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The Cauchy problem of a nonlinear kinetic equation modeling the time evolution of a
cometary flow interacting with a force field is discussed, two kinds of existence results
for weak solutions are established for initial data having finite mass and finite kinetic
energy. The first one concerns a given force field which is assumed to be divergence free
with respect to the velocity variable, it is shown that there exists a nonnegative weak
solution to the Cauchy problem when the initial datum and the force field have reasonable
integrability. As a special case, we also consider a Lorentz field and give another type of
existence result. The second one deals with self-consistent electrostatic field, we show that
when the initial datum has an L2 integrability the system has a global nonnegative solution
which extends a previous result obtained by one of the authors.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Consider a cometary flow contained in the three-dimensional Euclid space R
3, the physical state of which is determined

by the one-particle distributional function, namely by the microscopic density f (t, x, ξ) � 0 of particles in the cometary flow
at time t � 0 and position x ∈ R

3, moving with velocity ξ ∈ R
3. In view of the theory of statistical physics, the macroscopic

density ρ f (t, x) and the bulk velocity u f (t, x) of the fluid are respectively defined by(
ρ f

ρ f u f

)
(t, x) =

∫
R3

(
1
ξ

)
f (t, x, ξ)dξ, t � 0, x ∈R

3. (1.1)

Let F (t, x, ξ) be a force field imposed on the cometary flow, then the time evolution of the microscopic density f (t, x, ξ) is
governed by (see, e.g., [12,30–32]){

∂t f + ξ · ∇x f + F (t, x, ξ) · ∇ξ f = Q u f ( f ),
f (0, x, ξ) = f0(x, ξ),

(1.2)

where f0(x, ξ) � 0 is the initial microscopic density of the cometary flow which is assumed to be known. The nonlinear
operator Q u f ( f ) is a simplified version of the collision integral modeling wave-particle interactions in the cometary flow
and is defined by Q u f ( f )(t, x, ξ) = Pu f ( f )(t, x, ξ) − f (t, x, ξ) with

Pu f ( f ) =
{

1
4π

∫
S2 f (t, x, u f + |ξ − u f |ω)dω, ρ f �= 0,

0, ρ f = 0,
(1.3)

where
∫
S2 · · ·dω denotes the Lebesgue integral on the unit sphere S

2 of R3.
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For the time being by ignoring the precise description of the collision integral for general Lebesgue measurable functions,
which will be specified in Lemma A.2 and Remark A.3, we only point out that the operator Pu f ( f ) is a nonlinear projector.
Consequently, the structure of Eq. (1.2) is similar to that of the classical BGK model of the Boltzmann equation (see, e.g.,
[4,25,33]), but it is fully nonlinear with infinitely many collision invariants [5,6].

The nonlinear evolutional equation (1.2) is an important kinetic model in the theory of astrophysical plasmas. A math-
ematical investigation of this model is initiated by P. Degond, J.L. López and P.F. Peyrard [5,6], more specifically, they were
devoted to the derivation of the equations governing the macroscopic regime at the level of the Hilbert expansion and the
Chapman–Enskog expansion.

Assuming that F (t, x, ξ) ≡ 0 and that the initial datum f0 ∈ L1 ∩ L∞(R3 × R
3) has finite velocity moment of order

two and has no vacuum regions, P. Degond, J.L. López and F. Poupaud [7] established, for the first time, the existence
of a nonnegative solution to the Cauchy problem (1.2), furthermore, conservation laws for mass, momentum and energy,
as well as an entropy dissipation law and the propagation of higher order moments, were derived. Those results were
extended in [13] to a bounded domain with reflecting boundary and to initial datum f0 permitting vacuum regions such
that 0 � (1 + |ξ |r) f0 ∈ L1(R3 × R

3) and f0 ∈ L p(R3 × R
3) for any r, p > 1, and existence and trends towards equilibria in

weak topology were also established. For more information on equilibrium solutions of Eq. (1.2) in the case of F (t, x, ξ) ≡ 0
and their links to the explicit solutions of the compressible Euler equations for monatomic gases, as well as perturbation
theory of global equilibria, we refer the readers to Refs. [14,15].

In this paper, we consider effects of force fields in several cases and establish global existence results of nonnegative
weak solutions. Firstly, we study the situation that the force field F (t, x, ξ) in (1.2) is given and incompressible with respect
to the velocity variable ξ , i.e., ∇ξ · F (t, x, ξ) ≡ 0. We show that if F (t, x, ξ) ∈ Lq([0, T ]×R

3
x ×R

3
ξ ) and f0(x, ξ) ∈ L p(R3

x ×R
3
ξ )

for p,q > 1 and 1
p + 1

q < 1, then the Cauchy problem (1.2) has a nonnegative solution f (t, x, ξ) ∈ L∞([0, T ], L p(R3
x ×R

3
ξ )) as

long as the second order velocity moment of the initial datum f0 is finite (Theorem 3.2).
In realistic applications, probably the most important case is that the force F (t, x, ξ) is an electromagnetic or Lorentz

field (see, e.g., [6,12,30]), namely F (t, x, ξ) = E(t, x) + ξ × B(t, x), where E(t, x) and B(t, x) are given electric intensity and
magnetic intensity respectively. In this circumstance, (1.2) is reduced to{

∂t f + ξ · ∇x f + [
E(t, x) + ξ × B(t, x)

] · ∇ξ f = Q u f ( f ),

f (0, x, ξ) = f0(x, ξ).
(1.4)

Our second aim is to find another set of reasonable conditions for the Lorentz field and the initial datum that ensure
the existence of a nonnegative solution to Eq. (1.4). As a matter of fact, we will show that if E(t, x) ∈ Lq([0, T ] × R

3),
B(t, x) ∈ L p′

([0, T ]×R
3) and f0 ∈ L p(R3 ×R

3) with p > 1 and q > 3 + p′ and if (1 +|ξ |2) f0 ∈ L1(R3 ×R
3), then there exists

a nonnegative solution to (1.4) in the function class L∞([0, T ], L p(R3
x ×R

3
ξ )) (Theorem 3.3).

Finally, we deal with the situation that the force field F (t, x, ξ) is self-consistent, namely it is generated by particles
themselves in the cometary flow. We only consider a simplified case F (t, x, ξ) = E(t, x), where E(t, x) is the electrostatic
field induced by the particles themselves, this means that we ignore the possibly existing magnetic field. It is well known
that E(t, x) = −∇xU (t, x) and −
xU (t, x) = ρ f (t, x) with lim|x|→∞ U (t, x) = 0 (see, e.g., [16,28]). Hence, we obtain the
following kinetic model:

∂t f + ξ · ∇x f + E · ∇ξ f = Q u f ( f ), f (0, x, ξ) = f0(x, ξ), (1.5)

−
xU (t, x) = ρ f (t, x), lim|x|→∞ U (t, x) = 0, (1.6)

E(t, x) = −∇xU (t, x). (1.7)

Obviously, if we replace the right-hand side of Eq. (1.5) with 0, then the system (1.5)–(1.7) is just the classical Vlasov–Poisson
system, which has already received a great deal of discussion (see, e.g., [1–3,8,19–24,26,27,29]).

Recently, assuming that the initial datum f0 belongs to L1 ∩ L∞(R3 ×R
3) and has finite velocity moment of order two,

the existence of a global nonnegative solution to the Cauchy problem (1.5)–(1.7) has been built in [34]. The L∞ regularity
condition on the initial datum is a quite strong constraint compared with known results for the classical Vlasov–Poisson
system [21], and it is probable that much lower integrability of the initial datum should guarantee global existence of a
nonnegative solution. Hence, the third aim of the present paper is to weaken the condition on the integrability of the initial
datum required in [34]. Actually we shall show that the L2 integrability is sufficient for the global existence of a nonnegative
solution (Theorem 4.1).

We remark that in this paper we shall only study weak solutions, i.e., solutions in the sense of distributions. For example,
a nonnegative function f (t, x, ξ) ∈ L1([0, T ); L1(R3 ×R

3)) is said to be a weak solution on [0, T ) to (1.4) if f (t, x, ξ) verifies

T∫
0

dt

∫
R3×R3

f
[
∂tφ + ξ · ∇xφ + (E + ξ × B) · ∇ξ φ

]
dx dξ +

∫
R3×R3

f0φ|t=0 dx dξ = −
T∫

0

dt

∫
R3×R3

Q u f ( f )φ dx dξ (1.8)

for any test function φ(t, x, ξ) ∈ C1
c ([0, T ) × R

3 × R
3). If in addition f (t, x, ξ) ∈ L1

loc([0,∞); L1(R3 × R
3)) and (1.8) is valid

for all T > 0, then f is said to be a global weak solution to (1.4).
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In the following of this paper, ‖ · ‖p always denotes the norm of the space L p(R3 × R
3) for 1 � p � ∞. Let f (t, x, ξ)

be a weak solution to the system (1.5)–(1.7), its kinetic energy and potential energy at time t are respectively defined by
[19–21,26]

Ek( f )(t) =
∫

R3×R3

|ξ |2 f (t, x, ξ)dx dξ and Ep( f )(t) =
∫
R3

∣∣∇xU (t, x)
∣∣2

dx. (1.9)

2. Regularizing effects of velocity averages

Regularizing effect of velocity averages has been proven to be an extremely powerful tool in kinetic theory (see, e.g.,
[17,18,9,11]). In this section, we shall deduce, from a general velocity averaging lemma obtained in [11] (Lemma 2.1 below),
an L1 compactness result for linear transport equations with external force fields.

Lemma 2.1. Let p ∈ (1,∞), let G ∈ L p(RN ×R
N ×R) and let f ∈ L p(RN ×R

N ×R) satisfy

∂t f + ξ · ∇x f = g in D ′(
R×R

N ×R
N)

(2.1)

with g = (I − �x)
τ/2(I − �ξ)

m/2G, τ ∈ [0,1), m � 0. Let ψ ∈ L∞(RN ) has compact support. Then
∫
RN f (t, x, ξ)ψ(ξ)dξ ∈

Bs,p
t (RN ×R), where Bs,p

t (RN ×R) denotes the usual Besov space and where

t = max{p,2}, s = (1 − τ )

(m + 1)
min

{
1

p
,

1

p′

}
.

According to Lemma 2.1, we have the following L1 velocity averaging result for linear transport equations with external
force fields.

Theorem 2.2. Let the sequence {Fn(t, x, ξ): n = 1,2, . . .} ⊂ C([0, T ]; C1
b (R3

x ×R
3
ξ )) be bounded in Lq

loc((0, T ) ×R
3 ×R

3) for q > 1

and satisfy ∇ξ · Fn = 0 (n = 1,2, . . .). Suppose that the sequences { fn: n = 1,2, . . .} is weakly compact in L1((0, T ) ×R
3 ×R

3) and
{gn: n = 1,2, . . .} is weakly compact in L1

loc((0, T ) ×R
3 ×R

3) such that

∂t fn + ξ · ∇x fn + Fn(t, x, ξ) · ∇ξ fn = gn (2.2)

in the distributional sense. Then for any bounded sequence {ψn(t, x, ξ): n = 1,2, . . .} ⊂ L∞([0, T ] ×R
3 ×R

3) that converges almost
everywhere, the sequence∫

R3

fn(t, x, ξ)ψn(t, x, ξ)dξ, n = 1,2, . . .

is compact in L1((0, T ) × R
3). Here and in the following, C1

b (RN ) denotes the space of continuously differentiable functions having
bounded derivatives on R

N up to order one.

Proof. Step 1: We assume that fn (and consequently gn) are supported in a common compact set K � (0, T )×R
3
x ×R

3
ξ and

ψn(t, x, ξ) = ψ(t, x, ξ) for all n � 1, where ψ(t, x, ξ) is a cutoff function such that ψ |K = 1. For any M > 1, define h1
n and h2

n
by {

∂th1
n + ξ · ∇xh1

n + Fn · ∇ξ h1
n = gn · χ{(t,x,ξ): |gn|�M},

h1
n(0, x, ξ) = 0

(2.3)

and {
∂th2

n + ξ · ∇xh2
n + Fn · ∇ξ h2

n = gn · χ{(t,x,ξ): |gn|�M},
h2

n(0, x, ξ) = 0.
(2.4)

Since fn(0, x, ξ) = 0 (due to the assumption on its support) and fn is the unique solution of (2.2), we have fn = h1
n + h2

n .
Let (Xn(s),Ξn(s)) = (Xn(s, t),Ξn(s, t)) be the characteristics flow determined by the vector field (ξ, Fn(t, x, ξ)), namely
(Xn(s),Ξn(s)) is the unique solution of the characteristic equation{

Ẋn(s) = Ξn(s), Xn(t) = x;
Ξ̇n(s) = Fn

(
s, Xn(s),Ξn(s)

)
, Ξn(t) = ξ,

then h2
n can be written as
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h2
n(t, x, ξ) =

t∫
0

gn · χ{|gn|�M}
(
s, Xn(s),Ξn(s)

)
ds.

Consequently, we have

T∫
0

∫
R

3
x×R

3
ξ

∣∣h2
n(t, x, ξ)

∣∣dt dx dξ � T

∫
|gn|�M

∣∣gn(t, x, ξ)
∣∣dt dx dξ.

Because gn is weakly compact and hence bounded in L1, we have

μ
({|gn| � M

})
� 1

M

T∫
0

∫
R

3
x×R

3
ξ

∣∣gn(t, x, ξ)
∣∣dt dx dξ � C

M
,

where C is the L1 bound of the set {gn: n = 1,2, . . .} and μ({|gn| � M}) is the Lebesgue measure of the set {|gn| � M}. The
last inequality and the Dunford–Pettis theorem for weak compactness of subset of L1 imply that

sup
n�1

∫
|gn|�M

∣∣gn(t, x, ξ)
∣∣dt dx dξ → 0, M → ∞.

Hence, we obtain

sup
n�1

T∫
0

∫
R

3
x×R

3
ξ

∣∣h2
n(t, x, ξ)

∣∣dt dx dξ → 0, M → ∞. (2.5)

On the other hand, h1
n solves

∂th
1
n + ξ · ∇xh1

n + Fn · ∇ξ h1
n = gn · χ{(t,x,ξ): |gn|�M}. (2.6)

It can be written as

h1
n(t, x, ξ) =

t∫
0

gn · χ{|gn|�M}
(
s, Xn(s),Ξn(s)

)
ds.

We define g1
n = gn · χ{(t,x,ξ): |gn |�M} , g2

n = −Fnh1
n , then

∂th
1
n + ξ · ∇xh1

n = g1
n + ∇ξ g2

n, (2.7)

where h1
n , g1

n and g2
n are bounded sequences in Lq

loc((0, T ) × R
3
x × R

3
ξ ). Lemma 2.1 implies that

∫
R

3
ξ

h1
nψ dξ is bounded in

Bs,q
t (R3 ×R) where t = max(q,2), s = (2 max(q,q′))−1 (notice that we could let q < ∞). Consequently,

∫
R

3
ξ

h1
nψ dξ compact

in L1((0, T ) × R
3
x). Combining this with (2.5),

∫
R

3
ξ

fnψ dξ has a compact ε-net
∫
R

3
ξ

h1
nψ dξ . So,

∫
R

3
ξ
ψ fn dξ is compact in

L1((0, T ) ×R
3
x).

Step 2: We assume that fn (and consequently gn) are supported in a common compact set K � (0, T ) × R
3
x × R

3
ξ and

ψn = ψ ∈ C∞((0, T ) ×R
3
x ×R

3
ξ ) also has compact support contained in K for all n � 1. Then fnψ satisfies(

∂t + ξ · ∇x + Fn(t, x, ξ) · ∇ξ

)
( fnψ) = gnψ + fn

(
∂t + ξ · ∇x + Fn(t, x, ξ) · ∇ξ

)
ψ.

Let f̃n = fnψ , g̃n = gnψ + fn(∂t + ξ · ∇x + Fn(t, x, ξ) · ∇ξ )ψ . Obviously, f̃n and g̃n satisfy the same hypotheses as fn and gn
in step 1. Then

∫
R

3
ξ

fnψ dξ is compact in L1((0, T ) ×R
3
x).

Step 3: We assume that fn (and consequently gn) are supported in a common compact set K � (0, T ) × R
3
x × R

3
ξ and

ψn = ψ ∈ L∞((0, T ) × R
3
x × R

3
ξ ) also has compact support contained in K for all n � 1. We can approximate ψ by C∞

functions φk such that

‖φk − ψ‖1 → 0, sup
k�1

‖φk‖∞ < ∞.

Then by the a.e. convergence of φk to ψ (choosing a subsequence if necessary), the Egorov’s theorem and the weak com-
pactness of fn in L1((0, T ) ×R

3
x ×R

3)
ξ
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sup
n�1

T∫
0

dt

∫
R

3
x

dx

∣∣∣∣
∫
R

3
ξ

φk fn dξ −
∫
R

3
ξ

ψ fn dξ

∣∣∣∣ � sup
n�1

∫
(0,T )×R

3
x×R

3
ξ

|φk − ψ || fn|dt dx dξ → 0, k → ∞.

This means by step 2 that for every ε > 0,
∫
R

3
ξ
ψ fn dξ has a compact ε-net

∫
R

3
ξ
φk fn dξ . So,

∫
R

3
ξ

fnψ dξ is compact in

L1((0, T ) ×R
3
x).

Step 4: We assume that fn (and consequently gn) are supported in a common compact set K � (0, T ) × R
3
x × R

3
ξ and

ψn ∈ L∞((0, T ) × R
3
x × R

3
ξ ) for all n � 1 with compact support contained in K , and we also assume that ψn is bounded in

L∞((0, T ) ×R
3
x ×R

3
ξ ) and a.e. convergence to ψ ∈ L∞((0, T ) ×R

3
x ×R

3
ξ ). Then

T∫
0

dt

∫
R

3
x

dx

∣∣∣∣
∫
R

3
ξ

ψn fn dξ −
∫
R

3
ξ

ψ fn dξ

∣∣∣∣ �
∫

(0,T )×R
3
x×R

3
ξ

|ψn − ψ || fn|dt dx dξ → 0, n → ∞.

By step 3,
∫
R

3
ξ

fnψn dξ is compact in L1((0, T ) ×R
3
x).

Step 5: The general case. Because of the weak compactness of fn(t, x, ξ) in L1((0, T ) ×R
3
x ×R

3
ξ ) and the boundedness of

ψn in L∞((0, T ) ×R
3
x ×R

3
ξ ), for any ε > 0 there exists a compact set K ⊂ (0, T ) ×R

3
x ×R

3
ξ such that

sup
n�1

T∫
0

∫
R

3
x×R

3
ξ

|ψn fn|χK c (t, x, ξ)dt dx dξ � ε.

Taking a cutoff function φ such that 0 � φ � 1, φ = 1 on K and suppφ ⊂ Kδ , where Kδ is the δ neighborhood of the set K .
By step 4,

∫
R

3
ξ
(φ fn)(φψn)dξ is compact in L1((0, T ) ×R

3
x) since φ fn and φψn have the same compact support Kδ and fnψ

satisfies

(
∂t + ξ · ∇x + Fn(t, x, ξ) · ∇ξ

)
( fnφ) = gnψ + fn

(
∂t + ξ · ∇x + Fn(t, x, ξ) · ∇ξ

)
φ.

On the other hand, we have

T∫
0

dt

∫
R

3
x

dx

∣∣∣∣
∫
R

3
ξ

ψn fn dξ −
∫
R

3
ξ

(φψn)(φ fn)dξ

∣∣∣∣ �
T∫

0

∫
R

3
x×R

3
ξ

|ψn fn|χK c (t, x, ξ)dt dx dξ � ε.

Then,
∫
R

3
ξ

fnψn dξ has a compact ε-net
∫
R

3
ξ
(φ fn)(φψn)dξ , hence

∫
R

3
ξ

fnψn dξ is compact in L1((0, T ) ×R
3
x). �

By Theorem 2.2 and a further cutoff argument, we can easily show the following result (see, e.g., [33]).

Corollary 2.3. Let the sequence {Fn(t, x, ξ): n = 1,2, . . .} ⊂ C([0, T ]; C1
b (R3

x ×R
3
ξ )) be bounded in Lq

loc([0, T ] ×R
3 ×R

3) for q > 1

and satisfy ∇ξ · Fn = 0 (n = 1,2, . . .). Suppose that the sequence { fn: n = 1,2, . . .} is weakly compact in L1((0, T ) × W x × R
3) for

any compact set W x �R
3 , and the sequence {gn: n = 1,2, . . .} is also weakly compact in L1

loc((0, T ) ×R
3 ×R

3) such that

∂t fn + ξ · ∇x fn + Fn(t, x, ξ) · ∇ξ fn = gn (2.8)

in the distributional sense. Then for any compact set Kx � R
3 and any bounded sequence ψn(t, x, ξ) ∈ L∞([0, T ] × Kx × R

3) that
converges almost everywhere, the sequence {∫

R3 fn(t, x, ξ)ψn(t, x, ξ)dξ : n = 1,2, . . .} is compact in L1((0, T ) × Kx).

Next, we review another type of regularizing result concerning velocity averages for any microscopic density, which is
useful when we deal with a given Lorentz field.

Lemma 2.4. Let 1 � p � ∞ with 1/p + 1/p′ = 1,0 � k′ � k and

r = k + 3/p′

k′ + 3/p′ + (k − k′)/p
.
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If f ∈ L p
+(R6) and

∫
R3

∫
R3 |ξ |k f (x, ξ)dξ dx < ∞ then

∫
R3 |ξ |k′

f (x, ξ)dξ ∈ Lr(R3) and∥∥∥∥
∫
R3

|ξ |k′
f (x, ξ)dξ

∥∥∥∥
r
� C‖ f ‖(k−k′)/(k+3/p′)

p

(∫
R3

∫
R3

|ξ |k f (x, ξ)dξ dx

)(k′+3/p′)/(k+3/p′)

where C = C(k,k′, p) > 0.

For the proof of this lemma, see, e.g., [28].

3. Existence of weak solutions for given fields

In this section, we deal with the Cauchy problems (1.2) and (1.4). Firstly, we consider smooth external force fields, namely
F (t, x, ξ) ∈ C([0, T ]; C1

b (R3
x ×R

3
ξ )), or E(t, x) and B(t, x) ∈ C([0, T ]; C1

b (R3)). In these cases, the methods used in Refs. [7,13,
25,33,34] are applicable, specifically we can show the following lemma.

Lemma 3.1. Let the initial datum f0(x, ξ) be a nonnegative function such that(
1 + |ξ |2) f0 ∈ L1(

R
3 ×R

3), f0 ∈ L∞(
R

3 ×R
3). (3.1)

(1) If F (t, x, ξ) ∈ C([0, T ]; C1
b (R3

x × R
3
ξ )) and ∇ξ · F (t, x, ξ) = 0, then there exists a nonnegative weak solution f (t, x, ξ) to the

Cauchy problem (1.2) with∥∥ f (t)
∥∥

1 = ‖ f0‖1,
∥∥ f (t)

∥∥∞ � ‖ f0‖∞, 0 � t � T (3.2)

and

Ek( f )(t) �
(
E1/2

k ( f0) + T ‖F‖∞‖ f0‖1/2
1

)2
, 0 � t � T . (3.3)

(2) If E(t, x) ∈ C([0, T ]; C1
b (R3)) and B(t, x) ∈ C([0, T ]; C1

b (R3)), then there exists a nonnegative weak solution f (t, x, ξ) to the
Cauchy problem (1.4) with∥∥ f (t)

∥∥
1 = ‖ f0‖1,

∥∥ f (t)
∥∥∞ � ‖ f0‖∞, 0 � t � T (3.4)

and

Ek( f )(t) �
(
E1/2

k ( f0) + T ‖E‖∞‖ f0‖1/2
1

)2
, 0 � t � T . (3.5)

To shorten the presentation of this paper, we skip the proof of this lemma (for the details of the proof, we refer the
readers to [34]), and turn to describing our first result.

Theorem 3.2. Let the initial datum f0(x, ξ) be a nonnegative function such that(
1 + |ξ |2) f0 ∈ L1(

R
3 ×R

3), f0 ∈ Lp(
R

3 ×R
3), (3.6)

and let F (t, x, ξ) ∈ Lq([0, T ] ×R
3
x ×R

3
ξ ) such that ∇ξ · F = 0 in the distributional sense, where 1

p + 1
q < 1. Then there exists a weak

solution f (t, x, ξ) to the Cauchy problem (1.2) such that∥∥ f (t)
∥∥

1 = ‖ f0‖1,
∥∥ f (t)

∥∥
p � ‖ f0‖p, 0 � t � T . (3.7)

Proof. To prove this theorem, we will use asymptotic methods in kinetic theory developed in recent years, the main tools
are velocity averaging lemmas and renormalization method. Let F ε = F (t, x, ξ) ∗ ηε(t, x, ξ), where ηε is the mollifier. Then,
∇ξ · F ε = 0, F ε(t, x, ξ) ∈ C([0, T ]; C1

b (R3
x ×R

3
ξ )) and∥∥F ε

∥∥
Lq([0,T ]×R

3
x×R

3
ξ )

� ‖F‖Lq([0,T ]×R
3
x×R

3
ξ ), (3.8)

F ε → F , in Lq([0, T ] ×R
3
x ×R

3
ξ

)
, if q �= ∞. (3.9)

By Lemma 3.1, we know that there is a solution f ε to⎧⎪⎨
⎪⎩

∂t f ε + ξ · ∇x f ε + F ε · ∇ξ f ε = Q u f ε

(
f ε

)
,

f ε
0 (x, ξ) = min

{
f0(x, ξ),

1
}

+ ε exp
(−(|x|2 + |ξ |2)) (3.10)
ε
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such that∥∥ f ε(t)
∥∥

1 = ∥∥ f ε
0

∥∥
1 � ‖ f0‖1 + π3, 0 � t � T . (3.11)

Next, we show that ‖ f ε(t)‖p is uniformly bounded. Let β(·) = | · |p, for any fixed ε, we have

β
(

f ε
)
, F ε · β(

f ε
)
, β ′( f ε

) · Q u f ε

(
f ε

) ∈ L1
loc

([0, T ] ×R
3 ×R

3),
and β(u) is Lipschitz continuous on any bounded interval. Following from the discuss about mild solution and distributional
solution in [10], we have that β( f ε) satisfy

∂tβ
(

f ε
) + ξ · ∇xβ

(
f ε

) + F ε · ∇ξ β
(

f ε
) = β ′( f ε

)
Q u f ε

(
f ε

)
in the sense of distributions. In view of Lemma A.2, we have∥∥ f ε(t)

∥∥
p �

∥∥ f ε
0

∥∥
p � ‖ f0‖p + π3, 0 � t � T . (3.12)

Notice that the lower bound on the initial datum f ε
0 , it is easy to get the lower bound of ρ f ε , which yields that∥∥Pu f ε

(
f ε

)
(t)

∥∥
p �

∥∥ f ε(t)
∥∥

p � ‖ f0‖p + π3, 0 � t � T . (3.13)

On the other hand, we have the uniform boundedness of
∫
R3×R3 |ξ |1+δ f ε dx dξ , if

0 < δ � min

{(
1 − 1

p
− 1

q

)
q,1

}
. (3.14)

Actually, we can use Hölder’s inequality and Lemma A.4 to obtain that

d

dt

∫
R3×R3

|ξ |1+δ f ε dx dξ

= (1 + δ)

∫
R3×R3

|ξ |δ−1ξ · F ε f ε dx dξ +
∫

R3×R3

|ξ |1+δ Q u f ε

(
f ε

)
dx dξ

� (1 + δ)

∫
R3×R3

|ξ |δ∣∣F ε
∣∣ f ε dx dξ + (C p + 1)

∫
R3×R3

|ξ |1+δ f ε dx dξ

= (1 + δ)

∫
R3×R3

(|ξ |1+δ f ε
) δ

1+δ f ε
1

1+δ
∣∣F ε

∣∣dx dξ + (C p + 1)

∫
R3×R3

|ξ |1+δ f ε dx dξ

� (1 + δ)

( ∫
R3×R3

|ξ |1+δ f ε dx dξ

) δ
1+δ ∥∥ f ε(t)

∥∥ 1
1+δ

p1

∥∥F ε(t)
∥∥

q + (C p + 1)

∫
R3×R3

|ξ |1+δ f ε dx dξ,

where 1
p1

= 1 − 1
q − δ

q . (In view of (3.14), we deduce that 1 < p1 � p.) Following from (3.6), (3.11) and (3.12), we obtain that∫
R3×R3 |ξ |1+δ f ε

0 dx dξ and ‖ f ε(t)‖p1 are uniformly bounded. Then, Gronwall’s lemma implies that there exists a positive
constant C independent of ε such that∫

R3×R3

|ξ |1+δ f ε(t)dx dξ � C, 0 � t � T . (3.15)

From (3.11), (3.12) and (3.15), we get that the sequence f ε is weakly compact in L1((0, T ) × B R × R
3
ξ ) for any R > 0.

On the other hand, (3.13), (3.15) and Lemma A.4 imply that ‖Pu f ε
( f ε)(t)‖p and

∫
R3×R3 |ξ |1+δ Pu f ε

( f ε)dx dξ are uniformly

bounded. And it is obvious that ‖Pu f ε
(t)‖1 = ‖ f ε(t)‖1 = ‖ f ε

0 ‖1, so the sequence Pu f ε
( f ε) is weakly compact in L1((0, T ) ×

B R ×R
3
ξ ). According to Theorem 2.2, for any ϕ ∈D(R3)∫

R3

f εϕ(ξ)dξ →
∫
R3

f ϕ(ξ)dξ, in L1
loc

([0, T ] ×R
3), (3.16)

where f is the weak limit of f ε in L1((0, T ) × B R ×R
3) and
ξ
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f ε → f weakly in Ls((0, T ) ×R
3 ×R

3) for 1 < s � p, if p < ∞, (3.17)

f ε → f weakly∗ in L∞(
(0, T ) ×R

3 ×R
3), if p = ∞. (3.18)

Then, we combine (3.15) and (3.16) to get that

ρ f ε → ρ f , ρ f ε u f ε → ρ f u f , in L1
loc

([0, T ] ×R
3),

which yield that

Q u f ε

(
f ε

) → Q u f ( f ), in D′((0, T ) ×R
3 ×R

3).
Furthermore, from (3.9) and the relation between p and q we get that

F ε → F , in Lp′([0, T ] × B R × B R
)
.

Combining this and (3.17), we know that

F ε f ε → F f in D′((0, T ) ×R
3 ×R

3).
Thus, f (t, x, ξ) is a weak solution to the Cauchy problem (1.2), and it is easy to verify the desired estimates. �

Next, we discuss the Cauchy problem (1.4), the main result is the existence of a nonnegative solution under another set
of conditions satisfied by the electric intensity E(t, x) and the magnetic intensity B(t, x). Specifically, we have

Theorem 3.3. Let the initial datum f0(x, ξ) be a nonnegative function such that(
1 + |ξ |2) f0 ∈ L1(

R
3 ×R

3), f0 ∈ Lp(
R

3 ×R
3), p > 1, (3.19)

and let E(t, x) ∈ Lq([0, T ] × R
3), B(t, x) ∈ L p′

([0, T ] × R
3), where q > 3 + p′ . Then there exists a weak solution f (t, x, ξ) to the

Cauchy problem (1.4) such that∥∥ f (t)
∥∥

1 = ‖ f0‖1,
∥∥ f (t)

∥∥
p � ‖ f0‖p, 0 � t � T . (3.20)

Proof. Let Eε = E(t, x) ∗ ηε(t, x), Bε = B(t, x) ∗ ηε(t, x), where ηε is the mollifier. Then,∥∥Eε
∥∥

Lq([0,T ]×R3)
� ‖E‖Lq([0,T ]×R3), (3.21)∥∥Bε

∥∥
L p′

([0,T ]×R3)
� ‖B‖L p′

([0,T ]×R3)
(3.22)

and for any R > 0 (extracting a subsequence if necessary)

Eε → E, Bε → B, in Lp′([0, T ] × B R
)
. (3.23)

By Lemma 3.1, we know that there is a solution f ε to⎧⎪⎨
⎪⎩

∂t f ε + ξ · ∇x f ε + (
Eε + ξ × Bε

) · ∇ξ f ε = Q u f ε

(
f ε

)
,

f ε(0, x, ξ) = min

{
f0(x, ξ),

1

ε

}
+ ε exp

(−(|x|2 + |ξ |2)) (3.24)

such that∥∥ f ε(t)
∥∥

1 = ∥∥ f ε
0

∥∥
1 � ‖ f0‖1 + π3, 0 � t � T . (3.25)

Using the same method in the proof of Theorem 3.2, we have∥∥ f ε(t)
∥∥

p � ‖ f0‖p + π3, 0 � t � T , (3.26)

and ∥∥Pu f ε

(
f ε

)
(t)

∥∥
p � ‖ f0‖p + π3, 0 � t � T . (3.27)

Now, we show that
∫
R3×R3 |ξ |1+δ f ε(t)dx dξ is uniformly bounded for any 0 � t � T , if

0 < δ � min

{
q − 3

p′ − 1,1

}
. (3.28)

Actually, we can use Hölder’s inequality and Lemma A.4 to obtain that
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d

dt

∫
R3×R3

|ξ |1+δ f ε dx dξ = (1 + δ)

∫
R3×R3

|ξ |δ−1ξ · (Eε + ξ × Bε
)

f ε dx dξ +
∫

R3×R3

|ξ |1+δ Q u f ε

(
f ε

)
dx dξ

� (1 + δ)

∫
R3×R3

|ξ |δ∣∣Eε
∣∣ f ε dx dξ + (C p + 1)

∫
R3×R3

|ξ |1+δ f ε dx dξ.

According to Lemma 2.4, we have

∥∥∥∥
∫
R3

|ξ |δ f ε(t)dξ

∥∥∥∥
Lr(R3)

� C
∥∥ f ε(t)

∥∥ 1
1+δ+3/p′
p

( ∫
R3×R3

|ξ |1+δ f ε(t)dx dξ

) δ+3/p′
1+δ+3/p′

,

where r = 1+δ+3/p′
1+δ+2/p′ . From (3.28), we have r′ � q, then

d

dt

∫
R3×R3

|ξ |1+δ f ε dx dξ

� C
∥∥ f ε(t)

∥∥ 1
1+δ+3/p′
p

( ∫
R3×R3

|ξ |1+δ f ε(t)dx dξ

) δ+3/p′
1+δ+3/p′ ∥∥Eε(t)

∥∥
Lr′ (R3)

+ (C p + 1)

∫
R3×R3

|ξ |1+δ f ε dx dξ.

In view of (3.21), (3.26) and Gronwall’s lemma, we can get that there exists a positive constant C independent of ε such
that ∫

R3×R3

|ξ |1+δ f ε(t)dx dξ � C, 0 � t � T . (3.29)

Using the same method in the proof of Theorem 3.2, we have that the sequences f ε and Pu f ε
( f ε)(t) are weakly compact

in L1((0, T ) × B R ×R
3
ξ ) for any R > 0. According to Theorem 2.2,∫

R3

f εϕ(ξ)dξ →
∫
R3

f ϕ(ξ)dξ, in L1
loc

([0, T ] ×R
3), ∀ϕ ∈ D

(
R

3), (3.30)

where f is the weak limit of f ε in L1((0, T ) × B R ×R
3
ξ ). Then, we combine (3.29) and (3.30) to get that

ρ f ε → ρ f , ρ f ε u f ε → ρ f u f , in L1
loc

([0, T ] ×R
3),

which yield that

Q u f ε

(
f ε

) → Q u f ( f ), in D′((0, T ) ×R
3 ×R

3).
And, it is obvious that(

Eε + ξ × Bε
)

f ε → (E + ξ × B) f in D′((0, T ) ×R
3 ×R

3).
Thus, f (t, x, ξ) is a global weak solution to the Cauchy problem (1.4), and it is easy to verify the desired estimates (3.20). �
4. Global solutions for self-induced electrostatic fields

In this section, we give a reasonable short proof of a global existence result for the Cauchy problem (1.5)–(1.7) with L2

initial datum f0. The main theorem (Theorem 4.1) obtain by renormalization method extends the results in [34].

Theorem 4.1. Let the initial datum f0(x, ξ) be a nonnegative function such that(
1 + |ξ |2) f0 ∈ L1(

R
3 ×R

3), f0 ∈ L2(
R

3 ×R
3), (4.1)

then there exists a global weak solution f (t, x, ξ) to system (1.5)–(1.7) such that∥∥ f (t)
∥∥

1 = ‖ f0‖1,
∥∥ f (t)

∥∥
2 � ‖ f0‖2, t � 0 (4.2)

and

Ek( f )(t) + Ep( f )(t) � Ek( f0) + Ep( f0), t � 0. (4.3)
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Consequently, there exists a positive constant M = M( f0) such that

Ek( f )(t) =
∫

R3×R3

|ξ |2 f (t, x, ξ)dx dξ � M, t � 0. (4.4)

Proof. Firstly, we regularize the initial datum. Choose f ε
0 ∈ S+(R3 ×R

3), so that∫
R3×R3

(
1 + |ξ |2)∣∣ f0 − f ε

0

∣∣ + ∣∣ f0 − f ε
0

∣∣2
dx dξ

ε→ 0, f ε
0 � ε exp

(−(|x|2 + |ξ |2)). (4.5)

Then, we consider the regularized system

∂t f + ξ · ∇x f + E · ∇ξ f = Q u f ( f ), f (0, x, ξ) = f ε
0 (x, ξ), (4.6)

−
xU (t, x) = ρ f (t, x), lim|x|→∞ U (t, x) = 0, (4.7)

E(t, x) = −∇xU (t, x). (4.8)

Theorem 1.1 in [34] implies that there exists a global weak solution f ε to the system (4.6)–(4.8), and∥∥ f ε(t)
∥∥

1 = ∥∥ f ε
0

∥∥
1,

∥∥ f ε(t)
∥∥∞ �

∥∥ f ε
0

∥∥∞ < ∞, (4.9)

Ek
(

f ε
)
(t) + Ep

(
f ε

)
(t) � Ek

(
f ε

0

) + Ep
(

f ε
0

)
. (4.10)

Analogously, we have∥∥ f ε(t)
∥∥

2 �
∥∥ f ε

0

∥∥
2. (4.11)

In fact, due to (4.6), (4.9) and the Lipschitz continuity of the function β(u) = u2 on the interval [0,‖ f ε
0 ‖∞], we have

∂tβ
(

f ε
) + ξ · ∇xβ

(
f ε

) + Eε · ∇ξ β
(

f ε
) = β ′( f ε

)
Q u f ε

(
f ε

)
, f ε(0, x, ξ) = f ε

0 (x, ξ),

where Eε(t, x) is the force field generated by ρ f ε (t, x). Integrating it against (x, ξ) we obtain

d

dt

∫
R3×R3

∣∣ f ε
∣∣2

dx dξ = 2
∫

R3×R3

Q u f ε

(
f ε

)
f ε dx dξ = −2

∫
R3×R3

[
Q u f ε

(
f ε

)]2
dx dξ � 0,

which obviously implies (4.11).
Based on estimate (4.9)–(4.11), we obtain that

f ε → f weakly in L1
loc

([0,∞) ×R
3 ×R

3).
Let βδ(u) = u

1+δu , we know that βδ(t) is Lipschitz continuous and

βδ

(
f ε

)
, Eε · βδ

(
f ε

)
, β ′

δ

(
f ε

) · Q u f ε

(
f ε

) ∈ L1
loc

(
(0,∞) ×R

3 ×R
3),

so βδ( f ε) satisfies

∂tβδ

(
f ε

) + ξ · ∇xβδ

(
f ε

) + Eε · ∇ξ βδ

(
f ε

) = β ′
δ

(
f ε

)
Q u f ε

(
f ε

)
in the sense of distributions. And it is easy to get that

∥∥Eεβδ

(
f ε

)∥∥
L2((0,∞)×R3×R3)

� 1

δ
‖E‖2,

∥∥β ′
δ

(
f ε

)
Q u f ε

(
f ε

)∥∥
L2((0,T )×R3×R3)

� 2T
∥∥ f ε(t)

∥∥
2.

According to (4.9)–(4.11), we get that for any fixed T , R , δ, ‖βδ( f ε)‖L2((0,T )×R3×R3) and ‖gε
δ ‖L2((0,T )×R

3
x ;H−1(B R )) are uni-

formly bounded, where

gε
δ = β ′

δ

(
f ε

)
Q u f ε

(
f ε

) − Eε · ∇ξ βδ

(
f ε

)
.

By the velocity averaging lemma in [9], we have∫
R3

βδ

(
f ε

)
ϕ(ξ)dξ ∈ H

1
4
(
(0, T ) ×R

3), ∀ϕ ∈ D
(
R

3),
and
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∥∥∥∥
∫
R3

βδ

(
f ε

)
ϕ(ξ)dξ

∥∥∥∥
H

1
4 ((0,T )×R3)

� C
[∥∥βδ

(
f ε

)∥∥
L2((0,T )×R3×R3)

+ ∥∥gε
δ

∥∥
L2((0,T )×R

3
x ;H−1(B R ))

]
,

where R is big enough such that supp(ϕ) ⊂ B R . Consequently,∫
R3

βδ

(
f ε

)
ϕ(ξ)dξ

ε→
∫
R3

fδϕ(ξ)dξ in L1
loc

([0,∞) ×R
3), ∀ϕ ∈ D

(
R

3), (4.12)

where fδ is the weak limit of βδ( f ε) in L1
loc([0,∞) ×R

3 ×R
3).

Next, we show∫
R3

f εϕ(ξ)dξ
ε→

∫
R3

f ϕ(ξ)dξ in L1
loc

([0,∞) ×R
3), ∀ϕ ∈ D

(
R

3). (4.13)

Notice that

0 � f ε − βδ

(
f ε

)
� δ

(
f ε

)2
,

we can get

sup

T∫
0

dt

∫
B R×B R

∣∣ f ε − βδ

(
f ε

)∣∣dx dξ → 0, δ → 0+.

Besides,

T∫
0

dt

∫
B R×B R

| f − fδ|dx dξ =
T∫

0

dt

∫
B R×B R

(
f − f ε

)
sign( f − fδ)dx dξ

+
T∫

0

dt

∫
B R×B R

(
f ε − βδ

(
f ε

))
sign( f − fδ)dx dξ

+
T∫

0

dt

∫
B R×B R

(
βδ

(
f ε

) − fδ
)

sign( f − fδ)dx dξ

→ 0, δ → 0+.

Thus, (4.13) is proved. Notice that Ek( f ε) is uniformly bounded, we can get

ρ f ε → ρ f , ρ f ε u f ε → ρ f u f in L1
loc

([0,∞) ×R
3),

which yield that

Q u f ε

(
f ε

) → Q u f ( f ) in D′((0,∞) ×R
3 ×R

3).
Finally, we show

Eε f ε → E f in D′((0,∞) ×R
3 ×R

3), as ε → 0. (4.14)

On one hand, we have (extracting a subsequence if necessary)∫
R3

f εϕ(ξ)dξ
ε→

∫
R3

f ϕ(ξ)dξ in L2
loc

([0,∞) ×R
3), ∀ϕ ∈ D

(
R

3). (4.15)

Actually, it follows from (4.11) and Refs. [9,16] that there exists a nonnegative super-quadratic function β ∈ C∞(R) such
that β(0) = 0, limu→∞ u−2β(u) = ∞ and∫

R3×R3

β
(

f ε(t)
)

dx dξ � C
∥∥ f ε(t)

∥∥
2 � C

∥∥ f ε
0

∥∥
2,

where C > 0 is a constant independent of f ε . At first, we claim that (extracting a subsequence if necessary)
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(∫
R3

f εϕ(ξ)dξ

)2
ε→

(∫
R3

f ϕ(ξ)dξ

)2

in L1
loc

([0,∞) ×R
3), ∀ϕ ∈ D

(
R

3). (4.16)

In fact, it follows from (4.13) that
∫
R3 f εϕ(ξ)dξ

ε→ ∫
R3 f ϕ(ξ)dξ in measure and passing to another subsequence we can

assume this convergence also hold a.e. on [0,∞) × R
3. In consideration of Schur’s theorem, it is sufficient to show that

(
∫
R3 f εϕ(ξ)dξ)2 is relatively compact in L1

loc([0,∞) × R
3). We use Dunford–Pettis theorem to prove it. (4.11) implies that

(
∫
R3 f εϕ(ξ)dξ)2 is uniformly bounded in L1

loc([0,∞) ×R
3). Furthermore, for any given K � [0,∞) ×R

3 we can get that

sup
ε

∫
A

(∫
R3

f εϕ(ξ)dξ

)2

dx dt → 0, |A| → 0,

where A ⊂ K is measurable. In fact, for σ > 0 large enough we have

sup
ε

∫
A

(∫
R3

f εϕ(ξ)dξ

)2

dx dt � sup
ε

∫
A

( ∫
f ε�σ

+
∫

f ε>σ

)(
f ε

)2
χsupp(ϕ)(ξ)dξ dt dx ·

∫
R3

|ϕ|2 dξ

�
[
σ 2|A|∣∣supp(ϕ)

∣∣ + sup
u>σ

u2

β(u)

∫
A

∫
R3

β
(

f ε
)

dξ dx dt

]∫
R3

|ϕ|2 dξ

�
[
σ 2|A|∣∣supp(ϕ)

∣∣ + sup
u>σ

Cu2

β(u)

∫
K

∫
R3

∣∣ f ε
0

∣∣2
dξ dx dt

]∫
R3

|ϕ|2 dξ,

letting |A| → 0 and σ → ∞ in succession, we obtain the desired limit. So (
∫
R3 f εϕ(ξ)dξ)2 is relatively compact in

L1
loc([0,∞) ×R

3). Secondly, we have proven that
∫
R3 f εϕ(ξ)dξ is bounded in L2

loc([0,∞) ×R
3), without loss of generality,

we may assume that∫
R3

f εϕ(ξ)dξ
ε→

∫
R3

f ϕ(ξ)dξ weakly in L2
loc

([0,∞) ×R
3), ∀ϕ ∈ D

(
R

3). (4.17)

Combining (4.16) with (4.17), we get (4.15).
On the other hand, from (4.10) we have that there exist Ẽ ∈ L2

loc([0,∞) × R
3) such that (extracting a subsequence if

necessary)

Eε ε→ Ẽ weakly in L2
loc

([0,∞) ×R
3),

and from (4.7), (4.8) we have

Eε ε→ E in D′((0,∞) ×R
3),

so Eε ε→ E weakly in L2
loc([0,∞) × R

3). Combining this result with (4.15), we get (4.14). Thus, f (t, x, ξ) is a global weak
solution to the system (1.5)–(1.7), and we can take the limits in (4.9)–(4.11) to get the desired estimates. �
Remark 4.2. Obviously, Theorem 4.1 can be extended to any initial datum f0 such that f0 ∈ L p(R3 ×R

3) for some p > 2. In
this case, all results are not altered except for the second estimate in (4.2), which should be redescribed by ‖ f (t)‖p � ‖ f0‖p ,
t � 0.
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Appendix A. Properties of wave-particle collision integral

In this appendix, we summarize some basic properties of the collision operator Q u f ( f ), which we have used in the last
section. For details, see Refs. [5–7,13].

Let u ∈R
3 be fixed, we define the linearized collision operator Q u( f ) as follows: for any function f (ξ) ∈ L1(R3),

Q u( f )(ξ) = Pu( f )(ξ) − f (ξ), Pu( f )(ξ) = 1

4π

∫
S2

f
(
u + |ξ − u|ω)

dω. (A.1)

Then, we have
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Lemma A.1. Let f (ξ), g(ξ) ∈ C∞
c (R3) be nonnegative functions and let ψ ∈ C∞[0,∞). Then

(1) Pu( f ) is a projector, i.e.,

P 2
u( f ) = Pu( f ).

(2) Q u( f ) is symmetric, i.e.,∫
R3

Q u( f )g dξ =
∫
R3

Q u(g) f dξ = −
∫
R3

Q u( f )Q u(g)dξ.

(3) Infinite many collision invariants:∫
R3

ξ Q u( f )(ξ)dξ =
∫
R3

ψ
(|ξ − u|)Q u( f )(ξ)dξ = 0.

(4) Q u( f ) = 0 if and only if there exist u ∈R
3 and F ∈ C∞

c [0,∞) such that f (ξ) = F (|ξ − u|2).
(5) H-theorem:∫

R3

Q u( f ) f dξ = −
∫
R3

Q u( f )Q u( f )dξ � 0.

Lemma A.2. Let u(t, x), un(t, x) : (0,∞) ×R
3 → R

3 be locally integrable functions such that limn→∞ un = u in L1
loc((0,∞) ×R

3),
and let f (t, x, ξ) ∈ C∞

c ((0,∞) ×R
3 ×R

3). Then
(1) For any p,q ∈ [1,∞] and T > 0, we have∥∥Pu( f )

∥∥
Lq((0,T );Lp(R3×R3))

� ‖ f ‖Lq((0,T );Lp(R3×R3)).

(2) For any p,q ∈ [1,∞) and T > 0, we have

lim
n→∞ Pun ( f ) = Pu( f ) in Lq((0, T ); Lp(

R
3 ×R

3)).
Remark A.3. Since C∞

c ((0, T ) × R
3 × R

3) is dense in Lq((0, T ); L p(R3 × R
3)) for any p,q ∈ [1,∞), Lemma A.2(1) implies

that the operator Q u( f ) has a unique bounded extension on the whole space Lq((0, T ); L p(R3 × R
3)). It is in this manner

that the operator Pu( f ) is defined. Consequently, the result of Lemma A.2(2) is valid for any f ∈ Lq((0, T ); L p(R3 ×R
3)). On

the other hand, it is obvious that the results in Lemma A.1 can be naturally extended to functions whenever the involved
integrals are well defined.

In the proofs of the main theorems, we shall also need the following technical result which is a direct consequence of
Hölder’s inequality (see, e.g., [7]).

Lemma A.4. For any p � 1 and any nonnegative function f with (1 + |ξ |p) f ∈ L1(R3), we have

ρ f |u f |p �
∫
R3

|ξ |p f dξ,

and ∫
R3

|ξ |p Pu f ( f )dξ � C p

∫
R3

|ξ |p f dξ.
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