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Abstract

We investigate the action of a class of operator semigroups on generalized functions of almost exponential growth, proving that
these generalized functions are admissible initial conditions for the associated heat equation.
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1. Introduction

We investigate the action of a class of operator semigroups {etA}t�0, on generalized functions of almost exponential
growth. Specifically, we consider generalized functions in the topological dual S ′

w of the Beurling–Björck space Sw ,
proposed by A. Beurling in [3], and studied by G. Björck in [4] and by H.-J. Schmeisser and H. Triebel in [16].
The space Sw and its topological dual S ′

w provide an extension, away from the context of polynomial growth and
decay, for the rich theory of generalized functions created by L. Schwartz. The operator semigroups we consider
are integral operators with kernels defined by functions in the space

⋂
w Sw . We characterize this intersection by a

condition that resembles the definition of the Denjoy–Carleman classes C{ak} [4]. Relevant examples of the operator
semigroups we consider are the Gauss–Weierstrass semigroup defined by A = �, where � is the Laplace operator,
and the Ornstein–Uhlenbeck semigroup associated with the operator A = 1

2� − x · ∇ , where ∇ denotes the gradient.
We also prove that the functionals in S ′

w are admissible initial values for the generalized heat operator ∂t − A.
More precisely, we prove that given T ∈ S ′

w , there is a solution u(x, t) of (∂t − A)u = 0, for which u(·, t) converges
to T in S ′

w , in the strong dual topology. In this respect, our work is inspired by a substantial body of work on the
realization of various types of generalized functions as initial values of solutions for the classical heat equation. This
work, pioneered by T. Matsuzawa [13,14] for hyperfunctions and inspired by the work of L. Hörmander [10], typically
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uses functional estimates that are variations of those describing real analyticity. In our case, however, the definition of
the space Sw involves conditions on the function and on its Fourier transform. For this reason, we base our approach
on a representation theorem for functionals in S ′

w , which we obtain using the topological version proved in [1] of the
characterization of Sw proved by S.-Y. Chung, D. Kim and S. Lee in [6]. This representation theorem provides as well
a new characterization for tempered distributions.

We point out that in a very interesting paper, B.P. Dhungana [7] has considered the heat operator associated to the
Hermite operator −� + |x|2, in the context of tempered distributions.

Beurling’s motivation for studying almost exponential growth was his research on quasi-analyticity and in this
direction, we mention the recent work of M. Andersson and B. Berndtsson [2].

Ultra-rapidly decreasing test functions have found a renewed source of interest in the study of modulation spaces
via the short time Fourier transform. In this regard we mention, as an example, the pioneering work of K. Gröchenig
and G. Zimmermann [8]. In a related field, earlier work of J. Dziubański and E. Hernández [9] showed how to construct
band-limited wavelets that are functions with almost exponential decay. It was known already that it is not possible to
have band-limited wavelets with exponential decay.

The organization of this paper is as follows: In Section 2 we define the Beurling–Björck space Sw and its topo-
logical dual S ′

w , and we recall several properties of these spaces. In particular, we state a characterization of Sw to
be used later. In Section 3, we prove a representation theorem for generalized functions in S ′

w and discuss its impli-
cations for the study of integral operators acting on S ′

w . In Section 4 we characterize the space
⋂

w Sw . We use this
characterization in Section 5 to define the integral kernels we consider in this paper and to prove that the functionals
in S ′

w are admissible initial values for the generalized heat operator ∂t − A. Section 5 concludes with an application
of these results to the study of the Gauss–Weierstrass and Ornstein–Uhlenbeck semigroups acting on S ′

w .
The notation we use is standard. The symbols C∞, C∞

0 , Lp , D′, etc., indicate the usual spaces of functions or
distributions defined on R

n, with complex values. We denote | · | the Euclidean norm on R
n, while ‖ · ‖p indicates

the norm in the space Lp . When we do not work on the general Euclidean space R
n, we will write Lp(R), etc., as

appropriate. Partial derivatives will be denoted ∂α , where α is a multi-index (α1, . . . , αn). If it is necessary to indicate
on which variables we are taking the derivative, we will do so by attaching sub-indexes. We will use the standard
abbreviations |α| = α1 + · · · + αn, xα = x

α1
1 . . . x

αn
n . With α � β we mean that αj � βj for every j . The Fourier

transform of a function g will be denoted F(g) or ĝ and it will be defined as
∫

Rn e−2πixξ g(x) dx. The inverse Fourier
transform is then F−1(g) = ∫

Rn e2πixξ g(ξ) dξ . The letter C will indicate a positive constant, that may be different
at different occurrences. If it is important to indicate that a constant depends on certain parameters, we will do so by
attaching sub-indexes to the constant. We will not indicate the dependence of constants on the dimension n or other
fixed parameters. Other notation will be introduced at the appropriate time.

2. Preliminary definitions and results

The space Sw and its topological dual S ′
w provide an extension, away from the context of polynomial growth and

decay, of the rich theory created by L. Schwartz.
Let us recall that the Schwartz space S of test functions consists of those C∞ functions ϕ : Rn → C for which the

norm

pk,m(ϕ) = sup
|α|�m

∥∥(
1 + |x|)k

∂αϕ
∥∥∞

is finite, for k,m = 0,1,2, . . . . The topological dual of S is the space S ′ of tempered distributions.
Observing that (1 + |x|)k = ek ln(1+|x|), A. Beurling proposed in [3] to measure growth and decay using an expo-

nential ekw(x). The conditions imposed in [3] and [4] on the function w imply that Sw enjoys most of properties that
the space S has. For instance, Sw is a Fréchet algebra with respect to both pointwise multiplication and convolution,
and the Fourier transform is an isomorphism of one structure to the other; moreover, the functions in Sw with compact
support form a dense subspace, Dw , containing partitions of unity.

The function ekw(x) does not have in general a special connection with the derivative operator ∂α via the Fourier
transform. For this reason, the definition of Sw imposes conditions on both the function and the Fourier transform.

Before we define the space Sw we need to introduce the space Mc of admissible functions w.
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Definition 1. (See [4,16].) With Mc we indicate the space of functions w : R
n → R of the form w(x) = Ω(|x|),

where

1. Ω : [0,∞) → [0,∞) is increasing, continuous and concave,

2. Ω(0) = 0,

3.
∫

R

Ω(t)

(1+t2)
dt < ∞,

4. Ω(t) � a + b ln(1 + t) for some a ∈ R and some b > 0.

In the next remark we collect a few important consequences of Definition 1 to be used later.

Remark 2. As observed in [4], the first condition in Definition 1 implies that the function w is subadditive, w(x +y) �
w(x) + w(y). For a proof of this result, see Proposition 4.6 in [2]. Condition 4 implies that the function e−Nw(x) is

integrable for some N ∈ {0,1,2, . . .}. Condition 4 also implies that w(x) = o(
|x|

ln |x| ) as |x| → ∞, as demonstrated
in [4, Corollary 1.2.8].

Definition 3. (See [4,16].) Given w ∈ Mc, we denote by Sw the space of C∞ functions ϕ : R
n → C satisfying the

conditions,

qk,m(ϕ) = sup
|β|�m

∥∥ekw∂βϕ
∥∥∞ < ∞, (1)

qk,m ◦F(ϕ) = sup
|β|�m

∥∥ekw∂βϕ̂
∥∥∞ < ∞, (2)

for all k,m = 0,1,2, . . . . The topological dual of Sw is the space S ′
w of w-tempered functionals, also called tempered

ultradistributions.

We observe that (1) implies that ϕ ∈ L1 and ϕ̂ ∈ C∞. So, the formulation of (2) makes sense. The space Sw is a
Fréchet space with the topology defined by the family of norms {qk,m, qk,m ◦F}∞k,m=0. By a Fréchet space we mean a
Hausdorff locally convex topological vector space that is metrizable and complete.

It is clear from the definition that the space Sw is invariant under the Fourier transform. Furthermore, the conditions
imposed on the function w assure that the space Sw satisfies additional properties that are expected from a space of
testing functions intended to generalize the space S . For instance, the operators of differentiation and of multiplication
by xα are continuous from Sw into itself; the space Sw is a Fréchet algebra under both pointwise multiplication and
convolution, and the Fourier transform is an isomorphism of one structure to the other. Condition 3 is equivalent to the
existence of a dense subspace Dw of Sw , containing partitions of unity. As a consequence of 4, Sw⊆ S continuously
and thus, S ′

w⊇ S ′, for all w ∈ Mc. We refer to [4] and [16, p. 16], for a more detailed discussion of the role played in
the properties of Sw by each of the conditions 1–4 in Definition 1.

When w(x) = ln(1 + |x|), the space Sw becomes the Schwartz space S and the space Dw becomes C∞
0 . The space

Dw plays for Sw the role that C∞
0 plays for S . Another important example of a function in Mc is w(x) = |x|d

for 0 < d < 1. The function |x| does not satisfy condition 4 and thus, it does not belong to Mc. As discussed
in [4] and [16], this fact implies that the zero function is the only compactly supported function in S|x|, showing
the profound difference between exponential decay and almost exponential decay. The results by J. Dziubański and
E. Hernández [9] cited in the introduction, are a practical manifestation of this difference.

We note that the inclusions Sw⊆ S and S ′
w⊇ S ′ are strict, in general. In fact, the function e−(1+|x|2)α , 0 < α < 1

2 , be-
longs to S , but it does not belong to Sw when w(x) = |x|β , 2α < β < 1. On the other hand, the function f (x) = e|x|α ,
0 < α < 1, defines by integration a functional Tf in S ′

w for w(x) = |x|α . Moreover, the functional Tf is a distribution
in D′. However, there is no tempered distribution T so that Tf (ϕ) = T (ϕ) for all ϕ ∈ C∞

0 . In fact, let θ ∈ C∞
0 be

a usual cut-off function, 0 � θ � 1, θ(x) = 1 for |x| � 1 and θ(x) = 0 for |x| � 2. If θj (x) = θ( x
j
) and ϕ ∈ S , the

sequence {θjϕ} converges to ϕ in S as j → ∞. If there were a tempered distribution T that coincides with Tf on C∞,
0
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we would have Tf (θjϕ) → T (ϕ) as j → ∞. However, if we pick a nonnegative function ϕ in S that is equal to e−|x|α

for |x| � 1, we can write

Tf (θjϕ) =
∫
Rn

e|x|α θj (x)ϕ(x) dx �
∫

1�|x|�j

dx,

which contradicts the convergence of Tf (θjϕ) as j → ∞.

Remark 4. When w(x) = ln(1 + |x|), the conditions qk,m(ϕ) < ∞, qk,m ◦ F(ϕ) < ∞ become redundant, due to
the very special role that the function (1 + |x|) plays with respect to the Fourier transform and its inverse. The
characterizations of S and Sw proved in [11] and [6] avoid this problem, by formulating conditions that turn out to be
the same for both spaces. We state now these characterizations in the form given in [1].

Proposition 5. (See [6,11].) Given w ∈ Mc, the space Sw can be described as a set as well as topologically, as

Sw = {
ϕ : Rn → C : ϕ is continuous and qk,0(ϕ) < ∞, qk,0 ◦F(ϕ) < ∞ for k = 0,1,2, . . .

}
. (3)

Remark 6. The condition qk,0(ϕ) < ∞ for k = 0,1,2, . . . implies that ϕ ∈ L1, so the formulation of the condition
qk,0 ◦ F(ϕ) < ∞ makes sense for k = 0,1,2, . . . . Moreover, (3) implies that ϕ and ϕ̂ are C∞ functions. The two
families of norms {qk,0}k and {qk,0 ◦F}k are not equivalent, as can be seen by considering the function (1 + |x|2)− α

2

for α > 0. We refer to [17, p. 132] for details.

3. A representation theorem for functionals in the space SSS ′
w

According to Proposition 5, the Fréchet space structure defined in Sw can be described by the family {rk}k of norms
given by

rk(ϕ) = ∥∥ekwϕ
∥∥∞ + ∥∥ekwϕ̂

∥∥∞ (4)

for k = 0,1,2, . . . . We observe that

lim|x|→∞
(
ekwϕ

)
(x) = 0,

lim|x|→∞
(
ekwϕ̂

)
(x) = 0,

for each k = 0,1,2, . . . . Thus, ekwϕ and ekwϕ̂ both belong to C0, the Banach space of continuous functions vanishing
at infinity, equipped with the supremum norm.

Theorem 7. Given a functional L in S ′
w there exist two regular complex Borel measures μ1 and μ2 of finite total

variation and k ∈ {0,1,2, . . .} so that

L = ekwμ1 +F
[
ekwμ2

]
, (5)

in the sense of S ′
w . Conversely, any pair of such measures and k ∈ {0,1,2, . . .} define as in (5) a functional in S ′

w .

Proof. Given L ∈ S ′
w , according to (4) there exist k,C so that

L(ϕ) � C
(∥∥ekwϕ

∥∥∞ + ∥∥ekwϕ̂
∥∥∞

)
,

for all ϕ ∈ Sw . Moreover, the map

Sw → C0 × C0

ϕ → (
ekwϕ, ekwϕ̂

)
is well defined, linear, continuous and injective. Let R be the range of this map. We define on R the map

l1(f, g) = L(ϕ),
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where f = ekwϕ, g = ekwϕ̂ for a unique ϕ ∈ Sw . The map l1 :R → C is linear and continuous. By the Hahn–Banach
theorem there exists a functional L1 in the topological dual (C0 × C0)

′ of C0 × C0 such that ‖L1‖ = ‖l1‖ and the
restriction of L1 to R is l1.

The spaces (C0 × C0)
′ and C′

0 × C′
0 are isomorphic, as Banach spaces, since we can write L1(f, g) = L1(f,0) +

L1(0, g). Using the classical F. Riesz representation theorem (see for instance [15, p. 130]), there exist regular complex
Borel measures μ1 and μ2 of finite total variation so that

L1(f, g) =
∫
Rn

f dμ1 +
∫
Rn

g dμ2,

for all (f, g) ∈ C0 × C0. If (f, g) ∈ R, we conclude

L(ϕ) =
∫
Rn

ekwϕ dμ1 +
∫
Rn

ekwϕ̂ dμ2,

for all ϕ ∈ Sw . Or, in the sense of the pairing (S ′
w,Sw),

L = ekwμ1 +F
[
ekwμ2

]
.

This completes the proof of Theorem 7. �
Remark 8. When w(x) = (1 + |x|), (5) becomes

L = (
1 + |x|)k

μ1 +F
[(

1 + |ξ |)k
μ2

]
,

which gives a new way of representing tempered distributions.

G. Björck defines [4, p. 373] the convolution T ∗ ϕ of a functional T and a test function ϕ as the function given
by (T ,ϕ(z − ·)). Using this definition, he proves in Theorem 1.8.12 of [4] that the convolution T ∗ ϕ belongs to S ′

w

when T ∈ S ′
w and ϕ ∈ Sw . As a first application of Theorem 7, we will show now that the definition of convolution

used by G. Björck coincides with the classical definition (U ∗ V,ψ) = (Ux, (Vz,ψ(x + z))). Here we indicate with a
subscript the variable on which the functional acts.

Lemma 9. Given L ∈ S ′
w and ϕ ∈ Sw , we can use the classical definition of L ∗ ϕ,

(L ∗ ϕ,ψ)S ′
w,Sw

= (
Lx,

(
ϕz,ψ(x + y)

))
S ′

w,Sw

for all ψ ∈ Sw . Furthermore, the functional L ∗ ϕ coincides with the functional given by integration against the
function f (y) = (L,ϕ(y − ·))S ′

w,Sw
.

Proof. First we observe that the function f (y) = (Lx,ϕ(y − x))S ′
w,Sw

is continuous. Due to the inequality∣∣f (y)
∣∣ � C

(
sup
x

∣∣ekw(x)ϕ(y − x)
∣∣ + sup

x

∣∣ekw(x)ϕ̂(x)
∣∣)

and the subadditivity of the function w (see Remark 2), the pairing (f,ψ) is well defined by means of integration.
Then, using (5), we can write for each y,(

Lx,ϕ(y − x)
)
S ′

w,Sw
=

∫
Rn

ekw(x)ϕ(y − x)dμ1(x) + ((
ekwμ2

)
(ξ), e−2πiyξF(ϕ)(ξ)

)
S ′

w,Sw
.

So, ((
Lx,ϕ(y − x)

)
S ′

w,Sw
,ψ

) =
∫
Rn

ekw(x)

(∫
Rn

ϕ(y − x)ψ(y)dy

)
dμ1(x) +

∫
Rn

ekw(ξ)F(ϕ)(ξ)ψ̂(ξ) dμ2(ξ). (6)

We note that F(ϕ)(ξ)ψ̂(ξ) = F[ϕ̌ ∗ ψ], where ϕ̌(x) = ϕ(−x). Thus, we can write the second term in (6) as(
F

[
ekwμ2

]
, ϕ̌ ∗ ψ

)
′ .
Sw,Sw
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This implies that((
Lx,ϕ(y − x)

)
S ′

w,Sw
,ψ

) = (
ekw(x)μ1(x),

(
ϕ(y − x),ψ(y)

))
S ′

w,Sw

+ (
F

[
ekwμ2

]
(x),

(
ϕ(y − x),ψ(y)

))
S ′

w,Sw

= (
Lx,

(
ϕ(y − x),ψ(y)

))
S ′

w,Sw
,

for all ψ ∈ Sw . This completes the proof of Lemma 9. �
We now mention a further application of Theorem 7 and Lemma 9 to the study of operator semigroups acting on

w-tempered distributions. To begin, we recall the definition of a semigroup [12] as a collection of linear operators
{Et }t�0 on a Banach space X satisfying the following conditions:

E0 = idX ,

EtEs = Et+s

and the map

t → Etφ

is continuous for each φ ∈ X . Semigroups that are of interest to us are those defined by convolution operators acting on
the Fréchet space X = Sw . In the sequel, our goal will be to extend their action to the dual space S ′

w . From Lemma 9,
we make the following observation:

Corollary 10. Given G ∈ Sw , let {Et }t�0 be the semigroup defined, for t > 0, by the convolution kernel t−nG(
x−y

t
).

Then, the action of Et on S ′
w is given by integration against the function

ρ(x) =
(

Ly, t
−nG

(
x − y

t

))
S ′

w,Sw

. (7)

Proof. It suffices to show that G(x
t
) is in Sw for each t > 0. We fix t > 0, and choose an integer N such that N � t .

Then, by the properties of w (see Definition 1 and Remark 2), it follows that w(x) � Nw( x
N

) � Nw(x
t
). Thus, for

every x, we have∣∣∣∣ekw(x)G

(
x

t

)∣∣∣∣ �
∣∣∣∣eNkw( x

t
)G

(
x

t

)∣∣∣∣ �
∥∥eNkwG

∥∥∞.

Now, we consider F[G(x
t
)](ξ) = tnĜ(tξ). If t � 1, then w(x) � w(tx), and hence∣∣ekw(x)Ĝ(tξ)

∣∣ �
∣∣ekw(tx)Ĝ(tξ)

∣∣ �
∥∥ekwĜ

∥∥∞.

As for 0 < t < 1, we choose an integer N such that N � 1
t
, so, we have w(x) � Nw( x

N
) � Nw(tx) and thus∣∣ekw(x)Ĝ(tξ)

∣∣ �
∣∣eNkw(tx)Ĝ(tξ)

∣∣ �
∥∥eNkwĜ

∥∥∞.

Using Proposition 5, the result follows. �
While Corollary 10 gives sufficient conditions for an operator semigroup {Et }t�0 to be well defined on S ′

w for a
fixed w ∈ M, we are interested in studying semigroups that may be defined on S ′

w for any such w. To this end, we
consider the intersection

⋂
w∈Mc

Sw as a class of functions from which to obtain convolution kernels.

4. On the intersection of the spaces Sw

Our goal in this section is to characterize the space
⋂

w∈Mc
Sw , as this will yield sufficient conditions for the

convolution operators given by (7) to be well defined on S ′
w for all w ∈ Mc. To begin, we let a = {ak}∞k=0 be a

sequence of positive real numbers such that
∑

k�0
1
ak

< ∞ and ak

k!1/k is increasing for k � 2. We define the function
Ωa : R+ → R as
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Ωa(t) =
∑
k�0

tk

ak
k

. (8)

From [4, Theorem 1.5.11], we have that the function wa(x) = lnΩa(|x|) is in Mc. Next, we define the following
subspace of C0:

Definition 11. Let S0 be the set of all continuous functions f for which there exists a constant C > 0 such that∥∥∥∥ |x|kf
(k ln k)k

∥∥∥∥∞
+

∥∥∥∥ |ξ |kf̂
(k ln k)k

∥∥∥∥∞
� Ck+1,

for all integers k � 2.

We seek to prove the following assertion concerning the intersection over w of the spaces Sw:

Theorem 12.
⋂

w∈Mc
Sw = S0.

Proof. Here, we will use the characterization of Sw given by Proposition 5. We first establish that S0 ⊆ ⋂
w∈Mc

Sw .
If f ∈ S0, there exists C > 0 such that for every k � 2 we have

∣∣f (x)
∣∣ � C

(
Ck ln k

|x|
)k

(9)

and similarly for |f̂ (ξ)|. We claim that this is sufficient to ensure that f ∈ Sw for every w ∈ Mc [4, Lemma 1.5.13].
Indeed, let b > 2, C > 0, and for t > e we consider the function

hb(t) =
(

Ct ln t

b

)t

.

We define tb = b
Ce lnb

, and note that tb → ∞ as b → ∞. It follows that tb > e for sufficiently large b and we have

hb(tb) =
(

1 − ln(Ce lnb)
lnb

e

) b
Ce lnb

.

Furthermore, since ln(Ce lnb)
lnb

→ 0+ as b → ∞, it follows that for sufficiently large b we have the inequality

hb(tb) �
(

1

e

) b
Ce lnb = e− b

Ce lnb . (10)

Now, from an explicit calculation we find that h′′
b > 0 for t > e. Thus, for sufficiently large b, it follows that the

supremum of hb(t) on the interval [tb − 1, tb + 1] is given by the maximum of hb(tb − 1) and hb(tb + 1). Let us first
consider hb(tb + 1). Again, if b is sufficiently large, we have the bound

hb(tb + 1) =
(

C(tb + 1) ln(tb + 1)

b

)tb+1

�
(

e1/2 Ctb ln tb

b

)tb+1

,

since (x + 1) ln(x + 1) � e1/2x lnx for sufficiently large x. Coupling this with (10), we obtain

hb(tb + 1) � e− b
2Ce lnb .

A similar argument reveals that for sufficiently large b, we have

hb(tb − 1) =
(

C(tb − 1) ln(tb − 1)

b

)tb−1

�
(

Ctb ln tb
)tb−1

� e− b
2Ce lnb .
b
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Hence, hb(t) � e− b
2Ce lnb on [tb − 1, tb + 1]. Applying this to (9), it follows that for sufficiently large |x| there is an

integer k ∈ [t|x| − 1, t|x| + 1] with t|x| − 1 > e, and thus, we obtain the estimate

∣∣f (x)
∣∣ � Ce

− |x|
2Ce ln |x| .

Now, let us fix w ∈ Mc. Since w(x) = o(
|x|

ln |x| ) as |x| → ∞, it follows that for any λ ∈ N, there is Cλ > 0 for which∣∣f (x)
∣∣ � Cλe

−λw(x),

for all x ∈ R
n. An analogous result holds for |f̂ (ξ)|, and the inclusion S0 ⊆ ⋂

w∈Mc
Sw is established.

We now prove the opposite inclusion via the contrapositive. Let f be a continuous function not in S0. Our goal is
to find w ∈ Mc for which f /∈ Sw . We assume that f ∈ S , the Schwartz space, and we define Gk = ‖|x|kf ‖1/k∞ , for
k � 2. Without loss of generality, we may assume that the sequence { Gk

k ln k
}k�2 is unbounded. Otherwise, we can define

Gk using f̂ as opposed to f . From [5, Theorems 2 and 7], there exists a positive sequence {ak} with
∑

k�0
1
ak

< ∞
and ak

k
increasing for k � 1, such that the sequence {Gk

ak
} is also unbounded. Thus, for any M � 1, there is k � 1 and

x ∈ R
n such that | |x|kf (x)

ak
k

| > Mk � M . In other words, the function

∑
k�0

|x|kf (x)

ak
k

= Ωa

(|x|)f (x),

where Ωa is defined as in (8), is unbounded. Hence, it suffices to show that wa(x) = lnΩa(x) is in Mc , i.e., that ak

k!1/k

is increasing for k � 2. Since ak

k
is increasing for k � 1, we find that for k � 2 the inequality

ak

ak−1
� k

k − 1

holds. We observe that

k

k − 1
� k!1/k

(k − 1)!1/(k−1)

holds for k � 2 and therefore w ∈Mc. We conclude that f /∈ ⋂
w∈Mc

Sw , and the theorem is proved. �
Remark 13. Using the fact that ξαf̂ = ( −1

2πi
)|α|F[∂αf ], we have the following sufficient condition to ensure that a

smooth function f belongs to S0: There exists C � 0 such that∥∥∥∥ |x|kf
(k ln k)k

∥∥∥∥∞
+ sup

|α|=k

∥∥∥∥ ∂αf

(k lnk)k

∥∥∥∥
1
� Ck+1,

for k � 2.

Remark 14. Let {ak} be an increasing sequence of positive numbers. We recall the definition [4, Definition 1.5.3] of
the Denjoy–Carleman class C{ak} as those smooth functions f : R

n → C for which there exists C > 0 such that

sup
|α|=k

∥∥∥∥∂αf

ak
k

∥∥∥∥∞
� Ck+1.

The class C{ak} is said to be nonquasi-analytic if it contains nontrivial functions of compact support. In turn, this
is equivalent to the condition

∑
k�0

1
ak

< ∞ [4, Theorem 1.5.5]. A result in [4, Theorem 1.5.12], proves that

S0 ⊆ C{k lnk}. Since
∑

k�2
1

k ln k
diverges to ∞, it follows that S0 is quasi-analytic and thus, does not contain any

nontrivial function of compact support. This implies that
⋂

w∈Mc
Dw = {0}. That the intersection

⋂
w∈Mc

Dw is
trivial was already observed in [4].
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5. Convolution operators on SSS ′
w with kernels in SSS0

In this section, we study the action of a specific class of operator semigroups on the space S ′
wof w-tempered

distributions. We consider the semigroup {Et }t�0 defined on Sw as the convolution with the kernel t−nG( ·
t
),

Et(ϕ)(x) =
(

t−nG

(
x − y

t

)
, ϕ(y)

)
, (11)

for t > 0.
As a first example, we mention the Gauss–Weierstrass semigroup {Tt }t�0 defined by integration with respect to the

heat kernel,

T√
t (ϕ)(x) =

(
1

(4πt)n/2
e− |x−y|2

4t , ϕ(y)

)
=

(
t−n/2H

(
x − y

t1/2

)
, ϕ(y)

)
,

for t > 0. It is well known [12] that this is the semigroup T√
t = et� generated by the Laplacian � on R

n: Given
an appropriate ϕ : R

n → R, the function u : R
n × R

+ → R defined as u(x, t) = T√
t (ϕ)(x) is a solution to the heat

equation ut − �u = 0 with boundary u(x,0) = ϕ(x), which means

ϕ(x) = u(x,0) = lim
t→0+ T√

t (ϕ)(x),

where the convergence is uniform on bounded subsets of R
n. Another semigroup that we consider is the Ornstein–

Uhlenbeck semigroup Ke−t = etA, generated by the Ornstein–Uhlenbeck operator

A = 1

2
� − x · ∇

acting on the Hilbert space L2(Rn, e−|x|2dx). The action of this semigroup is given by integration with respect to the
Mehler kernel [12]

etAϕ(x) = Kr(ϕ)(x) =
(

e
− |y−rx|2

1−r2

πn/2(1 − r)n/2
, ϕ(y)

)
= (

Mr(x, y),ϕ(y)
)
, (12)

where we have set r = e−t ∈ (0,1). Here, the function u(x, t) = Kr(ϕ)(x) solves the boundary value problem
ut − Au = 0, u(x,0) = ϕ(x). The boundary condition is interpreted as

ϕ(x) = u(x,0) = lim
r→1− Kr(ϕ)(x),

with uniform convergence on bounded subsets of R
n. We note that both the Gauss–Weierstrass and the Mehler kernels

are nonnegative and satisfy∥∥∥∥t−n/2H

(
x − ·
t1/2

)∥∥∥∥
1
= 1,∥∥Mr(x, ·)∥∥1 = 1,

for every t > 0, 0 < r < 1 and x ∈ R
n. This is a general property of the class of symmetric diffusion semigroups to

which they belong (cf. [12,18]), and will be part of the hypotheses we place on our general convolution kernels G

in the sequel. As stated in Remark 2, w(x) = o(
|x|

ln |x| ) when |x| → ∞ and as a consequence, the Gauss–Weierstrass
kernel and the Mehler kernel both belong to the space S0. Thus, we may apply Corollary 10 to conclude that the
operators T√

t and Kr are well defined on S ′
w for every w ∈ Mc. What interests us is whether we can prove the

existence of the limits

lim
t→0+ T√

t (L) = L,

lim
r→1− Kr(L) = L (13)

in the sense of the strong dual topology of S′
w . Doing so would complete our assertion that the w-tempered distribu-

tions can be realized as boundary values to solutions of the generalized heat equation.
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Let {Et }t�0 be the semigroup defined by (11) for t > 0. We assume that the kernel t−nG( ·
t
) belongs to S0, it is

nonnegative and satisfies ‖t−nG( ·
t
)‖1 = 1, for each t > 0. Using Corollary 10 and Theorem 12, the action of Et on

L ∈ S ′
w , for any w ∈ Mc, is found by defining Et(L) to be the functional given by integration against the function

ρ(x) of (7). Using Lemma 9, this is equivalent to setting

(
Et(L),ϕ

)
S ′

w,Sw
=

(
Ly,

(
t−nG

(
x − y

t

)
, ϕ(x)

))
S ′

w,Sw

.

Then, the existence of the limit

lim
t→0+ Et(L) = L,

in the sense of the strong dual topology of S′
w , is equivalent to(

t−nG

(
x − ·

t

)
, ϕ(x)

)
S ′

w,Sw

→ ϕ

in Sw , as t → 0+, uniformly on bounded subsets of Sw . This is the content of our next result.

Theorem 15. Let t−nG( ·
t
) be as above and let B be a fixed bounded subset of Sw . Then(

t−nG

(
x − ·

t

)
, ϕ(x)

)
S ′

w,Sw

→ ϕ

in Sw , as t → 0+, uniformly for ϕ ∈ B .

Proof. We recall Definition 3 and Proposition 5 concerning the structure of Sw . From this, it suffices to estimate the
norms∥∥∥∥ekw

[(
t−nG

(
x − ·

t

)
, ϕ(x)

)
− ϕ

]∥∥∥∥∞
and ∥∥∥∥ekwF

[
t−n

(
G

(
x − ·

t

)
, ϕ(x)

)
− ϕ

]∥∥∥∥∞
given by Proposition 5 in terms of the norms ‖ekw∂αϕ‖∞ and ‖ekw∂αϕ̂‖∞ given by Definition 3. We assume in all
that follows that t < 1. We can write

ekw(y)

∣∣∣∣
(

t−nG

(
x − y

t

)
, ϕ(x)

)
− ϕ(y)

∣∣∣∣ =
∫
Rn

ekw(y)G(z)
∣∣ϕ(y + tz) − ϕ(y)

∣∣dz

� I1 + I2 + I3,

where we have defined

I1 =
∫

|z|�M

ekw(y)G(z)
∣∣ϕ(y + tz) − ϕ(y)

∣∣dz,

I2 =
∫

|z|�M

ekw(y)G(z)
∣∣ϕ(y + tz)

∣∣dz,

I3 =
∫

|z|�M

ekw(y)G(z)
∣∣ϕ(y)

∣∣dz,

for M > 0 to be determined later. We begin by estimating I1. Using the Mean Value Theorem and the subadditivity
of w, we may estimate I1 as
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I1 �
∫

|z|�M

ekw(y−y′)G(z)tM
∣∣ekw(y′) 
 ϕ(y′)

∣∣dz, (14)

for some y′ in the line segment between y and y + tz. Now, we note that w(y − y′) = Ω(|y − y′|) � Ω(|tz|) �
Ω(|z|) = w(z), since t < 1. We also remark that ‖ekwG‖1 < ∞. Thus, we obtain the estimate

I1 � tM
∥∥ekwG

∥∥
1

∥∥ekw 
 ϕ
∥∥∞.

We observe that there is a constant C > 0, depending only on the dimension n, for which ‖ekw 
 ϕ‖∞ �
C sup|α|=1 ‖ekw∂αϕ‖∞. This leads to the inequality

I1 � tMC
∥∥ekwG

∥∥
1 sup

|α|=1

∥∥ekw∂αϕ
∥∥∞. (15)

Next, we consider I2. Again, using the subadditivity of w, we obtain the bound

I2 �
∫

|z|�M

ekw(−tz)G(z)
∣∣ekw(y+tz)ϕ(y + tz)

∣∣dz.

Since w(−tz) = w(tz) � w(z), this reads

I2 �
∥∥ekwϕ

∥∥∞
∫

|z|�M

ekw(z)G(z) dz. (16)

Finally, for I3 we immediately obtain

I3 �
∥∥ekwϕ

∥∥∞
∫

|z|�M

ekw(y)G(z) dz. (17)

Thus, with k fixed and given any ε > 0, we may choose M sufficiently large so that both
∫
|z|�M

ekw(z)G(z) dz

in (16) and
∫
|z|�M

ekw(y)G(z) dz in (17) are < ε. Then, choosing t sufficiently small in (15), we can ensure that

tMC‖ekwG‖1 < ε as well.
Now, for each integer j � 0 and multi-index β , there exists Cj,β > 0 such that ‖ejw∂βϕ‖∞ � Cj,β for all ϕ ∈ B .

From this estimate, we conclude that the expression∥∥∥∥ekw

[(
t−nG

(
x − ·

t

)
, ϕ(x)

)
− ϕ

]∥∥∥∥∞
approaches 0 in Sw as t → 0+, uniformly on B .

Next, we consider

ekw(ξ)

∣∣∣∣F
[
t−n

(
G

(
x − ·

t

)
, ϕ(x)

)
− ϕ

]
(ξ)

∣∣∣∣ = ∣∣ekw(ξ)ϕ̂(ξ)
[
Ĝ(tξ) − 1

]∣∣.
We observe that∣∣Ĝ(tξ) − 1

∣∣ → 0,

as t → 0+, uniformly on compact subsets of R
n. We note also that for any integer j � 0 and multi-index β , there is

Cj,β > 0 such that ‖ejw∂βϕ̂‖∞ � Cj,β uniformly on B . In particular,∣∣ekw(ξ)ϕ̂(ξ)
∣∣ � Ck+1,0 e−w(ξ),

uniformly on B . Thus, we may choose M sufficiently large so that |ξ | � M implies |ekw(ξ)ϕ̂(ξ)| < ε, uniformly on B .
So, for such ξ the estimate∣∣ekw(ξ)ϕ̂(ξ)

[
Ĝ(tξ) − 1

]∣∣ � ε‖Ĝ − 1‖∞

holds. We may then choose t small enough so that |Ĝ(tξ) − 1| < ε, whenever |ξ | � M .
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Thus, the convergence of∥∥∥∥ekwF
[
t−n

(
G

(
x − ·

t

)
, ϕ(x)

)
− ϕ

]∥∥∥∥∞
to 0, uniformly on B , is established. This completes the proof of Theorem 15. �
Remark 16. Returning to the discussion of the Gauss–Weierstrass semigroup, we find, using Theorem 15, that the
operator T√

t (L) converges to L in the strong dual topology of S ′
w as t → 0+.

In attempting to apply the result of Theorem 15 to the Ornstein–Uhlenbeck operator, we need to be careful of the
fact that we cannot directly express the Mehler kernel Mr(x, y) in the form t−nG(

x−y
t

) for some function G ∈ S0.
Instead, we observe that since Mr(·, y) and Mr(x, ·) are both in S0, we can write the action of Kr on S ′

w explicitly
using the classical definition ([4, p. 373] and Lemma 9) as

(L ∗ Kr,ϕ)S ′
w,Sw

= (
Ly,

(
Mr(x, y),ϕ(x)

))
S ′

w,Sw
.

Thus, to obtain the limit L ∗ Kr → L as r → 1− in the strong dual topology, it suffices to prove the following result:

Proposition 17. Let B be a bounded subset of Sw . Then,(
Mr(x, ·), ϕ(x)

)
S ′

w,Sw
→ ϕ

in Sw , as r → 1−, uniformly on B .

Proof. The proof is similar to that of Theorem 15, but with a few adjustments. We begin again with∣∣∣∣ekw(y)

[∫
Rn

Mr(x, y)ϕ(x) dx − ϕ(y)

]∣∣∣∣.
Noting that

∫
Rn Mr(x, y) dx = r−n, we may estimate this as

�
∫
Rn

ekw(y)Mr(x, y)
∣∣ϕ(x) − rnϕ(y)

∣∣dx,

which we then estimate using the two terms

�
∫
Rn

ekw(y)Mr(x, y)
∣∣ϕ(x) − ϕ(y)

∣∣dx + (
1 − rn

)∫
Rn

ekw(y)Mr(x, y)
∣∣ϕ(y)

∣∣dx.

Introducing the formula given in (12) for the Mehler kernel Mr and making the substitution z = y−rx√
1−r2

, this reads

� π−n/2r−n

∫
Rn

ekw(y)e−|z|2
∣∣∣∣ϕ

(
y − z

√
1 − r2

r

)
− ϕ(y)

∣∣∣∣dz

+ π−n/2r−n
(
1 − rn

)∫
Rn

ekw(y)e−|z|2 ∣∣ϕ(y)
∣∣dz. (18)

We observe that the second term in (18) is bounded by π−n/2r−n(1 − rn)‖e−|z|2‖1‖ekwϕ‖∞, and hence approaches 0
as r → 1−, uniformly on B . As for the first term, we estimate it as

� π−n/2r−n

∫
Rn

ekw(y)e−|z|2
∣∣∣∣ϕ

(
y − z

√
1 − r2

r

)
− ϕ

(
y

r

)∣∣∣∣dz

+ π−n/2r−n

∫
n

ekw(y)e−|z|2
∣∣∣∣ϕ

(
y

r

)
− ϕ(y)

∣∣∣∣dz. (19)
R
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To prove that the first term in (19) approaches 0 as r → 1−, uniformly on B , we can proceed essentially as in the
proof of Theorem 15. We will omit the details.

As for the second term, we note that applying the Mean Value Theorem, there is z′ in the line segment between y
r

and y such that |ϕ(
y
r
) − ϕ(y)| = 1−r

r
|y|| 
 ϕ(z′)|. Since |y| � |z′|, we estimate the second term in (19) as

� π−n/2r−n 1 − r

r

∫
Rn

ekw(z′)e−|z|2 ∣∣∇ϕ(z′)
∣∣|y|dz. (20)

Next, we recall from condition 4 in Definition 1 that there is a positive integer N and a constant C > 0 for which
|y| � CeNw(y) � CeNw(z′). Substituting this into (20), we obtain the estimate

� π−n/2r−n 1 − r

r

∥∥e−|z|2∥∥
1C sup

|α|=1

∥∥e(N+k)w∂αϕ
∥∥∞, (21)

where, as in (15), the constant C > 0 only depends on the dimension n. This term clearly approaches 0 as r → 1−,
uniformly on B . So, we conclude that the term∥∥∥∥ekw

[∫
Rn

Mr(x, ·)ϕ(x) dx − ϕ

]∥∥∥∥∞

does as well.
As for∣∣∣∣ekw(ξ)F

[∫
Rn

Mr(x, y)ϕ(x) dx − ϕ(y)

]
(ξ)

∣∣∣∣, (22)

we use again the expression given in (12) for Mr and the Fubini–Tonelli theorem to rewrite (22) as

ekw(ξ)

∣∣∣∣r−ne− (1 − r2)|ξ |2
4

ϕ̂(rξ) − ϕ̂(ξ)

∣∣∣∣.
This expression can be estimated as

� ekw(ξ)

∣∣∣∣
(

r−ne− (1 − r2)|ξ |2
4

− 1

)
ϕ̂(rξ)

∣∣∣∣ + ekw(ξ)
∣∣ϕ̂(rξ) − ϕ(ξ)

∣∣.
If we choose an integer M > 2, then M > 1

r
for all r ∈ ( 1

2 ,1). From the subadditivity of w, we find that w(ξ) �
Mw(rξ) for all such r and this establishes the inequality

� eMkw(rξ)

∣∣∣∣
(

r−ne− (1 − r2)|ξ |2
4

− 1

)
ϕ̂(rξ)

∣∣∣∣ + eMkw(rξ)
∣∣ϕ̂(rξ) − ϕ(ξ)

∣∣,
for all r ∈ ( 1

2 ,1). From the discussion at the end of Theorem 15, this implies that the term

sup
ξ∈Rn

[
eMkw(rξ)

∣∣∣∣
(

r−ne− (1 − r2)|ξ |2
4

− 1

)
ϕ̂(rξ)

∣∣∣∣
]

converges to 0 as r → 1−, uniformly on B .
As for the term

eMkw(rξ)
∣∣ϕ̂(rξ) − ϕ(ξ)

∣∣,
the Mean Value Theorem gives z′′ along the line segment between rξ and ξ for which |ϕ̂(rξ) − ϕ(ξ)| =
1−r
r

|rξ ||∇ϕ(z′′)|. Thus, we obtain the estimate

� C
1 − r

r
sup
|α|=1

∥∥e(N+k)w∂αϕ̂
∥∥∞,

using an argument similar to the one leading to (21). This completes the proof of Proposition 17. �
Remark 18. We conclude that, just as with the Gauss–Weierstrass semigroup, the functionals in the space S ′

w can be
realized as boundary values of solutions to the differential equation ut − Au = 0.
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