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1. Introduction

Let (pn) = (pn)n∈Z be a two-way infinite sequence of integers pn � 2, and Zpn = {0,1, . . . , pn − 1}, for every n ∈ Z.
We define the corresponding Vilenkin group G as G = {y = (yn) ∈ ∏

n∈ZZpn , limn→−∞ yn = 0}, where the group operation
is the coordinate-wise addition modulo pn .

Each element y ∈ G is of the form (. . . ,0, y−m, . . . , y−1, y0, y1, . . . , yn, . . . ), yn ∈ Zpn+1 .
If every Zpn is endowed with the probability measure and the discrete topology, then the measure μ and the topology

of G are obtained by taking the product measure and the product topology. A basis of neighborhoods of G is given by the
family of open subgroups Gn := {(yi) ∈ G: yi = 0, ∀i < n}. For every y = (yn) ∈ G let Gn(. . . , yn−i, . . . , yn−1) denote the set
y + Gn .

The dual group of G is denoted by Γ . It is the union of the increasing sequence of groups Γn = {γ ∈ Γ : γ (x) = 1,

∀x ∈ Gn}. Choose the Haar measures μ,λ on G and Γ respectively, such that μ(G0) = λ(Γ0) = 1, and μ(Gn) = (λ(Γn))−1 =
m−1

n , where

mn = p1 p2 . . . pn and m−1−n = p0 p−1 p−2 . . . p−n+1 (n � 1).

The group G is said to be bounded if supn pn < ∞. Otherwise, it is unbounded.

2. Maximal functions and Hardy spaces

We recall the definitions of p-atoms, maximal function f ∗∗ and Hardy spaces H p∗∗ used in [4–6].
P. Simon [4] introduced the following decomposition of the sets {0,1, . . . , pn − 1}, n ∈ N:
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, . . . .

Any restricted interval In contained in y + Gn has the form
⊎

i∈Uk
Gn+1(. . . , yn−1, i), for some Uk . The definition of

restricted intervals is such that two intervals are either disjoint or one of them is a subset of the other.

Definition 2.1. A complex function a is called a p-atom on G for 0 < p � 1, if

(1) supp(a) ⊂ In , for some restricted interval In ,

(2) ‖a‖∞ � (μ(In))
− 1

p ,
(3)

∫
G a(x)dx = 0.

The maximal function f ∗∗ of any integrable function f is defined by

f ∗∗(x) = sup
I

∣∣∣∣(μ(I)
)−1

∫
I

f (t)dt

∣∣∣∣,
where the supremum is taken over all restricted intervals containing the point x. This maximal function can be extended to
martingales f = ( fn, n ∈ Z) with respect to the sequence of σ -algebras Fn := σ {x + Gn, x ∈ G} (see [6]).

Then, H p∗∗ consists of martingales f for which f ∗∗ ∈ L p . The norm in this space is given by ‖ f ‖H p∗∗ := ‖ f ∗∗‖p

(0 < p < ∞). It is known for 0 < p � 1 that f ∈ H p∗∗ if and only if f allows a decomposition f = ∑
i λiai , where the

functions (ai)i are p-atoms and
∑

i |λi |p < +∞. Moreover, ‖ f ‖p
H p∗∗

= inf
∑

i |λi |p , where the infimum is taken over all possi-

ble atomic decompositions (see [6]).
The Hardy spaces Pp introduced in [6] have atomic decomposition with respect to the following family of atoms.

Definition 2.2. A complex function a is called a Pp-atom on G for 0 < p � 1, if

(1) supp(a) ⊂ x + Gn , for some Gn and x ∈ G ,

(2) ‖a‖∞ � (μ(Gn))
− 1

p ,
(3)

∫
G a(x)dx = 0.

The norm in Pp is defined through atomic decomposition as in the previous case when 0 < p � 1. It can also be obtained
by means of the families (λn)n of non-decreasing, non-negative functions with the property mn| ∫x+Gn

f (t)dt| � λn−1(x), and
such that λn is constant on the cosets of Gn . Then, ‖ f ‖Pp = inf‖ supn λn‖p , where 0 < p < ∞ and the infimum is taken
over all such families of functions. The proof can be found in [6].

In [1] the following maximal functions were used:

f ∗(x) = sup
n

∣∣∣∣
∫

x+Gn

f (t)dt

∣∣∣∣ and M̃ f (x) = sup
n,In

∣∣ f ∗ (
μ(In)

)−1
1In (x)

∣∣,
where the sets In are of the form In = ⊎β

i=α Gn+1(. . . ,0, i), 0 � α � β < pn+1. They correspond respectively to the spaces

H p∗ and H̃ p . Actually, we can express the function M̃ f using only intervals In for which α = β , since

(
μ(In)

)−1
∣∣∣∣

∫
x−In

f (t)dt

∣∣∣∣ � max
i

mn+1

∣∣∣∣
∫

Gn+1(...,xn−2,xn−1,i)

f (t)dt

∣∣∣∣,
where the maximum is taken over i : Gn+1(. . . , xn−2, xn−1, i) ⊆ x − In . We recall that all Hardy spaces can be extended to
martingales. It is known that H p∗ ∼ H p∗∗ ∼ L p for 1 < p < ∞, where ∼ denotes the equivalence of norms and spaces (see [6]).

Theorem 2.3. We have

‖ f ‖H p∗ � ‖ f ‖H p∗∗ � ‖ f ‖H̃ p ∼ ‖ f ‖Pp (0 < p < ∞).

If the sequence (pn) is bounded then all the spaces are equivalent. If (pn) is unbounded, the converse of the first (resp. second) inequality
is not valid when 0 < p � 1 (resp. 0 < p < ∞).
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Proof. The first two inequalities are straightforward. The proof that the converse of the first one does not hold for 0 < p � 1
in the unbounded case can be found in [5]. For the converse of the second inequality, take the functions

an(t) =

⎧⎪⎨
⎪⎩

mn+1, t ∈ Gn+1;

−mn+1, t ∈ Gn+1(. . . ,0, . . . ,0,1);

0, otherwise.

Then, it is easily seen that

‖an‖H p∗∗ = 2
1
p m

1− 1
p

n+1 and ‖an‖H̃ p = mn+1m
− 1

p
n .

In order to prove the equivalence ‖ f ‖H̃ p ∼ ‖ f ‖Pp , consider the sequence of operators MN given by

MN f (x) = sup
n�N

max
i=0,...,pn+1−1

mn+1

∣∣∣∣
∫

Gn+1(...,xn−2,xn−1,i)

f (t)dt

∣∣∣∣.
The sequence (MN f )N possesses the properties cited above for (λn)n . Therefore, ‖ supN MN f ‖p � ‖ f ‖Pp . Notice that

mn+1

∫
Gn+1(...,xn−2,xn−1,i)

f (t)dt = (
μ(In)

)−1
f ∗ 1In (x),

where In = Gn+1(. . . , xn−2, xn−1, pn+1 − i). Hence, M̃ f = supN MN f , and

‖ f ‖H̃ p = ‖M̃ f ‖p =
∥∥∥ sup

N
MN f

∥∥∥
p

� ‖ f ‖Pp .

It remains to prove the inequality ‖ supN MN f ‖p � ‖ f ‖Pp . We only need to check that MN f � λN for any family (λN )N
with the properties mentioned above. For every n it is clear that

max
i=0,...,pn+1−1

mn+1

∣∣∣∣
∫

Gn+1(...,xn−2,xn−1,i)

f (t)dt

∣∣∣∣ � λn.

Consequently, MN f � maxn�N λn = λN . It follows that ‖ supN MN f ‖p � ‖ f ‖Pp .

The equivalence of the spaces H p∗ , H p∗∗ and Pp when (pn)n is bounded can be found in [6]. �
3. Multiplier theorems

In this section we give a more precise form of Theorem 3.1 of [1] and prove some additional results about multipliers.

Theorem 3.1. Let φ ∈ L∞(Γ ). Suppose that

sup
N

∫
Gc

N

(
μ(G N)

)−1
(∫

G N

∣∣(φ − φN)∨(x − u)
∣∣du

)p

dx = O (1),

where φN = φ1ΓN and ∧,∨ denote respectively the Fourier transform and the inverse Fourier transform. Then φ is a multiplier from
Pp to H p∗∗ and H p∗ .

Proof. Using the first inequality in Theorem 2.3, we only need to prove the boundedness of T f = (φ f ∧)∨ from Pp to H p∗∗ .
In order to prove that φ is a multiplier it suffices to verify that the operator T f = (φ f ∧)∨ is bounded on the set of atoms

of Pp . Let a be an atom whose support is a subset of some G N . We have∫
G

∣∣(T (a)
)∗∗

(x)
∣∣p

dx =
∫

G N

∣∣(T (a)
)∗∗

(x)
∣∣p

dx +
∫

Gc
N

∣∣(T (a)
)∗∗

(x)
∣∣p

dx.

Since ‖ f ∗∗‖2 is equivalent to the L2 norm [6], then the standard L2 argument in [3] can be used to estimate the first
term. Namely,∫

G N

∣∣(T (a)
)∗∗

(x)
∣∣p

dx =
∫ ∣∣(T (a)

)∗∗
(x)

∣∣p
1G N (x)dx

�
∥∥(

T (a)
)∗∗∥∥p

2‖1G N ‖2−p
2 � C p

∥∥T (a)
∥∥p

2‖1G N ‖2−p
2 � C p‖φ‖p∞‖a‖p

2

(
μ(G N)

)1− p
2

� C p‖φ‖p∞
(
μ(G N)

)1− p
2
(
μ(G N)

) p
2 −1 = C p‖φ‖p∞.
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A similar estimate was applied in the proof of [1, Theorem 3.1] using [1, Proposition 2.2]. Here we mention that the
assertion in [1, Proposition 2.2] is not valid for the maximal function M̃ f . Namely, M̃ f is not bounded in L2 by Theorem 2.3.

To estimate the second integral, we write T (a) in the form

T (a) = (
φa∧)∨ = φ∨ ∗ a =

( ∞∑
j=−∞

	 jφ

)∨
∗ a =

∞∑
j=−∞

(	 jφ)∨ ∗ a,

where the equality holds in the sense of distributions, and 	 jφ = φ1Γ j+1 − φ1Γ j . As
∫

G N
a = 0, it follows that a∧ vanishes

on ΓN . This means that (	 jφ)a∧ = (	 jφ)∨ ∗ a ≡ 0 if j � N − 1. Therefore, T (a) = (φ − φN)∨ ∗ a.
It is easily seen that if x ∈ Gc

N , y ∈ G N , then
∫

In
a(t − y)dt = 0, for every interval In containing x. This is clearly true

when n < N , because In either contains G N or does not intersect it. Now if n � N , then In − y ⊂ x + G N ⊂ Gc
N .

We obtain(
μ(I)

)−1
∫
I

T (a)(t)dt = (
μ(I)

)−1
∫
I

(
(φ − φN)∨ ∗ a

)
(t)dt = (

μ(I)
)−1

∫
I

∫
(φ − φN)∨(y)a(t − y)dy dt

=
∫

Gc
N

(φ − φN)∨(y)
(
μ(I)

)−1
∫
I

a(t − y)dt dy,

for every interval I that contains the point x ∈ Gc
N . Consequently,∫

Gc
N

∣∣(T (a)
)∗∗

(x)
∣∣p

dx =
∫

Gc
N

sup
I,x∈I

∣∣∣∣(μ(I)
)−1

∫
I

T (a)(t)dt

∣∣∣∣
p

dx

=
∫

Gc
N

sup
I,x∈I

∣∣∣∣
∫

Gc
N

(φ − φN)∨(y)
(
μ(I)

)−1
∫
I

a(t − y)dt dy

∣∣∣∣
p

dx

�
∫

Gc
N

( ∫
Gc

N

∣∣(φ − φN)∨(y)
∣∣ sup

I,x∈I

(
μ(I)

)−1
∣∣∣∣
∫
I

a(t − y)dt

∣∣∣∣dy

)p

dx.

Now, from
∫

In
a(t − y)dt = 0, when n < N , and (μ(In))−1| ∫In

a(t − y)dt| � (μ(G N ))
− 1

p 1G N (x − y), when n � N , we obtain∫
Gc

N

( ∫
Gc

N

∣∣(φ − φN)∨(y)
∣∣ sup

I,x∈I

(
μ(I)

)−1
∣∣∣∣
∫
I

a(t − y)dt

∣∣∣∣dy

)p

dx

�
(
μ(G N)

)−1
∫

Gc
N

( ∫
Gc

N

∣∣(φ − φN)∨(y)
∣∣1G N (x − y)dy

)p

dx

�
∫

Gc
N

(
μ(G N)

)−1
(∫

G N

∣∣(φ − φN)∨(x − u)
∣∣du

)p

dx = O (1). �

We derive two corollaries analogous to Corollaries 5 and 6 proved in [3].

Corollary 3.2. Let φ ∈ L∞(Γ ). If

sup
N

∫
Gc

N

∞∑
j=N+1

∣∣(	φ j)
∨(x)

∣∣dx = O (1),

then φ is a multiplier from P1 to H1∗∗ and H1∗ .

This is obviously true as∫
Gc

N

(
μ(G N)

)−1
∫

G N

∣∣(φ − φN)∨(x − u)
∣∣du dx =

∫
Gc

N

∣∣(φ − φN)∨(x)
∣∣dx �

∫
Gc

N

∞∑
j=N+1

∣∣(	φ j)
∨(x)

∣∣dx.
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Corollary 3.3. Let φ ∈ L∞(Γ ) and 0 < p � 1. If

j∑
N=−∞

(
μ(G N)

)1−p
( ∫

G N \G N+1

∣∣(	φ j)
∨(x)

∣∣dx

)p

� C
(
μ(G j)

)1−p
,

then φ is a multiplier from Pp to H p∗∗ and H p∗ .

Proof. The result is easily established by following the proof of Corollary 6 in [3], since the number U N mentioned there is
of the form U N = ∫

Gc
N
(μ(G N ))−1(

∫
G N

|(φ − φN)∨(x − u)|du)p dx. �
Theorem 3.4. Let φ ∈ L∞(Γ ) and 0 < p � 1. Suppose that (φ − φN)∨ is supported on {y ∈ G, yN = 0} and

sup
N

∫
Ic

N

(
μ(IN)

)−1
(∫

IN

∣∣(φ − φN)∨(x − u)
∣∣du

)p

dx = O (1).

Then φ is a multiplier on H p∗∗ .

Proof. The first steps of this proof are the same as in Theorem 3.1. We easily obtain the estimation∫
IN

∣∣(T (a)
)∗∗

(x)
∣∣p

dx =
∫ ∣∣(T (a)

)∗∗
(x)

∣∣p
1IN (x)dx � C p‖φ‖p∞

(
μ(IN)

)1− p
2
(
μ(IN)

) p
2 −1 = C p‖φ‖p∞.

Similarly,
∫

In
a(t − y)dt = 0 if x ∈ Ic

N , y ∈ G N+1 and In is an interval containing x. One has

(
μ(I)

)−1
∫
I

T (a)(t)dt = (
μ(I)

)−1
∫
I

(
(φ − φN)∨ ∗ a

)
(t)dt =

∫
Gc

N+1

(φ − φN)∨(y)
(
μ(I)

)−1
∫
I

a(t − y)dt dy.

Now, ∫
Ic

N

∣∣(T (a)
)∗∗

(x)
∣∣p

dx =
∫
Ic

N

sup
I,x∈I

∣∣∣∣(μ(I)
)−1

∫
I

T (a)(t)dt

∣∣∣∣
p

dx

=
∫
Ic

N

sup
I,x∈I

∣∣∣∣
∫

Gc
N+1

(φ − φN)∨(y)
(
μ(I)

)−1
∫
I

a(t − y)dt dy

∣∣∣∣
p

dx

�
∫
Ic

N

( ∫
Gc

N+1

∣∣(φ − φN)∨(y)
∣∣ sup

I,x∈I

(
μ(I)

)−1
∣∣∣∣
∫
I

a(t − y)dt

∣∣∣∣dy

)p

dx.

Consider the intervals In that contain the point x. For n < N , the term
∫

In
a(t − y)dt clearly vanishes. If n > N then

(μ(In))−1| ∫In
a(t − y)dt| is bounded by (μ(IN ))

− 1
p and vanishes when x − y ∈ Ic

N . Now if n = N , then for yN = 0,

In − y remains an interval that contains the point x − y. Therefore, (μ(In))−1| ∫In
a(t − y)dt| is similarly bounded by

(μ(IN ))
− 1

p 1IN (x − y). We get∫
Ic

N

( ∫
Gc

N+1

∣∣(φ − φN)∨(y)
∣∣ sup

I,x∈I

(
μ(I)

)−1
∣∣∣∣
∫
I

a(t − y)dt

∣∣∣∣dy

)p

dx

�
(
μ(IN)

)−1
∫
Ic

N

( ∫
Gc

N+1

∣∣(φ − φN)∨(y)
∣∣1IN (x − y)dy

)p

dx

�
∫
Ic

N

(
μ(IN )

)−1
(∫

IN

∣∣(φ − φN)∨(x − u)
∣∣du

)p

dx = O (1). �

The next multiplier theorem bears on the form of conditions in related problems of integrability and summability on
unbounded Vilenkin groups [2].
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Theorem 3.5. Let G be a compact Vilenkin group. Assume that φ ∈ L∞(Γ ) satisfies(
N−1∑
s=0

m
1
p′
s+1 log ps+1

)( ∞∑
k=mN+1

∣∣	φ(k)
∣∣p

) 1
p

= O (1),

for some p ∈ (1,2], where 1
p′ + 1

p = 1, 	φ(k) = φ(k) − φ(k + 1), and (φ − φN)∨ is supported on {y ∈ G, yN = 0}, for each N ∈ N.

Then φ is a multiplier on H1∗∗ .

Proof. Let χmk denote the element of Γk+1 for which χmk (xk) = e
2π i

pk+1 , and χn := ∏s
k=0 χ

ak
mk

if n = ∑s
k=0 akmk and 0 � ak <

pk+1. Writing explicitly the inverse Fourier transform and using the formula of partial summation, we get

∫
Ic

N

∣∣(φ − φN)∨(x)
∣∣dx =

∫
Ic

N

∣∣∣∣∣
∞∑

j=N

m j+1−1∑
k=m j

φ(k)χk(x)

∣∣∣∣∣dx

�
∫

Gc
N

∣∣∣∣∣
∞∑

j=N

m j+1−1∑
k=m j

φ(k)χk(x)

∣∣∣∣∣dx +
∫

G N \IN

∣∣∣∣∣
∞∑

j=N+1

m j+1−1∑
k=m j

φ(k)χk(x)

∣∣∣∣∣dx

+
∫

G N \IN

∣∣∣∣∣
mN+1−1∑

k=mN

φ(k)χk(x)

∣∣∣∣∣dx

�
∫

Gc
N

∣∣∣∣∣
∞∑

j=N

m j+1−2∑
k=m j

(
φ(k) − φ(k + 1)

)
Dk+1(x)

∣∣∣∣∣dx

+
∫

G N \IN

∣∣∣∣∣
∞∑

j=N+1

m j+1−2∑
k=m j

(
φ(k) − φ(k + 1)

)
Dk+1(x)

∣∣∣∣∣dx

+
∫

G N \IN

∣∣∣∣∣
mN+1−2∑

k=mN

(
φ(k) − φ(k + 1)

)
Dk+1(x)

∣∣∣∣∣ + ∣∣φ(mN)DmN (x)
∣∣dx,

since Dm j (x) = Dm j+1 (x) = 0 for j � N and x ∈ Gc
N .

Dealing with the expression above as done in [1], we easily obtain that each term is bounded independently on N . �
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