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We consider ideals I of subsets of the set of natural numbers such that for every
conditionally convergent series

∑
n∈ω an and every r ∈ R there is a permutation πr :ω → ω

such that
∑

n∈ω aπr (n) = r and{
n ∈ ω: πr(n) �= n

} ∈ I.

We characterize such ideals in terms of extendability to a summable ideal (this answers
a question of Wilczyński). Additionally, we consider Sierpiński-like theorems, where one
can rearrange only indices with positive an .

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

A well-known theorem of Riemann [21, p. 235] says that if a series of real numbers is conditionally convergent, then it
can be rearranged to converge to an arbitrarily taken real number or to diverge to +∞ or −∞. In other words, for every
conditionally convergent series

∑
n∈ω an and r ∈ R there exists a permutation π :ω → ω such that

∑
n∈ω aπ(n) = r. (The set

of natural numbers is denoted by ω.)
In this paper, we consider a question if it is always possible to take the permutation π :ω → ω, in Riemann’s theorem,

so that it changes only a small set of terms of the series.
Of course, the answer depends on the notion of smallness we will consider. In this paper we focus on the notion of

smallness induced by ideals of subsets of the set of natural numbers. Namely, for an ideal I ⊂ P (ω) we say that a permu-
tation π :ω → ω changes only small set of ω if {n ∈ ω: π(n) �= n} ∈ I .

We will say that an ideal I ⊂ P (ω) has the (R) property if for every conditionally convergent series
∑

n∈ω an and r ∈ R

there is a permutation πr :ω → ω such that
∑

n∈ω aπr(n) = r and
{
n ∈ ω: πr(n) �= n

} ∈ I.

It was already proved by Wilczyński [28] that the ideal Id (the ideal of sets of asymptotic density zero) has the (R) prop-
erty. In his paper, Wilczyński also proved the following theorem: if

∑
n∈ω an is conditionally convergent series then there
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exists a set A ⊂ ω such that A ∈ Id and the series
∑

n∈A an is also conditionally convergent. It is not difficult to see that
from this results one can easily get that the ideal Id has the (R) property.

We will say that an ideal I ⊂ P (ω) has the (W ) property if for every conditionally convergent series
∑

n∈ω an there is
A ∈ I such that

∑
n∈A an is also conditionally convergent. Wilczyński asked [28, Question 1] to find a characterization of

ideals which have the (W ) property.
In Section 3, we show (Theorem 3.3) that both properties (R) and (W ) are equivalent. Moreover, we characterize these

properties in terms of extendability to summable ideals (Theorem 3.3)—and this answers the question of Wilczyński.
Moreover, we give a sufficient condition for an ideal to have the (R) property in terms of the Bolzano–Weierstrass

property (Corollary 3.5). We also show that for density ideals this condition is also necessary (Proposition 3.7).
In Section 4 we examine ideal version of some theorems of Sierpiński which strengthen Riemann’s theorem.
For another characterizations of the set of permutations for which a series stays convergent (divergent, convergent to

the same limit) see e.g. [1,22,18,10,15,11,19,5,20]. Smith in [26] considered very similar question if for every non-absolutely
convergent series and r ∈ R there is a permutation of a given type which makes a series convergent to r. The rearrangements
of series convergent with regard to the ideal Id was considered in paper [4].

It is known that the properties (R) and (W ) are equivalent to the Positive Summability Property, which was considered
in the literature, see e.g. [6,2].

2. Preliminaries

The cardinality of a set X is denoted by |X |. We do not distinguish between natural number n and the set {0,1, . . . ,n−1}.
For a given sequence (an)n∈ω we define a+

n = max{an,0} and a−
n = min{an,0}. For a series

∑
n∈ω an and A ⊂ ω, by∑

n∈A an we denote the series
∑

n∈ω χA(n) · an . By R = R ∪ {−∞,+∞} we mean the extended real line.
An ideal on ω is a family I ⊂ P (ω) (where P (ω) denotes the power set of ω) which is closed under taking subsets and

finite unions. By Fin we denote the ideal of all finite subsets of ω. If not explicitly said we assume that all considered ideals
are proper ( �= P (ω)) and contain all finite sets. We can talk about ideals on any countable set by identifying this set with ω
via a fixed bijection.

An ideal I is a P-ideal if for every sequence (An)n∈ω of sets from I there is A ∈ I such that An \ A ∈ Fin for all n, i.e. An
is almost contained in A for each n.

An ideal I is called dense if every A /∈ I contains an infinite subset that belongs to the ideal.

2.1. Analytic ideals

By identifying sets of naturals with their characteristic functions, we equip P (ω) with the Cantor-space topology and
therefore we can assign the topological complexity to the ideals of sets of integers. In particular, an ideal I is Fσ (analytic)
if it is an Fσ subset of the Cantor space (if it is a continuous image of a Gδ subset of the Cantor space, respectively).

A map φ : P (ω) → [0,∞] is a submeasure on ω if

φ(∅) = 0,

φ(A) � φ(A ∪ B) � φ(A) + φ(B),

for all A, B ⊂ ω. It is lower semicontinuous if for all A ⊂ ω we have

φ(A) = lim
n→∞φ(A ∩ n).

For any lower semicontinuous submeasure on ω, let ‖ · ‖φ : P (ω) → [0,∞] be the submeasure defined by

‖A‖φ = lim sup
n→∞

φ(A \ n) = lim
n→∞φ(A \ n),

where the second equality follows by the monotonicity of φ. Let

Exh(φ) = {
A ⊂ ω: ‖A‖φ = 0

}
,

Fin(φ) = {
A ⊂ ω: φ(A) < ∞}

.

It is clear that Exh(φ) and Fin(φ) are ideals (not necessarily proper) for an arbitrary submeasure φ.
All analytic P-ideals are characterized by the following theorem of Solecki.

Theorem 2.1. (See [27].) The following conditions are equivalent for an ideal I on ω.

(1) I is an analytic P-ideal;
(2) I = Exh(φ) for some lower semicontinuous submeasure φ on ω.

Moreover, for Fσ ideals the following characterization holds.
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Theorem 2.2. (See [17].) The following conditions are equivalent for an ideal I on ω.

(1) I is an Fσ ideal;
(2) I = Fin(φ) for some lower semicontinuous submeasure φ on ω.

Below we present a few examples of analytic ideals. More examples can be found in Farah’s book [7].

Example 2.3. The ideal of sets of asymptotic density 0

Id =
{

A ⊂ ω: lim sup
n→∞

|A ∩ n|
n

= 0

}
,

is an analytic P-ideal. If we denote

φd(A) = sup

{ |A ∩ n|
n

: n ∈ ω

}
,

then d(A) = ‖A‖φd and Id = Exh(φd).

Example 2.4. (See Just and Krawczyk [13].) For a function f :ω → R
+ we define the Erdös–Ulam ideal by

E U f =
{

A ⊂ ω: lim
n→∞

∑
i∈A∩n f (i)∑

i∈n f (i)
= 0

}
.

This is an analytic P-ideal. And for f (n) = 1 we get the ideal Id .

Example 2.5. (See Farah [7].) Assume that In are pairwise disjoint intervals on ω, and μn is a measure that concentrates
on In . Then φ = supn μn is a lower semicontinuous submeasure and Z(μ) = Exh(φ) is called a density ideal. Every Erdös–
Ulam ideal is a density ideal.

Example 2.6. (See Louveau and Veličković [16].) Let {ni}i∈ω be an increasing sequence of natural numbers. Let Ii be pairwise
disjoint intervals on ω such that |Ii | = 2ni . Let φi be a submeasure on Ii given by

φi(A) = log2(|A ∩ Ii| + 1)

ni
.

Then φ = supi φi is a lower semicontinuous submeasure and L V {ni} = Exh(φ) is called a Louveau–Veličković ideal.

Example 2.7. The ideal

I 1
n

=
{

A ⊂ ω:
∑
n∈A

1

n
< ∞

}

is an Fσ P-ideal. If φ is a submeasure defined by the formula

φ(A) =
∑
n∈A

1

n

then I 1
n

= Fin(φ) = Exh(φ).

Example 2.8. (See Mazur [17].) For f :ω → R
+ such that

∑
n∈ω f (n) = +∞ we define the summable ideal by

I f =
{

A ⊂ ω:
∑
n∈A

f (n) < ∞
}
.

Every summable ideal is an Fσ ideal. For f (n) = 1
n we get the ideal I 1

n
.

Example 2.9. The ideal of arithmetic progressions free sets

W = {W ⊂ ω: W does not contain arithmetic progressions of all lengths}
is an Fσ ideal which is not a P-ideal. The fact that W is an ideal follows from the non-trivial theorem of van der Waerden.
This ideal was first considered by Kojman in [14].
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2.2. Bolzano–Weierstrass property

Let I be an ideal on ω, A ⊂ ω and (xn)n∈ω be a sequence of reals. By (xn) � A we mean a subsequence (xn)n∈A . We say
that (xn) � A is I -convergent to x ∈ R if {n ∈ A: |xn − x| � ε} ∈ I for every ε > 0.

An ideal I on ω is called:

(1) Fin-BW if for any bounded sequence (xn)n∈ω of reals there is A /∈ I such that (xn) � A is convergent;
(2) BW if for any bounded sequence (xn)n∈ω of reals there is A /∈ I such that (xn) � A is I -convergent.

By the well-known Bolzano–Weierstrass theorem, the ideal Fin is Fin-BW. For the discussion and applications of these
properties see [9]. In particular, it is known that the ideal Id of sets of asymptotic density 0 is not BW, and every Fσ ideal
is Fin-BW. Moreover, in the paper [8] the authors show how these properties are connected with Ramsey’s theorem.

3. Riemann’s theorem

Lemma 3.1. If an ideal I has the (R) property then it is dense.

Proof. Suppose that the ideal I is not dense. Let A ⊂ ω be such that |A| = ω and for every B ⊂ A, B ∈ I ⇐⇒ |B| < ω. Let
A = {nk: k ∈ ω} and n0 < n1 < · · · . Let ank = (−1)k/k for every k ∈ ω and an = 0 for n ∈ ω \ A. Then the series

∑
n∈A an is

non-absolutely convergent. On the other hand, if B ⊂ ω, B ∈ I then∑
n∈B

|an| =
∑

n∈B∩A

|an| < ∞

since |B ∩ A| < ∞. Thus I does not have the (R) property. �
Lemma 3.2. No summable ideal has the (R) property.

Proof. Let f :ω → [0,∞) and I = {A ⊂ ω:
∑

a∈A f (n) < ∞}. We have two cases:

(1) There is ε > 0 such that Aε = {n ∈ ω: f (n) � ε} is infinite.
(2) limn→∞ f (n) = 0.

In the first case the ideal I is not dense (see e.g. [12, Lemma 1.4]), so by Lemma 3.1 it does not have the property (R).
Now assume the second case. Since limn→∞ f (n) = 0 and

∑
n∈ω f (n) = ∞, there are sequences (Mn)n∈ω and (Nn)n∈ω

such that:

(1) M0 < N0 < M1 < N1 < · · · ,
(2) 1

n+2 <
∑Nn

i=Mn
f (i) � 1

n+1 .

Let

A =
⋃
n∈ω

[Mn, Nn] ∩ ω

and ai = (−1)n · f (i) if i ∈ [Mn, Nn] for some n ∈ ω and ai = 0 otherwise.
It is not difficult to see that, by well-known Leibnitz’s criterion,

∑
i∈ω ai = s is conditionally convergent.

Note that if B ∈ I then
∑

i∈B ai is absolutely convergent. Indeed, since
∑

i∈B f (i) < ∞, then∑
i∈B

|ai| =
∑

i∈B∩A

|ai | =
∑

i∈B∩A

f (i) <
∑
i∈B

f (i) < ∞.

Let π :ω → ω be a permutation such that
∑

i∈ω aπ(i) = s+1 and C = {n ∈ ω: π(n) �= n} ∈ I . Let r = ∑
i∈C ai = ∑

i∈C aπ(i) .
Then

s − r =
∑
i∈ω

ai −
∑
i∈C

ai =
∑

i∈ω\C

ai =
∑
i∈ω

aπ(i) −
∑
i∈C

aπ(i) = s + 1 − r,

a contradiction. �
Theorem 3.3. Let I be an ideal on ω. The following are equivalent.

(1) I has the (R) property.
(2) I cannot be extended to a summable ideal.
(3) I has the (W ) property.
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Proof. (1) ⇒ (2). It is easy to see that if a series
∑

n∈ω an witnesses that J does not have the (R) property then it also
witnesses that I does not have the (R) property for each I ⊂ J . Hence, if I can be extended to a summable ideal, then by
Lemma 3.2 it cannot have the (R) property.

(2) ⇒ (3). Suppose that I does not satisfies (W ). Let
∑

n∈ω an be a series which witnesses this fact.
We claim that then either

∑
n∈A a+

n < +∞ for every A ∈ I , or
∑

n∈A a−
n > −∞ for every A ∈ I . Indeed, suppose that

there is A ∈ I with
∑

n∈A a+
n = +∞ and there is B ∈ I with

∑
n∈B a−

n = −∞. Then C = A ∪ B ∈ I and
∑

n∈C a+
n = +∞ and∑

n∈C a−
n = −∞ as well. Then there exists D ⊂ C such that

∑
n∈D an is conditionally convergent, a contradiction.

Without loss of generality, suppose that
∑

n∈A a+
n < +∞ for every A ∈ I . Let f :ω → R be given by f (n) = a+

n for every
n ∈ ω. Then the summable ideal I f extends I .

(3) ⇒ (1). Obvious. �
Remark. There is a well-known conjecture by Erdös and Turán which says that the van der Waerden ideal W is contained
in the ideal I 1

n
. Thus, if the ideal W had the (R) property then that conjecture would be false.

Corollary 3.4. Every maximal ideal has the (R) property.

Proof. Since there is no proper extension of a maximal ideal, it has the (R) property iff it is not a summable ideal.
Summable ideals are measurable (in fact Fσ ), but maximal ideals are non-measurable (see e.g. [3]). �
Corollary 3.5. If an ideal I is not BW then it has the (R) property.

Proof. Let I be an ideal which does not have the (R) property. Then by Theorem 3.3 there is a summable ideal I f ⊃ I .
Since every summable ideal is Fσ ideal and every Fσ ideal is Fin-BW [9, Proposition 3.4] we have that I is also
Fin-BW [9, Proposition 4.1] hence BW. �

For more examples of ideals which are not BW see [9]. For instance, we know that Id is not BW, hence it has the (R)

property—so we get a different proof of Wilczyński’s theorem [28].
The above corollary cannot be reversed. All maximal ideals are BW (see e.g. [9]) and they also have the (R) property.
The above corollary cannot be reversed even in the class of all analytic ideals. For instance, Mazur has given an example

of Fσ ideal (hence BW) which cannot be extended to a summable ideal (see [17, Theorem 1.9]). The ideal introduced by
Mazur is not a P-ideal. In the following example we show how to modify it to get an Fσ P-ideal which cannot be extended
to a summable ideal.

Example 3.6. By [17, Lemma 1.8] for every n > 0 there exists a finite set Kn and a family Sn ⊂ P (Kn) such that:

(1) ∀w1, . . . , wn ∈ Sn (w1 ∪ · · · ∪ wn �= Kn);
(2) if P is a probability distribution on Kn then there exists a w ∈ Sn such that P (w) � 1/2.

Assume that {Kn: n ∈ ω} is a partition of ω into intervals, and define φn : P (Kn) → [0,∞) by

φn(A) = min
{
|S|: S ⊂ Sn and A ⊂

⋃
S

}

for any A ⊂ Kn . For any B ⊂ ω let

φ(B) =
∞∑

n=1

1

n
· φn(B ∩ Kn)

φn(Kn)
.

Let I = Fin(φ) = Exh(φ). We claim that I �⊂ I f for any summable ideal I f . Indeed, let f :ω → [0,∞) with
∑∞

i=0 f (i) = ∞.
For each n define a probability distribution Pn

f on Kn by Pn
f ({i}) = f (i)/

∑
j∈Kn

f ( j). Pick wn ∈ Sn with Pn
f (wn) � 1/2,

and w = ⋃∞
n=1 wn . Then

∑
i∈w f (i) � 1/2 · ∑∞

i=0 f (i) = ∞. Since φn(wn) = 1 and φn(Kn) � n, φ(w) �
∑∞

n=1
1

n2 < ∞. Thus
w ∈ I \ I f .

Below we show that there is a subclass of analytic P-ideals in which the property (R) and negation of BW are equivalent.

Proposition 3.7. A density ideal has the (R) property if and only if it is not BW ideal.

Proof. Let I = Exh(φ) where φ = supn μn and μn is a measure on an interval In . We have two cases:

(1) There is δ > 0 such that {n ∈ ω: φ({n}) > δ} is infinite.
(2) limn→∞ φ({n}) = 0.
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In the first case ideal I is not dense (see e.g. [12, Lemma 1.4]), so by Lemma 3.1 it does not have the (R) property.
Moreover I is BW ideal.

Assume the second case. Here we have two subcases:

(1) supn μn(In) < ∞.
(2) supn μn(In) = ∞.

In the first subcase the ideal I is an Erdös–Ulam ideal (by the result of Farah [7, Lemma 1.13.9]). On the other hand, it
is known that no Erdös–Ulam ideal is BW (see [9]), so by Corollary 3.5 the ideal I has the (R) property.

Now assume the second subcase. In [9] it is proved that in this case the ideal I is a BW ideal. So we have to show that
I does not have the (R) property.

It is not difficult to prove that there is a sequence (kn)n∈ω and sets (An)n∈ω such that:

(1) k0 < k1 < · · · ,
(2) An ⊂ Ikn for every n ∈ ω, and
(3) n < μkn (An) < n + 1.

Let A = ⋃
n∈ω An . Let

ai = (−1)n · μkn ({i})
n2

if i ∈ An for some n ∈ ω, and ai = 0 otherwise.
Since∑

i∈An

|ai| =
∑
i∈An

μkn ({i})
n2

= μkn(An)

n2

and
n

n2
<

μkn(An)

n2
<

n + 1

n2

we get that the series
∑

n∈ω an is conditionally convergent.
Now we will show that for every B ∈ I the series

∑
n∈B an is absolutely convergent. Let B ∈ I . Since

0 = ‖B‖φ = lim
k→∞

φ(B \ k) = lim
k→∞

(
sup

n
μn

(
(B \ k) ∩ In

))
,

there is N ∈ ω such that for every n � N , μn(B ∩ In) < 1. On the other hand,

∑
i∈B

|ai| =
∑
n∈ω

( ∑
i∈In∩B

|ai|
)

=
∑
n∈ω

( ∑
i∈In∩B

μkn({i})
n2

)
=

∑
n∈ω

μkn (An ∩ B)

n2

=
∑
n<N

μkn(An ∩ B)

n2
+

∑
n�N

μkn(An ∩ B)

n2
<

∑
n<N

μkn(An ∩ B)

n2
+

∑
n�N

1

n2
< ∞.

So
∑

n∈B an is absolutely convergent. It follows that I /∈ (W ), and by Theorem 3.3 I does not have the (R) property. �
An example of analytic P-ideal which is not a density ideal is the Louveau–Veličković ideal. This ideal is BW (see [9])

and as we show below this ideal does not have the (R) property.

Proposition 3.8. A Louveau–Veličković ideal does not have the (R) property.

Proof. Let I = L V(ni) be a Louveau–Veličković ideal. Let an = (−1)i/(i · 2ni ) for n ∈ Ii and i ∈ ω, an = 0 otherwise. Since

∑
n∈Ii

an = (−1)i · |Ii | · 1

i · 2ni
= (−1)i · 2ni

i · 2i
= (−1)i

i
,

so the series
∑

n∈ω an is non-absolutely convergent.
Let A ∈ I . Then there is N ∈ ω such that for every i � N , |A ∩ Ii | < 2ni /i. Indeed, if there were infinitely many i’s with

|A ∩ Ii | � 2ni /i then for infinitely many i

φi(A) = log2(|A ∩ Ii| + 1)

ni
�

log2
2ni

i

ni
= 1 − log2 i

ni
→ 1,

so supi φi(A) > 0. Thus A /∈ I , a contradiction.
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On the other hand,

∑
n∈A

|ai| =
∑
i∈ω

( ∑
n∈Ii∩A

|an|
)

=
∑
i∈ω

|A ∩ Ii| · 1

i · 2ni

=
∑
i<N

|A ∩ Ii | · 1

i · 2ni
+

∑
i�N

|A ∩ Ii | · 1

i · 2ni

�
∑
i<N

|A ∩ Ii | · 1

i · 2ni
+

∑
i�N

2ni

i
· 1

i · 2ni
=

∑
i<N

|A ∩ Ii| · 1

i · 2ni
+

∑
i�N

1

i2
< ∞.

So
∑

n∈A an is absolutely convergent for every A ∈ I . Thus I /∈ (W ), so it does not have the (R) property. �
4. Sierpiński-like theorems

Sierpiński [23–25] proved the following versions of Riemann’s theorem:

(1) For every conditionally convergent series
∑

n∈ω an and every r ∈ R, there is a permutation π :ω → ω such that∑
n∈ω aπ(n) = r and

an < 0 ⇐⇒ aπ(n) < 0

for every n ∈ ω.
(2a) For every conditionally convergent series

∑
n∈ω an = s and every r � s, there is a permutation π :ω → ω such that∑

n∈ω aπ(n) = r and

an < 0 ⇒ π(n) = n

for every n ∈ ω.
(2b) For every conditionally convergent series

∑
n∈ω an = s and every r � s, there is a permutation π :ω → ω such that∑

n∈ω aπ(n) = r and

an > 0 ⇒ π(n) = n

for every n ∈ ω.

In [28], Wilczyński proved that in Sierpiński’s theorems one can require that {n ∈ ω: π(n) �= n} ∈ Id . Below we show
that ideals for which ideal version of Sierpiński’s theorems hold are exactly ideals which have the (R) property.

Theorem 4.1. Let I be an ideal on ω. The following are equivalent:

(1) I has the (R) property.
(2a) For every conditionally convergent series

∑
n∈ω an = s and every r � s, there is a permutation π :ω → ω such that∑

n∈ω aπ(n) = r, {n ∈ ω: π(n) �= n} ∈ I and

an < 0 ⇒ π(n) = n

for every n ∈ ω.
(2b) For every conditionally convergent series

∑
n∈ω an = s and every r � s, there is a permutation π :ω → ω such that∑

n∈ω aπ(n) = r, {n ∈ ω: π(n) �= n} ∈ I and

an > 0 ⇒ π(n) = n

for every n ∈ ω.
(3) For every conditionally convergent series

∑
n∈ω an and every r ∈ R, there is a permutation π :ω → ω such that

∑
n∈ω aπ(n) = r,

{n ∈ ω: π(n) �= n} ∈ I and

an < 0 ⇐⇒ aπ(n) < 0

for every n ∈ ω.

Proof. (1) ⇒ (2a). Let
∑

n∈ω an = s be a conditionally convergent series and r � s. Then there is A ∈ I such that∑
n∈A an = s′ is conditionally convergent. Now, applying ordinary Sierpiński’s theorem to the series

∑
n∈A an = s′ � r − s + s′ ,

there is a permutation σ : A → A such that
∑

n∈A aσ(n) = r − s + s′ and an < 0 ⇒ σ(n) = n for every n ∈ A. Then the
permutation π :ω → ω given by π(n) = σ(n) if n ∈ A and π(n) = n otherwise is as required.

(2a) ⇒ (2b). Apply (2a) to the series
∑

n∈ω(−an).
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(2b) ⇒ (2a). Apply (2b) to the series
∑

n∈ω(−an).
(2b) ⇒ (3). Let

∑
n∈ω an = s be a conditionally convergent series and r ∈ R. If r � s then we are done by (2a), otherwise

we are done by (2b).
(3) ⇒ (1). Obvious. �
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