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1. Introduction and preliminaries

In 1990, Mehta [7] established a key theorem about condensing maps in a Banach space by using the Kuratowski’'s
measure of noncompactness. The result is very useful to prove the existence of fixed points for condensing maps. In 1993,
Kim [5] generalized Mehta’s result to a locally convex Hausdorff topological vector space by using the measure of precom-
pactness due to Himmelberg et al. [2]. The purpose of this paper is to extend such a fundamental theorem to a general
l.c.-space, and develop related propositions about projections and H-convexity in a product H-space.

We begin with some basic definitions and facts. For a nonempty set X, 2X denotes the class of all subsets of X, and
(X) denotes the class of all nonempty finite subsets of X. Recall that a pair (X, {I4}) is called an H-space, if X is a
topological space, together with a family {I’4} of some nonempty contractible subsets of X indexed by A € (X) such that
I'y C I's whenever A C B. Given an H-space (X, {I'4}), a nonempty subset D of X is called to be H-convex if I’y C D for
all A C (D). For a nonempty subset K of X, we define the H-convex hull of K as

H-coK :=(")(D | D is H-convex in X and K < D},
and we define the closed H-convex hull of K as
H-coK := ﬂ{D | D is closed H-convex in X and K C D}.

Notice that the intersection of H-convex sets is also an H-convex set if the intersection is nonempty. Therefore H-coK and
H-coK are the smallest H-convex set and closed H-convex set containing K, respectively. If K is a finite subset of X, then
H-coK is called a polytope in X. Further, H-coK can be expressed as

H-coK =|_J{H-coA | A e (K)}.
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A uniform structure I/ for a set X is a nonempty family of subsets of X x X such that the following conditions
hold:

(1) for any U €U, (x,x) € U for each x € X,
(2) if U €U, then U~ elf, where U™ :={(x,y) | (¥, %) € U},
(3) for any U € U, there exists V € U such that V oV C U, where

VoV :={(x,y)|thereisaze X such that (x,z) € V and (z,x) € V},

(4)ifu,Veld,thenUNV el,
B)YifUCcVcCcXxXandUel, thenV eld.

In this event, the pair (X,lf) is called a uniform space, whose topology induced by U/ is the family of all subsets G
of X such that for each x € G, there is a V € U such that V(x) € G, where V(x) :={y € X | (x,y) € V}. Every member
V €U is called an entourage. An entourage V is symmetric provided that (x,y) € V implies (y,x) € V. A subfam-
ily B of a uniform structure I/ is called a base if each member of ¢/ contains a member of 5. In additions, for any
subset K of X, its closure K can be expressed as K = MNver V(K). For details of uniform spaces, we refer to [1,4,10,
12].

An l.c.-space is an H-space (X, {I'4}) with a uniform structure ¢/ whose topology is induced by ¢/, and there is a base
B consisting of symmetric entourages in ¢/ such that for each V € B, the set V(E) :=J,cp V(x) is H-convex whenever
E is H-convex. We shall use the notation (X,U, B) to stand for an l.c.-space. Equivalently, I.c.-spaces can be defined as
a milder condition: V(E) is H-convex whenever E is a polytope in X. Under this milder condition, we can prove that
V(E) is H-convex whenever E is H-convex. Indeed, for any finite set A = {x1, x2, ..., Xy} of V(E). By definition, there exists
B ={y1,¥2,...,¥n} C E such that x; € V(y;). It follows that

n
A={x1.%2,.... %) S|V (¥i) S V(B) S V(H-coB) C V (E).
i=1
Since H-coB is a polytope in X, V(H-coB) is H-convex and hence
I'n CV(H-coB) C V(E).

This shows that V (E) is H-convex.
We note that for any E € (X), E C V(E) for all V € B. Furthermore, V (E) can be expressed as

V(E)y={xe X | ENV(x) #0}.

In fact, if x € V(E), then x € V(y) for some y € E. That is, (y,x) € V. Hence (x,y) € V. It follows that y € V(x) N E # @.
Conversely, if E NV (x) # @, then there exists y € E with y € V(x). Now (x, y) € V implies (y,x) € V and hence x € V(y) €
V(E).

In an l.c.-space (X,U, B), a subset K of X is called precompact, if for any V € U/, there exists a finite set F such that
K € V(F). An l.c.-space is called an l.c.-space with precompact polytope if each polytope in X is precompact.

In an l.c.-space (X,U, B), we define the measure of precompactness of a subset A in X by

Q(A):={V e B| A € V(K) for some precompact set K of X}.
Here, we notice that the measure Q (A) can be rewritten as
Q(A)={V € B| A< V(K) for some compact set K of X}.

In fact, if V € Q (A), then A € V(K) for some precompact set K. This implies that A € V(K). Since K is precompact, K is
compact; hence the result follows. Some related I.c.-spaces can be found in [3,4,8-11].
At first, we establish some basic properties, which will be used in our proofs.

Lemma 1.1. If (X, U, B) is an l.c.-space and K is H-convex in X, then K is also H-convex.
Proof. Since B is a base, K = MNver V(K). Also, each V (K) is H-convex for any V € B. Therefore, K is also H-convex. O
Lemma 1.2. If (X, U, B) is an l.c.-space and K C X, then H-coK = H-coK.

Proof. By definition, H-coK € H-coK. Further, since H-coK is closed, we have
H-coK € H-coK = H-coK.

On the other hand, H-coK is a closed H-convex set containing K, by Lemma 1.1. Since H-coK is the smallest closed H-
convex set containing K, it follows that

H-coK € H-coK. O
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Lemma 1.3. If (X, U, B) is an l.c.-space with precompact polytope and K is precompact, then H-coK is also precompact.

Proof. For any U € U, we can choose a V €U/ such that V oV C U. Since K is precompact, there exists a finite set F such
that K € V(F). Since V (H-coF) is an H-convex set containing V (F), we have

H-coK € H-coV (F) € V(H-coF).

By using the fact that the polytope H-coF is precompact in X, we can find another finite set F’ such that H-coF C V(F').
Therefore,

H-coK € V(H-coF) CV(V(F')) = (Vo V)(F') S U(F').

Since the above inclusion holds for arbitrary U € U, H-coK is precompact. 0O
The following proposition is a very essential result w.r.t. the measure of precompactness.

Proposition 1.1. Let (X, U, B) be an l.c.-space with precompact polytope, and A, B C X. Then

(1) Ais precompact iff Q (A) = B,
(2) if AC B, then Q(B) € Q(A),
(3) Q(A)=Q(A),

(4) Q(H-coA) =Q(A),

(5) Q(AUB)=Q (A NQ(B).

Proof. For (1), suppose that A is a precompact set. Then for any V € B, we have (x,x) € V for all x € A. It follows that
x € V(x) C V(A). This result implies that A € V(A) € V(A). This shows that V € Q (A) for all V € B. Thus, B < Q (A) and
hence B = Q (A). Conversely, suppose Q (A) = B. Then for any U € U, there exists a V € U such that V o V C U. Since B is
a base, we can take this V € B. Similarly, we have some V’ € B such that V' o V' C V. Since V' € B= Q (A), there exists a
precompact set K such that A C V’/(K). Further, we have a finite set F such that K € V/(F). Thus,

ASVII) S V/(VI(F)) = (V/ o V/)(F) S V(F) S V(V(F)) = (V o V)(F) CU(F).

Since U € U is arbitrary, A is precompact.

For (2), if A C B, then for any V € Q (B), B C V(K) for some precompact set K. So A C B C V(K), and hence V € Q (A).
This means that Q (B) C Q (A).

For (3), it is sufficient to prove that Q (A) C Q (A). Indeed, if V € Q (A), then there is a precompact set K such that
A C V(K). It follows that A € V(K) and hence V € Q (A).

For (4), we have to show that Q (A) C Q (H-coA). If V € Q (A), then A C V(K) for some precompact set K. Consequently,

H-coA € H-coV (K) € V(H-coK),

since V(H-coK) is an H-convex set containing V(K) by Lemma 1.1. Since H-coK is precompact by Lemma 1.3, it follows
that V € Q (H-coA). This shows that Q (A) C Q (H-coA).

For (5), since Q(AUB) € Q(A) and Q (AU B) C Q(B), we have Q (AU B) € Q(A) N Q(B). Conversely, suppose V €
Q (A) N Q (B). Then there exist precompact sets K; and K, such that A C V(K7) and B C V(K3). Hence

AUBCV(K1)UV(Ky) CV(KiUKy).
Since Kq U K3 is also precompact, it follows that V € Q (AU B), and hence Q (A)NQ(B)C Q(AUB). O

Corollary 1.1. If (X, U, B) is an l.c.-space with precompact polytope, then
Q(A)=Q(H-coA) = Q(H-coA), VYACX.

Besides, we review some concepts about the product of H-spaces. Let {(X, {I“If{a}) | ¢ € I} be a family of H-spaces,
where [ is a finite or infinite index set. Define X :=[],.; Xo to be the product space with product topology, and for each
o el, let Py : X — X, denote the projection of X onto X,. For any finite set A of X, we set I's := ]‘[ae,l"/g"a, where
Aq = Py (A) for each « € I. Then (X, {I'4}) forms an H-space.

In fact, since for each o €1, F;{a is contractible, it is easy to see that I'4 is contractible. Moreover, if A and B are two
finite subsets of X with A C B, then for each @ €I, P4 (A) C Py (B); that is, A, € B, and hence F/‘j‘a - Fg‘a. Thus,

m=[]re c]]rs, =rs

ael ael

Therefore, (X, {I'a}) is an H-space. Under this terminology, we have the following lemma due to Tarafdar [9].
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Lemma 1.4. The product X :=[],; Xo of any number (finite or infinite) of H-spaces X, (o € I) is an H-space, and the product of
H-convex sets is H-convex.

Lemma 1.5. The projection of an H-convex set in the product H-space X =[], <; X« is also H-convex.

Proof. Suppose K is an H-convex subset of X =[], Xo and K, is the projection of K onto X,. We want to show that
Ky is an H-convex subset of X,. Let A, be a nonempty finite subset of K, and P, : X — 2%« denote the projection of X
onto Xy. Then there is a correspondent nonempty finite subset A of K such that Py (A) = Ay. Since K is H-convex, we
have I'y C K. It follows from the definition of I'4 that

Iy, = Pa(I'3) € Po(K) = Ko

Thus, K, is H-convex. O

Lemma 1.6. If P, : X — 2%« is the projection of the product H-space X := [Taer Xa onto Xy, and K is a nonempty subset of X, then
Py (H-coK) € H-coPy (K).

Proof. If y € P, (H-coK), then y = P, (x) for some x € H-coK. Thus, y = Py (x) € Py (D) for all closed H-convex subsets D
containing K. Now for any closed H-convex set Dy containing Py (K), we define

D=Dax<]_[x,3).

Bt

Then D is a closed H-convex set containing K, and Dy = Py (D). Therefore, y € P, (D) = D, for all closed H-convex set Dy
containing Py (K). It follows that

ye ﬂ{Da | Dy is closed H-convex and Po (K) € Dy} = H-COP (K).

Thus, Py (H-C0K) C H-0Py (K). O
2. A fundamental theorem

Let {(Xo,Uy,By) | o € I} be a family of l.c.-spaces with precompact polytope, where [ is a finite or infinite index set
and let X :=[],¢; Xo be the product H-space. For each o € I, let Q4 be a measure of precompactness in X,. We shall say
that a set-valued mapping T, : X — 2%« is Q,-condensing, provided that Qu(Py(A)) € Qu (T« (A)) for every A satisfying
Py (A) is a nonprecompact subset of X,. It is easy to check that Ty : X — 2Xe s Q¢ -condensing, whenever X is compact.
Also, under the particular case where I = {1}, the projection P, is just the identity on X; therefore, the above definition
reduces to the usual Q -condensing mapping T : X — 2%; that is, Q (A) € Q (T (A)) for every nonprecompact set A C X. For
details, see for example [2,3,5,6].

We are ready to prove our fundamental theorem.

Theorem 2.1. Let {(Xy, {Fj‘a}) | @ € I} be a family of l.c.-spaces with precompact polytope, and let X := [],<; X«a. Suppose

Ty : X — 2% is a Qq-condensing mapping for each o € 1. Then there exists a nonempty compact H-convex subset K of X, with
K =T[1ye; Ka, such that T (K) € Ky for each a € I; thatis, To : K — 2Ke foreach o € I.

Proof. Fix any xo € X = [],¢; Xa. Let F be the family of all closed H-convex subsets C of X which contains xp and satisfies
the following conditions: C =[], ; C«, Where Cy are closed H-convex subsets of X, such that T (C) € Cy for each o €1,
and let Fy be the family of such sets Co. Now let K = ¢ #C and Ky = (¢, cz, Ca for each o € I. Then xo € K and
Py (x0) € Ko Hence K and K, are nonempty closed H-convex sets. Furthermore, we can show that K = [],¢; Ko. In fact, if
x € K, then x € C for all C € F. By the definition of F, we have P, (x) € Cy for all Cy, € Fy. It follows that

Py (%) € ﬂ Cy =K, foreacha el.
[

Thus, x € [],¢; Ko Conversely, if x € [],<; K«, then Py (x) € K for each « € I. Thus, Py (x) € Cy for all Cy € Fy for each
o €1, and hence x € C for all C € F. This implies that x € K. Next, we show that T, (K) C Ky for each « € I. For any x € K,
we have x € C for all C € F. By the definition of F, Ty (x) € Cy, for all Cy € Fy. Hence Ty (x) € K. That is, T (K) € K, for
each o el.

It remains to show that K is compact. To deal with this, we define T : X — 2X by T(x) := [Tger Ta(x), and let

K’ :=H-to({xo} U T(K)).
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Then K’ C K, since K is a closed H-convex set containing both xo and T(K). For each « €I, let K/, = P4 (K’). Then
K}, = Pa(K') € Pa(K) = Kq.
Applying Lemma 1.1, together with Lemma 1.4 and Lemma 1.5, we can obtain a closed H-convex set K”, defined by
K" :=] ] Ke-
ael
Also, xg € K’ implies that Py (xg) € K/, C K_& for each « € I, and hence

xo€[[Patxo) S ][ Ko =K".

ael ael

Clearly, we have

K'=]]Ky S []Ka=]]Ke=k.

ael ael ael
On the other hand, for any x € K”,
T(x) CT(K") S T(K)C K.
Hence
To(x) = Po(T(®)) € Po(K') = K}, S K},.
That is, T (K") C I(_[x Thus, K” € F and hence K € K”. So we conclude that K = K” and hence
Ko = Po(K) = Po(K") =K},

Finally, by Lemma 1.5, we can easily check that

K}, = Po(K') = Py (H-G0{x0} U T(K))

€ H-0Py ({x0} U T(K))

= H-co(Py ({X0} UT(K)))

= H-0(Py ({X0}) U Po(T(K)))

= H-0(Pq ({X0}) U T (K)). (1)

To show that K is compact, it is sufficient to show that each K, is compact by Tychonoff theorem. Assume that K, is
not compact for some « € I. Thus, K, is not precompact since K, is closed. It follows that

Qu(Ko) = th(Pa(K)) - Qa(T(x(K))-
Applying Proposition 1.1 and Corollary 1.1, we have

Qu(K}) 2 Qu(H-00(Pa((x0}) U Ta (K)))
= Qu(Pa({Xo}) U Ta(K))
= Qu(Pa(%0)) N Qu (Ta (K))
= BN Qu(Ta(K))
= Qu(Ta(K) 2 Qo (Ka), (2)

which contradicts with the fact K, = KZ Therefore, K, is compact for each o € I and the proof is complete. O
In particular, when I = {1}, we have the following:

Corollary 2.1. Let (X, U, B) be an l.c.-space with precompact polytope. If T : X — 2% is a Q -condensing mapping, then there exists a
nonempty compact H-convex subset K of X such that T(K) C K.

We remark that Corollary 2.1 generalizes Mehta’s result in Banach spaces [7] and Kim’s result in locally convex topo-
logical vector spaces [5]. A precompact version in locally G-convex spaces can be found in [3], where the derived set K is
precompact, instead of a compact set.
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3. Applications to fixed point theorems

In 1992, Tarafdar [8] proved the following fixed point theorem:

Theorem A. Let X = [],; Xa be the product space of compact H-spaces Xy, o € I. Suppose that Ty, : X — 2Xe satisfies the following
conditions for each o € I.

(1) Foreach x € X, Ty (x) is a nonempty H-convex subset of X, for each o € I.
(2) Foreach xq € Xg, Tgl (X ) contains an open subset O, of X such that
Uxa ex, Ox, = X (where Ox, may be empty for some xy).

Then T :=[],¢; Ta has a fixed point.

Recall that a set-valued mapping T : X — 2% is upper semicontinuous (u.s.c.), if for each x € X and for any open set G
containing T (x), there is an open neighborhood U of x such that T(y) C G for all y € U. In 1997, Tarafdar and Watson [10]
established the following fixed point theorem for upper semicontinuous set-valued mappings in a compact l.c.-space.

Theorem B. Let (X,U, B) be a compact l.c.-space. If T : X — 2% is an upper semicontinuous set-valued mapping with compact
H-convex values, then T has a fixed point.

We note that a nonempty subset D of a topological space X is said to be compactly open, if D N K is open for all
compact subsets K of X. Based on the above results, we are able to show two generalized fixed point theorems as follows.

Theorem 3.1. Let X := [[,.; X« be the product space of l.c.-spaces (Xq,Uy,Ba), @ € I with precompact polytope and let
Ty : X = 2%« be a Q-condensing mapping for each o € I. Suppose that T, satisfies the following conditions for each o € I.

(1) Foreach x € X, Ty (x) is a nonempty H-convex subset of X, for each o € I.
(2) For each x4 € Xg, Tgl (xq) contains a compactly open subset Oy, of X such that Uxaexa Ox, = X (where Oy, may be empty
for some xy).

Then T :=[],¢; Ta has a fixed point; that is, there exists x = (xy) such that X, € Ty (x) for each o.

Proof. By Theorem 2.1, there exists a nonempty compact H-convex subset K of X with K =[], ; K and Ty (K) € Kg. Also,
for each x € K C X, each Ty (x) is a nonempty H-convex subset of K, by (1). Further, by (2), we have some x, € X, such
that

X €0y, ST, (Xg).
Equivalently,
Xq € Ta(X) € Te(K) € Kq.
This yields K € Uy, ck, Ox,- It follows that

1<:< U oxa>m<= U 0x, nK).

Xo €Ky Xq €Ky
Define
0y, :=0x, NK foreachxy € K.

Then each O} is an open subset of K satisfying K =(J, ., Ok,.and O, < Oy, €T~ '(xy) for each x4 € Kq. All conditions
of Theorem A are fulfilled w.r.t. Ty : K —> 2X«, and hence T has a fixed point. O

As a consequence, we obtain the following corollary:

Corollary 3.1. Let (X, U, B) be an l.c.-space with precompact polytope. Suppose that T : X — 2X is a Q -condensing mapping with
nonempty H-convex values such that for each y € X, T~ (y) contains a compactly open subset 0y of X with UyeX Oy=X.ThenT
has a fixed point.

Theorem 3.2. Let X :=[],; X« be the product space of I.c.-spaces (Xq, Uy, By) with precompact polytope, where o € I. If each
Ty : X = 2% is an upper semicontinuous Q-condensing mapping with nonempty H-convex values, then T := [1oci Ta has a fixed
point.
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Proof. By Theorem 2.1, there exists a nonempty compact H-convex subset K of X with K =[],¢; Ko and Ty (K) € K for
each « € I. Clearly, the restriction Ty : K — K is also u.s.c., and each Ty (x) is nonempty, compact and H-convex for all
x € K. Since Ty (K) € Ky, we obtain

T =[]Te® ] [Kae=K. VxeKk.

ael ael

That is, T(K) € K. Applying Lemma 1.1, we note that T is also u.s.c. with nonempty H-convex values. Thus, it follows from
Theorem B that T has a fixed point. O

In case I = {1}, we have the following immediate result.

Corollary 3.2. Let (X,U, B) be an I.c.-space with precompact polytope. Suppose that T : X — 2% is an upper semicontinuous Q -
condensing mapping with H-convex values. Then T has a fixed point.

References

[1] X.P. Ding, W.K. Kim, K.K. Tan, Equilibria of non-compact generalized games with L*-majorized preference correspondences, J. Math. Anal. Appl. 164 (2)
(1992) 508-517.
[2] CJ. Himmelberg, J.R. Porter, ES. Van Vleck, Fixed point theorems for condensing multifunctions, Proc. Amer. Math. Soc. 23 (1969) 635-641.
[3] Y.Y. Huang, T.Y. Kuo, J.C. Jeng, Fixed point theorems for condensing multimaps on locally G-convex spaces, Nonlinear Anal. 67 (2007) 1522-1531.
[4] J.L. Kelley, General Topology, Springer-Verlag, 1975.
[5] WK. Kim, A maximal element of condensing multimaps, J. Chung. Math. Soc. 6 (1993) 59-64.
[6] LJ. Lin, Q.H. Ansari, Collective fixed points and maximal elements with applications to abstract economies, ]. Math. Anal. Appl. 296 (2004) 455-472.
[7] G. Mehta, Maximal elements of condensing preference maps, Appl. Math. Lett. 3 (2) (1990) 69-71.
[8] E. Tarafdar, Fixed point theorems in H-spaces and equilibrium points of abstract economies, J. Austral. Math. Soc. Ser. A 53 (1992) 252-260.
[9] E. Tarafdar, A fixed point theorems in H-spaces and related results, Bull. Aust. Math. Soc. 42 (1990) 133-140.
[10] E. Tarafdar, P.J. Watson, Coincidence and the Fan-Glicksberg fixed point theorem in locally H-convex spaces, Research report, The University of Queens-
land, 1997.
[11] PJ. Watson, Coincidence and fixed points in locally G-convex spaces, Bull. Aust. Math. Soc. 59 (1999) 297-304.
[12] X. Wu, ZF. Shen, Equilibrium of abstract economy and generalized quasi-variational inequality in H-spaces, Topology Appl. 153 (2005) 123-132.



	An extension of Mehta theorem with applications
	1 Introduction and preliminaries
	2 A fundamental theorem
	3 Applications to ﬁxed point theorems
	References


