, a subsequence �Tkj	, and
a sequence �xkj	 in B such that

�Tkj �xkj � − T �xkj �� > ε� for all j�(4.1)

Since K is compact, there exists a subsequence of �xkj	, say �xkj	, such
that the sequence �T �xkj �	 converges in K to some y ∈ K. Then we have,
since �Pkj

� = 1 for all j,

�Tkj �xkj � − T �xkj �� ≤ �Pkj
�T �xkj �� − Pkj

�y�� + �T �xkj � − Pkj
�y��

≤ �T �xkj � − y� + �T �xkj � − Pkj
�y���
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Letting j → ∞, we obtain, since �T �xkj �	 and �Pkj
�y�	 both converge to

y, that

lim
j
�Tkj �xkj � − T �xkj �� = 0�

which contradicts Eq. (4.1).

As a corollary we have

Corollary 2. If E is a Banach space that admits an orthonormal
Schauder basis and F is a normed space, then an operator T ∈ L�F�E� is
compact if and only if it is the limit in L�F�E� of a sequence of finite-rank
operators.

Finally, if �en	∞n=1 is an orthonormal sequence in a Hilbert space E and
if T is the operator on E defined by

T �x� �=
∞∑
n=1

λn�e∗n� x�en for all x ∈ E�(4.2)

where e∗n is the coefficient functional in �ek � k ≥ 1�∗ associated with en,
then it is known that T is compact if and only if limn→∞ λn = 0. In [6], this
result was extended to the cases where E is a reflexive Banach space and
�en	∞n=1 is a (*)-orthonormal sequence in E. We show here, as a corollary of
Theorem 5, that E need not be reflexive and that it is sufficient for �en	∞n=1
to be orthonormal in our sense. Indeed, we have

Corollary 3. If �en	∞n=1 is an orthonormal sequence in a Banach
space E� then the operator T defined by Eq. (4.2) is compact if and only if
limn→∞ λn = 0.

Proof. Let Tk be as in the proof of Theorem 5. Then we have, for all
x ∈ E,

�Tk�x� − T �x�� =
∥∥∥∥

∞∑
n=k+1

λne
∗
n�x�en

∥∥∥∥ ≤
(

sup
n≥k+1

�λn�
)∥∥∥∥

∞∑
n=k+1

e∗n�x�en
∥∥∥∥

≤
(

sup
n≥k+1

�λn�
)
�x��

where the inequalities follow from Theorem 2. This implies that �Tk−T� ≤
supn≥k+1 �λn� and, consequently, since T �ek� = λk for all k, that

�Tk − T� = sup
n≥k+1

�λn��

Therefore Tk converges to T in L�E� if and only if limn→∞ λn = 0. The
corollary now follows from Theorem 5.
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5. ORTHOGONALITY IN �
p
2

For p ∈ �2�∞�, we let

�
p
2 �K� �= ��c1� c2� ∈ K ×K � ��c1� c2��p <∞	�

where ��c1� c2��p �= ��c1�p+ �c2�p�1/p. The support of x �= �c1� c2� ∈ �
p
2 �K�

is given by

supp�x� �= �n � cn �= 0	�
Let C be the field of complex numbers. We have the following charac-

terization of orthogonality in �
p
2 �C�:

Theorem 6. Two elements x1 and x2 in �
p
2 �C�, 2 < p <∞� are orthog-

onal if and only if they have disjoint supports.

Proof. Let x1 �= �a1� a2� and x2 �= �b1� b2� be two elements in �
p
2 �C�.

It follows directly that, if x1 and x2 have disjoint supports, then they are
orthogonal.
For the converse, suppose that x1 and x2 are orthogonal. Then, by

Remark 1, we have, for all r,θ ∈ �,

�x1 + reiθx2�pp = �x1 − reiθx2�pp = �x1 + �r�x2�pp�(5.1)

Define

f �r� θ� �= �x1 + reiθx2�pp = �a1 + b1re
iθ�p + �a2 + b2re

iθ�p�
Then, by Eq. (5.1), f is independent of θ. Therefore, we must have, for all
r� θ ∈ �,

∂f

∂θ
�r� θ� = 0�(5.2)

Also, for each fixed θ in �, we obtain from Eq. (5.1) that f must be an
even function of r. Therefore, since f is a convex function of r, f ��� θ� must
attain its minimum at r = 0. Hence we have, for all θ ∈ �,

∂f

∂r
�0� θ� = 0�(5.3)

Now, given a differentiable function g� � → C, we have, since �g�t��p =
�g�t�ḡ�t��p/2,

d

dt
��g�t��p� = p

2
�g�t��p−2

(
g�t�dḡ

dt
�t� + ḡ�t�dg

dt
�t�
)
�

This, together with Eqs. (5.2) and (5.3), implies, after simple calculations,
that, for all r� θ ∈ �,

�a1 + b1re
iθ�p−2 Im�a1 b1eiθ� + �a2 + b2re

iθ�p−2 Im�a2 b2eiθ� = 0(5.4)
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and
��a1�p−2a1b1 + �a2�p−2a2b2� cos θ = 0�(5.5)

We need to prove that a1b1 = a2b2 = 0� Clearly, by Eq. (5.5), we must
have either �a1 b1� �= 0 and �a2 b2� �= 0 or a1b1 = a2b2 = 0. If �a1 b1� �= 0 and
�a2 b2� �= 0, then either there exists θo such that

Im�a1 b1e−iθo� > 0 and Im�a2 b2e−iθo� > 0�(5.6)
or there exists k ∈ �0�∞� such that

a2 b2 = −ka1 b1�(5.7)
since this is possible for any pair of complex numbers.
If Eq. (5.6) holds, then we get, by Eq. (5.4), that, for all r ∈ �,

a1 + b1re
iθo = a2 + b2re

iθo = 0�
Hence, substituting in f �r� θ�, we get

f �r� θ� = ��b1�p + �b2�p�rp�eiθ − eiθo �p�
This implies, by Eq. (5.2) and since f is independent of θ, that �b1�p +
�b2�p = 0� Hence b1 = b2 = 0, which contradicts the assumption that
�a1 b1� �= 0. Therefore Eq. (5.6) is not possible.
If Eq. (5.7) holds, then substituting in Eq. (5.4), we get, for all r� θ ∈ �,

��a1 + b1re
iθ�p−2 − k�a2 + b2re

iθ�p−2� Im�a1 b1re−iθ� = 0�
But �a1 b1� �= 0. Therefore

Im�a1 b1re−iθ� �= 0�
for all r �= 0 and all θ ∈ �\A, where A �= �θ ∈ � � Im�a1 b1� cos θ −
Re�a1 b1� sin θ = 0	. Therefore, we have, for all θ ∈ �\A,

hr�θ� �= �a1 + b1re
iθ�p−2 − k�a2 + b2re

iθ�p−2 = 0�
But h is continuous on � and �\A is dense in �. Therefore, for all r �= 0
and all θ ∈ �,

�a1 + b1re
iθ�p−2 − k�a2 + b2re

iθ�p−2 = 0�
Substituting in f �r� θ�, we get, for all r �= 0 and all θ ∈ �,

f �r� θ� = �1+ kp/�p−2���a2 + b2re
iθ�p�

This implies, since f is independent of θ, by Eq. (5.2), that
a2 = 0 or b2 = 0�

which contradicts the assumption that �a2 b2� �= 0. Therefore Eq. (5.7) is not
possible, and, consequently, we must have a1b1 = a2b2 = 0.

Observe that Theorem 6 does not hold for �p2 ���, 2 < p < ∞. Indeed,
one can easily check that �a� a� ⊥ �b�−b� in �

p
2 ��� for all a� b ∈ �.

We finish by noting that the situation is different in �
p
n �C� when n > 2.

A complete study of orthogonality in �
p
S �C�, where S is any subset of the

set of positive integers, will appear in [7].
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