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Abstract

We demonstrate an intimate connection between nonlinear higher-order ordinary differential equa-
tions possessing the two symmetries of autonomy and self-similarity and the leading-order behaviour
and resonances determined in the application of the Painlevé Test. Similar behaviour is seen for sys-
tems of first-order differential equations. Several examples illustrate the theory. In an integrable case
of the ABC system the singularity analysis reveals a positive and a negative resonance and the
method of leading-order behaviour leads naturally to a Laurent expansion containing both.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The equation

ẍ + 3xẋ + x3 = 0, (1.1)

already noted many years ago [14,22], to a lesser extent its generalisation

ẍ + axẋ + bx3 = 0, (1.2)
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known as the modified Painlevé–Ince equation [1], has many attractive properties in that
it is linearisable, consequently has eight Lie point symmetries [20], and possesses the
Painlevé Property. It occurs in the most diverse places such as the theory of univalent
functions [13], modelling the fusion of pellets [7], the study of stellar structure [16,21], the
reduction of Yang–Baxter equations [18] and motion in a space of constant curvature [6]. It
has also been the object of study from a dynamical point of view [17]. Abraham-Shrauner
showed that the modified Painlevé–Ince equation was linearisable for all values of the para-
meters, α and β , by means of a nonlocal transformation. The essence of the transformation
is to increase the order of the equation to one of the third order by means of a Riccati trans-
formation and then to reduce the third-order equation to a second-order equation by means
of a different transformation based upon the invariance of the third-order equation under
time translation. The modified Painlevé–Ince equation possesses the two symmetries of
invariance under time translation and self-similarity for general values of the parameters.
There has been a number of papers devoted to more general equations possessing these
two symmetries [4,9,10,12]. In most studies these equations were of the second order.
Recently Andriopoulos and Leach [3] extended the class of equations linearisable by the
method of Abraham-Shrauner and showed that the process of linearisation was intimately
connected with two parameters which arise in the application of singularity analysis to
these second-order equations. The two parameters are the coefficient of the leading-order
term and the value of the nongeneric resonance. We should emphasise that this connection
exists independently of an acceptable value for the nongeneric resonance. A value of the
resonance which is compatible with an analytic solution simply implies that the reversal of
the linearisation procedure leads to an analytic solution of the original equation.

In this paper we extend our considerations to equations of higher order which are in-
variant under the same symmetries as the modified Painlevé–Ince equation. We note that
the self-similar symmetry is selected to give the exponent of the leading-order term as −1.
An equation invariant under a self-similar symmetry with different coefficients is readily
converted to the same by a transformation of the dependent variable. Consequently we
have not lost generality. Naturally we are aware that the transformation just mentioned can
affect the analytic nature of the solution of the original equation, but our primary concern
is with the relationship between the parameters of the singularity analysis and the trans-
formations which we make. The major result is that the coefficient of the leading-order
term and the resonances occur naturally in the final equation obtained after a process of
increase of order followed by a decrease of order of the very specific nature. We illustrate
the results with examples drawn from the Riccati Hierarchy [8] and the ABC system of
Lotka–Volterra equations [5,15,19,23].

To give a flavour of the procedure we illustrate the process with the modified Painlevé–
Ince equation before commencing a more general analysis of the higher-order equations.

Firstly we calculate the parameters of the singularity analysis. The exponent of the
leading-order term is −1 by construction. The coefficient of the leading-order term is de-
termined by the solutions of 2−aα +bα2 = 0, where in the usual notation we have written
the leading-order term as ατ−1. The nongeneric resonance is given by r = 4 − aα.

We apply the Riccati transformation, x = αẇ/w, to (1.2) and obtain the third-order
equation

w2...
w + (aα − 3)wẇẅ + (

bα2 − aα + 2
)
ẇ3 = 0. (1.3)
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It is evident that a simplifying choice of the value of the parameter in the Riccati transfor-
mation is the coefficient of the leading-order term as found by the singularity analysis. It
then follows that (1.3) can be written as

w
...
w + (1 − r)ẇẅ = 0. (1.4)

Since (1.4) is autonomous and homogeneous in w, we may reduce the order by the variation
of the standard transformation, videlicet u = logw and v = ẇ2, to obtain

v′′ − rv′ = 0. (1.5)

Thus we see that the linearised form of the modified Painlevé–Ince equation is obtained
by a transformation to the third order using the coefficient of the leading-order term as a
parameter in the Riccati transformation and the linearised form of the equation contains
the value of the nongeneric resonance corresponding to that coefficient. The linearised
equation may take two forms since there are two possible values of α. Each value has its
own peculiar value of the nongeneric resonance.

This paper is structured as follows. In Section 2 we present the theoretical development
connecting the parameters of the singularity analysis and the increase and decrease of order
as in the example of the modified Painlevé–Ince equation presented above. We do this for
an equation of order (n + 1) and for a system of first-order equations. In Section 3 we
provide two examples to illustrate the former and one system to illustrate the latter. One
of the examples for the higher-order equations is a member of the Riccati hierarchy which
is characterised by being linearisable and hence possessing considerable symmetry. The
second example is a variant of the first with general coefficients and hence possessing only
the two symmetries of the class. For the system we consider the well-known ABC Lotka–
Volterra system. This system is known to be integrable [5] in the sense of having two first
integrals under a constraint on the values of two of the parameters. For a specific value of
the third parameter the system is integrable in the sense of Painlevé even though one of the
nongeneric resonances is positive and the other is negative. For this case we indicate how
one obtains the Laurent series. We conclude with some observations in Section 4.

2. Theoretical development

2.1. An (n + 1)th-order equation

An (n + 1)th-order ordinary differential equation invariant under the two symmetries

Γ1 = ∂t and Γ2 = −t∂t + x∂x

has the form of

x(n+1)

xn+2
= f

(
ẋ

x2
,

ẍ

x3
,

...
x

x4
, . . . ,

x(n)

xn+1

)
= f

(
x(j)

xj+1

)
(2.1)

in a standard notation.
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From the structure of Γ2 it is evident that the exponent of the leading-order term,
x = ατp , is p = −1. The coefficient, α, is a solution of the equation

(−1)n+1 (n + 1)!
αn+1

= f

(
(−1)j j !

αj

)
. (2.2)

To determine the resonances we firstly expand the general term in (2.1) to the first order
in μ, where we set x = ατ−1 + μτr−1. We have

x(j)

xj+1
= (ατ−1 + μτr−1)(j)

(ατ−1 + μτr−1)j+1

= (−1)j j !
αj

+ μ

{
(r − 1)!

αj+1(r − 1 − j)! + (−1)j+1(j + 1)!
αj+1

}
τ r . (2.3)

We substitute (2.3) into (2.1), make a formal expansion of the Taylor series for each side
and use (2.2) to remove the leading-order terms. The resonances are the solutions of

1

αn+2

[
(r − 1)!

(r − 2 − n)! + (−1)n+2(n + 2)!
]

=
n∑

j=1

1

αj+1

∂f

∂ξj

{
(r − 1)!

(r − 1 − j)! + (−1)j+1(j + 1)!
}
τ r , (2.4)

where

ξj = x(j)

xj+1

and the derivatives are evaluated at (−1)j j !/αj . That one of the resonances is −1 is evident
from (2.4) independently of the functional form of f and its derivatives. The values of the
other resonances do depend on the value of α.

To see the connection between the coefficient of the leading-order behaviour and the
values of the resonances on the one hand and the symmetries on the other hand we make
use of a combination of increase of order and decrease of order. As we demonstrated in the
Introduction with Eq. (1.2), we increase the order of the equation by means of the Riccati
transformation

x = α
ẇ

w
, (2.5)

where the α is the coefficient of the leading-order behaviour determined by the singularity
analysis above, and decrease the order with the use of the symmetry of time translation.
The resulting equation is of the same order as the original equation and is the type of
an Euler equation. Consequently we use the standard Euler transformation to render this
equation autonomous. This is not a necessary part of the demonstration of the relationship
between the symmetries and the parameters of the singularity analysis, but we make the
additional transformation to obtain an equation of the same status, i.e., autonomous, as the
original equation.

As we do not seem to be able to perform the combination of increase and decrease of
order on the general nth-order equation without being reduced to an absolute mess, we turn
to specific equations in Section 3.
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2.2. A system of n first-order ordinary differential equations

We now examine a system of n first-order ordinary differential equations

ẋi = fi(t, x1, x2, . . . , xn), i = 1, n. (2.6)

System (2.6) is invariant under the two symmetries

Γ1 = ∂t , Γ2 = −t∂t +
n∑

i=1

xi∂xi

when it has the form

ẋi = x2
i f

(
xj

xi

)
, i = 1, n, j = 1, n, (2.7)

where xj/xi , j = 1, i − 1, i + 1, n, represent the n − 1 zeroth-order invariants common to
both Γ1 and Γ2.

To determine the leading-order behaviour of (2.7) we substitute xi = αiτ
pi into (2.7) to

obtain

αipiτ
pi−1 = α2

i τ
2pi fi

(
αj τ

pj

αiτpi

)
.

The terms balance when pi = −1, i = 1, n, and the coefficients αi are solutions of the
system of equations

−1 = αifi

(
αj

αi

)
, i = 1, n, j = 1, n. (2.8)

To determine the resonances we set xi = αiτ
−1 + μiτ

r−1 in (2.7). Then

−αi + (r − 1)μiτ
r = (

α2
i + 2αiμiτ

r + μ2
i τ

2r
)

+ fi

(
αj τ

−1 + μjτ
r−1

αiτ−1 + μiτ r−1

)
, i = 1, n. (2.9)

We write the argument of fi as

αj

αi

(
1 + μj/αj τ

r

1 + μi/αiτ r

)
= αj

αi

+ 1

α2
i

(αiμj − αjμi)τ
r

to the terms linear in the μi . We make a formal Taylor expansion of fi about αj/αi and,
when we take the leading-order relationships into consideration, the resulting system is

(r + 1)μi =
n∑

j=1

(αiμj − αjμi)f
′
i

(
αj

αi

)
. (2.10)

For each j the prime on fi denotes the differentiation of fi with respect to the zeroth-order
invariant xj /xi , j = 1, i − 1, i + 1, n. The requirement that −1 be a resonance implies that
the matrix which is the coefficient of the vector μ on the right-hand side of (2.10) has zero
determinant.
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3. Examples

3.1. Third-order member of the Riccati Hierarchy

The third-order member of the Riccati Hierarchy is given by Euler et al. [8] as

y′′′ + 4yy′′ + 3y′2 + 6y2y′ + y4 = 0 (3.1)

and is rendered as an obvious member of the class of equations under consideration when
it is written as

y′′′

y4
+ 4

y′′

y3
+ 3

(
y′

y2

)2

+ 6
y′

y2
+ 1 = 0. (3.2)

Under the Riccati transformation y = αw′/w (3.1) becomes

w3w′′′′ + 4(α − 1)w2w′w′′′ + 3(α − 1)w2w′′2

+ 6(α − 1)(α − 2)ww′2w′′ + (α − 1)(α − 2)(α − 3)w′4 = 0. (3.3)

The autonomy of (3.1) is clearly preserved by the Riccati transformation to the fourth-order
equation, (3.3). We use the standard transformation exp[u] = w and v = w′ to combine the
reduction and the Euler transformation. This gives

v3v′′′ + (4α − 7)v3v′′ + (
6α2 − 22α + 18

)
v3v′ + 4v2v′v′′

+ (7α − 11)v2v′2 + vv′3 + (α − 1)(α − 2)(α − 3)v4 = 0. (3.4)

From (3.2) it is evident that

f (ξ) = −4ξ2 − 3ξ2
1 − 6ξ1 − 1. (3.5)

Hence the coefficient of the leading-order term is given by the solution of

(−1)2+1 (2 + 1)!
α2+1

= −4

(
(−1)22!

α2

)
− 3

(
(−1)11!

α

)2

− 6

(
(−1)11!

α

)
− 1

which reduces to

α3 − 6α2 + 11α − 6 = 0, α = 1,2,3.

The equation for the resonances, (2.4), becomes

1

α4

[
(r − 1)(r − 2)(r − 3) + 24

]
= 1

α2
(−6ξ1 − 6)(r − 1 + 2) + 1

α3
(−4)

[
(r − 1)(r − 2) − 6

]
,

where ξ1 = −1/α. We rearrange this as

1

α4

(
r3 − 6r2 + 11r + 18

) = − 6

α3
= (1 + α)(r + 1) − 4

α3

(
r2 − 3r − 4

)
so that a common factor of r + 1 may be removed to give

r2 − 7r + 18 = −6α(α + 1) − 4α(r − 4)
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as the equation for the nongeneric resonances. The solutions for the various values of α are

α = 1: r = 1,2,

α = 2: r = −2,1,

α = 3: r = −3,−2. (3.6)

For these values of α (3.4) becomes

v3v′′′ − 3v3v′′ + 2v3v′ + 4v2v′v′′ − 4v2v′2 + vv′3 = 0,

v3v′′′ + v3v′′ − 2v3v′ + 4v2v′v′′ − 3v2v′2 + vv′3 = 0,

v3v′′′ + 5v3v′′ + 6v3v′ + 4v2v′v′′ + 10v2v′2 + vv′3 = 0

for α = 1,2 and 3, respectively.

Remark 1. One observes that the coefficient of v3v′′ is the negative of the sum of the two
nongeneric resonances and that of v3v′ is their product.

Remark 2. If one goes to the fourth-order member of the Riccati hierarchy, a pattern
similar to the above is observed for the coefficients of terms linear in the derivatives of v,
i.e., the coefficient of v′′′ is −∑

ri , that of v′′ is
∑∑

i �=j rirj and of v′ is
∏

ri . The feature
persists, mutatis mutandis, for the higher-order members of the hierarchy.

3.2. The second nonlinear higher-order equation

As a second example we consider the equation
...
x + axẍ + bẋ2 + cx2ẋ + dx4 = 0 (3.7)

which has the same structure as (3.2) but without the coefficients peculiar to the third-order
representative of the Riccati hierarchy.

The leading-order term is ατ−1, where

dα3 − cα2 + (2a + b)α − 6 = 0, (3.8)

and the nongeneric resonances are the solutions of

r2 − (7 − aα)r + 18 − 2(2a + b)α + cα2 = 0, (3.9)

i.e.,

r1 + r2 = 7 − aα and r1r2 = 18 − 2(2a + b)α + cα2. (3.10)

Under the Riccati transformation x = αẇ/w (3.7) becomes

w3....
w + (aα − 4)w2ẇ

...
w + (bα − 3)w2ẅ2 + [

12 − (3a + 2b)α + cα2]wẇ2ẅ = 0

(3.11)

when we take as α one of the solutions of (3.8). Since (3.11) is autonomous and homo-
geneous, we reduce the order to an autonomous third-order differential equation by the
standard transformation u = logw and v = ẇ. We obtain
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v3{v′′′ − (7 − aα)v′′ + [
18 − 2(2a + b)α + cα2]v′}

+ 4v2v′v′′ − [
11 − (a + b)α

]
v2v′2 + vv′3 = 0. (3.12)

In the case of this more general equation we see that again the coefficient of v′′ is −(r1 +r2)

and that of v′ is r1r2. We recall that this connection is independent of the possession
by (3.7) of the Painlevé Property.

The equation
...
x + xẍ + ẋ2 = 0 (3.13)

is a member of the class of generalised Chazy equations and is obtained from (3.7) by
the choice of the parameters a = b = 1 and c = d = 0. Equation (3.8) reduces to a linear
equation with the single root α = 2. The nongeneric resonances are 2 and 3. The equation
corresponding to (3.12) is

v3(v′′′ − 5v′′ + 6v′) + 4v2v′v′′ − 7v2v′2 + vv′3 = 0.

We note that the coefficient of v3v′′ is −5 = −(2 + 3) and that of v3v′ is 6 = 2 × 3 as
indicated in the general equation (3.13). Equation (3.13) has the attraction of being easily
solved in explicit form as it is twice integrable to the Riccati equation

ẋ + 1

2
x2 = 2K(t − t0)

the solution of which is

x = 2K1/3[AAi′(z) + BBi′(z)]
AAi(z) + BBi(z)

,

where z = K1/3(t − t0) and Ai and Bi are Airy’s functions. Thus the solution of (3.13)
is analytic apart from the simple poles of its denominator. There is no indication of an
essential singularity as has been reported for the Chazy equation itself [11].

3.3. The ABC system

The ABC system is [5]

ẋ = x(Cy + z),

ẏ = y(Az + x),

ż = z(Bx + y). (3.14)

In our formalism system (3.14) is

ẋ = x2
(

C
y

x
+ z

x

)
,

ẏ = y2
(

A
z

y
+ x

y

)
,

ż = z2
(

B
x + y

)
, (3.15)
z z
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and the functions fi , i = 1,3, are given by the terms in parenthesis.
The coefficients of the leading-order terms are solutions of( 1 0 A

B 1 0
0 C 1

)(
α

β

γ

)
=

(−1
−1
−1

)
(3.16)

where we have replaced αi , i = 1, n, with α, β and γ .
For ABC �= −1

α = [
A(1 − C) − 1

]
/[ABC + 1],

β = [
B(1 − A) − 1

]
/[ABC + 1],

γ = [
C(1 − B) − 1

]
/[ABC + 1]. (3.17)

If ABC = −1, we have a one-parameter solution

α = −1 − As,

β = B − 1 + ABs,

γ = s, (3.18)

subject to the constraint C(1 − B) = 1.
From (2.10) the resonances are the solutions of

(r + 1)

(
μ

ν

λ

)
=

(−βC − γ αC α

β −γA − α βA

γB γ −αB − β

)(
μ

ν

λ

)

and, when we use (3.16), this becomes( 1 αC α

β 1 βA

γB γ 1

)(
μ

ν

λ

)
= (r + 1)

(
μ

ν

λ

)
. (3.19)

The determinant of the coefficient matrix on the left-hand side is zero.
More conventionally we can write (3.19) as the eigenvalue equation( 0 αC α

β 0 βA

γB γ 0

)(
μ

ν

λ

)
= r

(
μ

ν

λ

)

in which we recognise that the coefficient matrix is the product(
α 0 0
0 β 0
0 0 γ

)( 0 C 1
1 0 A

B 1 0

)
,

where the second matrix is the matrix of the coefficients in (3.14). The nongeneric reso-
nances are given by the solutions of r2 − r − αβγ (1 + ABC) = 0 so that

r1 + r2 = 1, r1r2 = −αβγ (1 + ABC). (3.20)

We note that the degenerate case ABC = −1 gives r1 = 0 and r2 = 1 and so then the ABC

system passes the Painlevé Test [15]. In general the system does not pass the Painlevé Test.
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As a particular instance we consider the system A = 1,B = 2,C = −2/5, namely

ẋ = −2

5
xy + xz,

ẏ = yz + yx,

ż = 2zx + zy, (3.21)

which is known [5] to possess the two first integrals

I1 = x5z2

y6

[
xz + 3

5
y(y − z)

]
,

I2 = x + 2
5y

y2

[
xz + 3

5
y(y − z)

]

and to be integrable.
The coefficients of the leading-order terms are α = 2, β = −5 and γ = −3. The non-

generic resonances are the solutions of (3.20), i.e., r1 = −2 and r2 = 3.
Conventional wisdom has it that one cannot pass the Painlevé Test with a negative and

a positive nongeneric resonance. However, recently [2] we demonstrated by means of ex-
plicit construction that this be possible. The series represented the Laurent expansion of the
solution on an annulus defined by two singularities when the expansion was made about
a third singularity, here t0, where τ = t − t0. Consequently we are encouraged to seek a
similar solution in this case. The determination of the coefficients of the series by means
of direct substitution into (3.21) is impossible. We revert to a method developed by Feix
et al. [9] to find the next to leading-order behaviour and subsequent terms. Normally this
would be in the context of ascending or descending terms depending whether the expan-
sion is in the neighborhood of the singularity or far from the singularity respectively. In an
annulus the exponent determined by the leading-order analysis dominates both increasing
and decreasing exponents. We illustrate the procedure.

We substitute

x = 2τ−1 + f1(τ ),

y = −5τ−1 + g1(τ ),

z = −3τ−1 + h1(τ ), (3.22)

where |τf1(τ )| < 1, |τg1(τ )| < 1 and |τh1(τ )| < 1 in the annulus, into (3.21) and keep
only the linear terms in f,g and h to obtain

τ ḟ1 = −f1 − 4

5
g1 + 2h1,

τ ġ1 = −5f1 − g1 − 5h1,

τ ḣ1 = −6f1 − 3g1 − h1.

This is a system of an Euler type and we make the standard substitution F1 = τ su, where
u is a constant vector and F1 = (f1, g1, h1)

T .
The eigenvalues are found from



K. Andriopoulos, P.G.L. Leach / J. Math. Anal. Appl. 328 (2007) 625–639 635
∣∣∣∣∣
s + 1 4/5 −2

5 s + 1 5
6 3 s + 1

∣∣∣∣∣ = 0 ⇒ s = −2,−3,2.

The eigenvector for s = −2 corresponds to the location of the singularity at t0 and is ig-
nored. We obtain the solution

F1 = c1

(−11
40
27

)
τ−3 + c2

( 2
−5
1

)
τ 2.

We may continue the process by writing(
x

y

z

)
=

( 2
−5
−3

)
τ−1 + F1 + F2,

where F2 = (f2, g2, h2)
T .

The equation for F2 is

τ Ḟ2 =
(−1 −4/5 2

−5 −1 −5
−6 −3 −1

)
F2 +

(−121
640
486

)
c2

1τ
−5 +

(−11
40
−9

)
c1c2

+
( 6

−15
−1

)
c2

2τ
5. (3.23)

The complementary function for F2 is the same as for F1 and is not repeated. We need
only use the particular solution corresponding to the three vectors in (3.23). After not a
little calculation we obtain

F2 = −1

6

( −39
2390
1695

)
c2

1τ
−5 + 1

3

(43
95
0

)
c1c2 + 1

21

( 34
−85

5

)
c2

2τ
5.

The process of successive solution may be continued indefinitely. At each succession a
new highest and a new lowest exponent are added. However, part of the particular solution
of Eq. (3.23) changes the intermediate terms so that their values are not really established
until the doubly infinite series is complete. As a practical procedure this could be regarded
as unsatisfactory, but the alternative, which is the direct substitution of an infinite series
into a system of nonlinear differential equations, is even less viable. The important feature
of the procedure is that it demonstrates the existence of a Laurent series when we have both
positive and negative resonances and that the two additional required arbitrary constants
enter at the resonances.

We now consider the system (3.21) in terms of its potential for linearisation. We perform
the Riccati transformation

x = 2
u̇

u
, y = −5

v̇

v
, z = −3

ẇ

w

to obtain
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ü

u̇
= u̇

u
+ 2

v̇

v
− 3

ẇ

w
,

v̈

v̇
= 2

u̇

u
+ v̇

v
− 3

ẇ

w
,

ẅ

ẇ
= 4

u̇

u
− 5

v̇

v
+ ẇ

w
. (3.24)

We solve the first of (3.24) for ẇ/w to get

ẇ

w
= −1

3

(
ü

u̇
− u̇

u
− 2

v̇

v

)
(3.25)

and substitute to the second of (3.24) to obtain

ü

u̇
+ u̇

u
= v̈

v̇
+ v̇

v
⇒ v2 = M2u2 + N2. (3.26)

It then follows that, when (3.25), (3.26) are used appropriately and we set Mu = Nf , the
third of (3.24) becomes

...
f

ḟ
− f̈ 2

ḟ 2
− f f̈

(
5

f 2
− 3

f 2 + 1

)
+ ḟ 2

(
5

f 2
− 5

f 2 + 1
+ 6

(f 2 + 1)2

)
= 0.

Reducing the order by making a suitable variant of the standard transformation, i.e.,
f 2 = x, ḟ = g(x), we finally obtain the linear equation

4x2(x + 1)2g′′ − 2x(x + 1)(x + 4)g′ + (11x + 5)g = 0. (3.27)

4. Conclusion

In this paper we developed general formulae for the determination of the coefficient(s)
of the leading-order term(s) and the resonances of the singularity analysis for scalar higher-
order equations and systems of first-order equations possessing the two symmetries of
invariance under time-translation and self-similarity. We applied these results for some
specific examples. In the case of scalar higher-order equations we showed that the para-
meters of the singularity analysis have an intimate connection with the coefficients of the
equation resulting after a process of increase of order and decrease of order which has been
demonstrated in the past to be very advantageous for the successful analysis of nonlinear
ordinary differential equations. We concentrated on this class of equations because of the
close connection of the presence of these two symmetries and the dominant terms of the
singularity analysis.

The first example of a higher-order equation was chosen from the Riccati hierarchy
and was particularly simple because that hierarchy has exceptionally attractive properties.
The second higher-order example does not in general possess the Painlevé Property and is
generically nonintegrable. Nevertheless the parameters obtained in applying the singularity
analysis continued to appear in the transformed equation in the same way as if it were
integrable.

In a previous paper [2] we demonstrated the explicit existence of a solution of a class
of nonlinear equations, the Riccati hierarchy introduced in [8], for which we could write
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Laurent expansions of three types. The first, the Right Painlevé Series corresponding to
positive resonances, is the expansion valid in a punctured disc centered on the singularity,
the second is valid in an annulus also centered on the singularity and the third, the Left
Painlevé Series corresponding to negative resonances, is valid on the exterior of the largest
disc containing singularities of the solutions. Unlike the Right Painlevé Series and the Left
Painlevé Series, which are half series, the series valid on the annulus1 is a normal Laurent
series.

We know from other considerations that the ABC system considered in this paper with
the special values of the parameters is integrable. Unlike the case of the members of the
Riccati hierarchy we find just the one possible leading-order behaviour and set of reso-
nances. As the two integral nongeneric resonances are of opposite sign, we proposed the
possibility of the existence of a Laurent series valid over an annulus surrounding a singu-
larity. By means of repeated application of the so-called method of the determination of
the leading-order behaviour we have demonstrated a method to construct the series as a
succession of approximations with each approximation adding a higher and lower power
to the solution. This is not a practical way to construct a series expansion for the solution
valid in an annulus. That was not our intention. What we have is a process whereby the
series can be seen to exist when there are positive and negative nongeneric resonances even
though we do not have the solution and other possible patterns for the resonances are not
found. There may be some merit in reexamining other equations and systems for which
nongeneric resonances of mixed sign are found.

In our treatment of the ABC system we demonstrated the linearisation of the system in
the integrable case for which A = 1, B = 2 and C = −2/5. For the general ABC system
(3.14) we may use a similar Riccati transformation

x = α
u̇

u
, y = β

v̇

v
, z = γ

ẇ

w

to arrive at the system of second-order differential equations(
ü/u̇

v̈/v̇

ẅ/ẇ

)
=

( 1 Cβ γ

α 1 Aγ

Bα β 1

)(
u̇/u

v̇/v

ẇ/w

)
. (4.1)

We note that the coefficient matrix in (4.1) has zero determinant when α, β and γ are the
leading-order coefficients of the ABC system and the eigenvalue equation for the reso-
nances is just(1 − r Cβ γ

α 1 − r Aγ

Bα β 1 − r

)(
μ/α

ν/β

λ/γ

)
= 0,

i.e., r = 0 is one resonance which reflects the homogeneity of system (4.1) in the dependent
variables.

1 There may be more than one annulus. Each annulus has its own peculiar Laurent series. As one moves out-
wards through a sequence of annuli, the number of negative resonances increases and the number of positive
resonances decreases.
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We recall that our technique to linearise the system as a single third-order differential
equation relied upon the elimination of ẇ/w from (4.1a) and (4.1b) and then the perfor-
mance of a double integration. When we eliminate ẇ/w from the general system (4.1), we
obtain

v̈

v̇
+ (CAβ − 1)

v̇

v
= A

(
ü

u̇
+ (α − 1)

u̇

u

)

which can be integrated immediately to give

v̇vCAβ−1 = M
(
u̇uα−1)A

.

However, the second quadrature is possible only in the case that A = 1.2 The ABC system
does make simplification tough!

When we impose the single restriction that A = 1, we may again obtain a linearisation
of the system by using the same procedure as that at the end of Section 3.3. The linearised
equation is

α2x2(x + 1)2g′′ − αx2(x + 1)(x + 1 − α − β)g′ + [(
βγ − α2)x − β

]
g = 0, (4.2)

where now x = Muα . Thus we see that the linearising procedure applies to situations in
which the original system does not possess the Painlevé Property.
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uniforme, Acta Math. 25 (1902) 1–86.

[23] V. Volterra, Leçons sur la Théorie Mathématique de la Lutte pour la Vie, Gauthier–Villars, Paris, 1931.


