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A remarkable fundamental theorem established by Mehta plays an important role in
proving existence of fixed points, maximal elements, and equilibria in abstract economies.
In this paper, we extend Himmelberg’s measure of precompactness to the general setting of
l.c.-spaces and obtain a generalization of Mehta’s theorem. As an application, we develop
some new fixed point theorems involving a kind of condensing mappings.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

In 1990, Mehta [7] established a key theorem about condensing maps in a Banach space by using the Kuratowski’s
measure of noncompactness. The result is very useful to prove the existence of fixed points for condensing maps. In 1993,
Kim [5] generalized Mehta’s result to a locally convex Hausdorff topological vector space by using the measure of precom-
pactness due to Himmelberg et al. [2]. The purpose of this paper is to extend such a fundamental theorem to a general
l.c.-space, and develop related propositions about projections and H-convexity in a product H-space.

We begin with some basic definitions and facts. For a nonempty set X , 2X denotes the class of all subsets of X , and
〈X〉 denotes the class of all nonempty finite subsets of X . Recall that a pair (X, {ΓA}) is called an H-space, if X is a
topological space, together with a family {ΓA} of some nonempty contractible subsets of X indexed by A ∈ 〈X〉 such that
ΓA ⊆ ΓB whenever A ⊆ B . Given an H-space (X, {ΓA}), a nonempty subset D of X is called to be H-convex if ΓA ⊆ D for
all A ⊆ 〈D〉. For a nonempty subset K of X , we define the H-convex hull of K as

H-coK :=
⋂

{D | D is H-convex in X and K ⊆ D},
and we define the closed H-convex hull of K as

H-coK :=
⋂

{D | D is closed H-convex in X and K ⊆ D}.
Notice that the intersection of H-convex sets is also an H-convex set if the intersection is nonempty. Therefore H-coK and
H-coK are the smallest H-convex set and closed H-convex set containing K , respectively. If K is a finite subset of X , then
H-coK is called a polytope in X . Further, H-coK can be expressed as

H-coK =
⋃{

H-coA
∣∣ A ∈ 〈K 〉}.
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A uniform structure U for a set X is a nonempty family of subsets of X × X such that the following conditions
hold:

(1) for any U ∈ U , (x, x) ∈ U for each x ∈ X ,
(2) if U ∈ U , then U−1 ∈ U , where U−1 := {(x, y) | (y, x) ∈ U },
(3) for any U ∈ U , there exists V ∈ U such that V ◦ V ⊆ U , where

V ◦ V := {
(x, y)

∣∣ there is a z ∈ X such that (x, z) ∈ V and (z, x) ∈ V
}
,

(4) if U , V ∈ U , then U ∩ V ∈ U ,
(5) if U ⊆ V ⊆ X × X and U ∈ U , then V ∈ U .

In this event, the pair (X,U) is called a uniform space, whose topology induced by U is the family of all subsets G
of X such that for each x ∈ G , there is a V ∈ U such that V (x) ⊆ G , where V (x) := {y ∈ X | (x, y) ∈ V }. Every member
V ∈ U is called an entourage. An entourage V is symmetric provided that (x, y) ∈ V implies (y, x) ∈ V . A subfam-
ily B of a uniform structure U is called a base if each member of U contains a member of B. In additions, for any
subset K of X , its closure K can be expressed as K = ⋂

V ∈B V (K ). For details of uniform spaces, we refer to [1,4,10,
12].

An l.c.-space is an H-space (X, {ΓA}) with a uniform structure U whose topology is induced by U , and there is a base
B consisting of symmetric entourages in U such that for each V ∈ B, the set V (E) := ⋃

x∈E V (x) is H-convex whenever
E is H-convex. We shall use the notation (X,U ,B) to stand for an l.c.-space. Equivalently, l.c.-spaces can be defined as
a milder condition: V (E) is H-convex whenever E is a polytope in X . Under this milder condition, we can prove that
V (E) is H-convex whenever E is H-convex. Indeed, for any finite set A = {x1, x2, . . . , xn} of V (E). By definition, there exists
B = {y1, y2, . . . , yn} ⊆ E such that xi ∈ V (yi). It follows that

A = {x1, x2, . . . , xn} ⊆
n⋃

i=1

V (yi) ⊆ V (B) ⊆ V (H-coB) ⊆ V (E).

Since H-coB is a polytope in X , V (H-coB) is H-convex and hence

ΓA ⊆ V (H-coB) ⊆ V (E).

This shows that V (E) is H-convex.
We note that for any E ∈ 〈X〉, E ⊆ V (E) for all V ∈ B. Furthermore, V (E) can be expressed as

V (E) = {
x ∈ X

∣∣ E ∩ V (x) 	= ∅}
.

In fact, if x ∈ V (E), then x ∈ V (y) for some y ∈ E . That is, (y, x) ∈ V . Hence (x, y) ∈ V . It follows that y ∈ V (x) ∩ E 	= ∅.
Conversely, if E ∩ V (x) 	= ∅, then there exists y ∈ E with y ∈ V (x). Now (x, y) ∈ V implies (y, x) ∈ V and hence x ∈ V (y) ⊆
V (E).

In an l.c.-space (X,U ,B), a subset K of X is called precompact, if for any V ∈ U , there exists a finite set F such that
K ⊆ V (F ). An l.c.-space is called an l.c.-space with precompact polytope if each polytope in X is precompact.

In an l.c.-space (X,U ,B), we define the measure of precompactness of a subset A in X by

Q (A) := {
V ∈ B

∣∣ A ⊆ V (K ) for some precompact set K of X
}
.

Here, we notice that the measure Q (A) can be rewritten as

Q (A) = {
V ∈ B

∣∣ A ⊆ V (K ) for some compact set K of X
}
.

In fact, if V ∈ Q (A), then A ⊆ V (K ) for some precompact set K . This implies that A ⊆ V (K ). Since K is precompact, K is
compact; hence the result follows. Some related l.c.-spaces can be found in [3,4,8–11].

At first, we establish some basic properties, which will be used in our proofs.

Lemma 1.1. If (X,U ,B) is an l.c.-space and K is H-convex in X, then K is also H-convex.

Proof. Since B is a base, K = ⋂
V ∈B V (K ). Also, each V (K ) is H-convex for any V ∈ B. Therefore, K is also H-convex. �

Lemma 1.2. If (X,U ,B) is an l.c.-space and K ⊆ X, then H-coK = H-coK .

Proof. By definition, H-coK ⊆ H-coK . Further, since H-coK is closed, we have

H-coK ⊆ H-coK = H-coK .

On the other hand, H-coK is a closed H-convex set containing K , by Lemma 1.1. Since H-coK is the smallest closed H-
convex set containing K , it follows that

H-coK ⊆ H-coK . �
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Lemma 1.3. If (X,U ,B) is an l.c.-space with precompact polytope and K is precompact, then H-coK is also precompact.

Proof. For any U ∈ U , we can choose a V ∈ U such that V ◦ V ⊆ U . Since K is precompact, there exists a finite set F such
that K ⊆ V (F ). Since V (H-coF ) is an H-convex set containing V (F ), we have

H-coK ⊆ H-coV (F ) ⊆ V (H-coF ).

By using the fact that the polytope H-coF is precompact in X , we can find another finite set F ′ such that H-coF ⊆ V (F ′).
Therefore,

H-coK ⊆ V (H-coF ) ⊆ V
(

V
(

F ′)) = (V ◦ V )
(

F ′) ⊆ U
(

F ′).
Since the above inclusion holds for arbitrary U ∈ U , H-coK is precompact. �

The following proposition is a very essential result w.r.t. the measure of precompactness.

Proposition 1.1. Let (X,U ,B) be an l.c.-space with precompact polytope, and A, B ⊆ X. Then

(1) A is precompact iff Q (A) = B,
(2) if A ⊆ B, then Q (B) ⊆ Q (A),
(3) Q (A) = Q (A),
(4) Q (H-coA) = Q (A),
(5) Q (A ∪ B) = Q (A) ∩ Q (B).

Proof. For (1), suppose that A is a precompact set. Then for any V ∈ B , we have (x, x) ∈ V for all x ∈ A. It follows that
x ∈ V (x) ⊆ V (A). This result implies that A ⊆ V (A) ⊆ V (A). This shows that V ∈ Q (A) for all V ∈ B . Thus, B ⊆ Q (A) and
hence B = Q (A). Conversely, suppose Q (A) = B. Then for any U ∈ U , there exists a V ∈ U such that V ◦ V ⊆ U . Since B is
a base, we can take this V ∈ B. Similarly, we have some V ′ ∈ B such that V ′ ◦ V ′ ⊆ V . Since V ′ ∈ B = Q (A), there exists a
precompact set K such that A ⊆ V ′(K ). Further, we have a finite set F such that K ⊆ V ′(F ). Thus,

A ⊆ V ′(K ) ⊆ V ′(V ′(F )
) = (

V ′ ◦ V ′)(F ) ⊆ V (F ) ⊆ V
(

V (F )
) = (V ◦ V )(F ) ⊆ U (F ).

Since U ∈ U is arbitrary, A is precompact.
For (2), if A ⊆ B , then for any V ∈ Q (B), B ⊆ V (K ) for some precompact set K . So A ⊆ B ⊆ V (K ), and hence V ∈ Q (A).

This means that Q (B) ⊆ Q (A).
For (3), it is sufficient to prove that Q (A) ⊆ Q (A). Indeed, if V ∈ Q (A), then there is a precompact set K such that

A ⊆ V (K ). It follows that A ⊆ V (K ) and hence V ∈ Q (A).
For (4), we have to show that Q (A) ⊆ Q (H-coA). If V ∈ Q (A), then A ⊆ V (K ) for some precompact set K . Consequently,

H-coA ⊆ H-coV (K ) ⊆ V (H-coK ),

since V (H-coK ) is an H-convex set containing V (K ) by Lemma 1.1. Since H-coK is precompact by Lemma 1.3, it follows
that V ∈ Q (H-coA). This shows that Q (A) ⊆ Q (H-coA).

For (5), since Q (A ∪ B) ⊆ Q (A) and Q (A ∪ B) ⊆ Q (B), we have Q (A ∪ B) ⊆ Q (A) ∩ Q (B). Conversely, suppose V ∈
Q (A) ∩ Q (B). Then there exist precompact sets K1 and K2 such that A ⊆ V (K1) and B ⊆ V (K2). Hence

A ∪ B ⊆ V (K1) ∪ V (K2) ⊆ V (K1 ∪ K2).

Since K1 ∪ K2 is also precompact, it follows that V ∈ Q (A ∪ B), and hence Q (A) ∩ Q (B) ⊆ Q (A ∪ B). �
Corollary 1.1. If (X,U ,B) is an l.c.-space with precompact polytope, then

Q (A) = Q (H-coA) = Q (H-coA), ∀A ⊆ X .

Besides, we review some concepts about the product of H-spaces. Let {(Xα, {Γ α
Aα

}) | α ∈ I} be a family of H-spaces,
where I is a finite or infinite index set. Define X := ∏

α∈I Xα to be the product space with product topology, and for each
α ∈ I , let Pα : X → Xα denote the projection of X onto Xα . For any finite set A of X , we set ΓA := ∏

α∈I Γ α
Aα

, where
Aα = Pα(A) for each α ∈ I . Then (X, {ΓA}) forms an H-space.

In fact, since for each α ∈ I , Γ α
Aα

is contractible, it is easy to see that ΓA is contractible. Moreover, if A and B are two
finite subsets of X with A ⊆ B , then for each α ∈ I , Pα(A) ⊆ Pα(B); that is, Aα ⊆ Bα and hence Γ α

Aα
⊆ Γ α

Bα
. Thus,

ΓA =
∏
α∈I

Γ α
Aα

⊆
∏
α∈I

Γ α
Bα

= ΓB .

Therefore, (X, {ΓA}) is an H-space. Under this terminology, we have the following lemma due to Tarafdar [9].
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Lemma 1.4. The product X := ∏
α∈I Xα of any number (finite or infinite) of H-spaces Xα (α ∈ I) is an H-space, and the product of

H-convex sets is H-convex.

Lemma 1.5. The projection of an H-convex set in the product H-space X := ∏
α∈I Xα is also H-convex.

Proof. Suppose K is an H-convex subset of X = ∏
α∈I Xα and Kα is the projection of K onto Xα . We want to show that

Kα is an H-convex subset of Xα . Let Aα be a nonempty finite subset of Kα and Pα : X → 2Xα denote the projection of X
onto Xα . Then there is a correspondent nonempty finite subset A of K such that Pα(A) = Aα . Since K is H-convex, we
have ΓA ⊆ K . It follows from the definition of ΓA that

Γ α
Aα

= Pα(ΓA) ⊆ Pα(K ) = Kα.

Thus, Kα is H-convex. �
Lemma 1.6. If Pα : X → 2Xα is the projection of the product H-space X := ∏

α∈I Xα onto Xα , and K is a nonempty subset of X , then

Pα(H-coK ) ⊆ H-coPα(K ).

Proof. If y ∈ Pα(H-coK ), then y = Pα(x) for some x ∈ H-coK . Thus, y = Pα(x) ∈ Pα(D) for all closed H-convex subsets D
containing K . Now for any closed H-convex set Dα containing Pα(K ), we define

D = Dα ×
( ∏

β 	=α

Xβ

)
.

Then D is a closed H-convex set containing K , and Dα = Pα(D). Therefore, y ∈ Pα(D) = Dα for all closed H-convex set Dα

containing Pα(K ). It follows that

y ∈
⋂{

Dα

∣∣ Dα is closed H-convex and Pα(K ) ⊆ Dα

} = H-coPα(K ).

Thus, Pα(H-coK ) ⊆ H-coPα(K ). �
2. A fundamental theorem

Let {(Xα,Uα,Bα) | α ∈ I} be a family of l.c.-spaces with precompact polytope, where I is a finite or infinite index set
and let X := ∏

α∈I Xα be the product H-space. For each α ∈ I , let Q α be a measure of precompactness in Xα . We shall say
that a set-valued mapping Tα : X → 2Xα is Q α-condensing, provided that Q α(Pα(A)) � Q α(Tα(A)) for every A satisfying
Pα(A) is a nonprecompact subset of Xα . It is easy to check that Tα : X → 2Xα is Q α-condensing, whenever X is compact.
Also, under the particular case where I = {1}, the projection Pα is just the identity on X ; therefore, the above definition
reduces to the usual Q -condensing mapping T : X → 2X ; that is, Q (A) � Q (T (A)) for every nonprecompact set A ⊆ X . For
details, see for example [2,3,5,6].

We are ready to prove our fundamental theorem.

Theorem 2.1. Let {(Xα, {Γ α
Aα

}) | α ∈ I} be a family of l.c.-spaces with precompact polytope, and let X := ∏
α∈I Xα . Suppose

Tα : X → 2Xα is a Q α-condensing mapping for each α ∈ I . Then there exists a nonempty compact H-convex subset K of X , with
K = ∏

α∈I Kα , such that Tα(K ) ⊆ Kα for each α ∈ I; that is, Tα : K → 2Kα for each α ∈ I .

Proof. Fix any x0 ∈ X = ∏
α∈I Xα . Let F be the family of all closed H-convex subsets C of X which contains x0 and satisfies

the following conditions: C = ∏
α∈I Cα , where Cα are closed H-convex subsets of Xα such that Tα(C) ⊆ Cα for each α ∈ I ,

and let Fα be the family of such sets Cα . Now let K = ⋂
C∈F C and Kα = ⋂

Cα∈Fα
Cα for each α ∈ I . Then x0 ∈ K and

Pα(x0) ∈ Kα . Hence K and Kα are nonempty closed H-convex sets. Furthermore, we can show that K = ∏
α∈I Kα . In fact, if

x ∈ K , then x ∈ C for all C ∈F . By the definition of F , we have Pα(x) ∈ Cα for all Cα ∈Fα . It follows that

Pα(x) ∈
⋂

Cα∈Fα

Cα = Kα for each α ∈ I.

Thus, x ∈ ∏
α∈I Kα . Conversely, if x ∈ ∏

α∈I Kα , then Pα(x) ∈ Kα for each α ∈ I . Thus, Pα(x) ∈ Cα for all Cα ∈ Fα for each
α ∈ I , and hence x ∈ C for all C ∈F . This implies that x ∈ K . Next, we show that Tα(K ) ⊆ Kα for each α ∈ I . For any x ∈ K ,
we have x ∈ C for all C ∈ F . By the definition of F , Tα(x) ∈ Cα for all Cα ∈ Fα . Hence Tα(x) ∈ Kα . That is, Tα(K ) ⊆ Kα for
each α ∈ I .

It remains to show that K is compact. To deal with this, we define T : X → 2X by T (x) := ∏
α∈I Tα(x), and let

K ′ := H-co
({x0} ∪ T (K )

)
.
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Then K ′ ⊆ K , since K is a closed H-convex set containing both x0 and T (K ). For each α ∈ I , let K ′
α = Pα(K ′). Then

K ′
α = Pα

(
K ′) ⊆ Pα(K ) = Kα.

Applying Lemma 1.1, together with Lemma 1.4 and Lemma 1.5, we can obtain a closed H-convex set K ′′ , defined by

K ′′ :=
∏
α∈I

K ′
α.

Also, x0 ∈ K ′ implies that Pα(x0) ∈ K ′
α ⊆ K ′

α for each α ∈ I , and hence

x0 ∈
∏
α∈I

Pα(x0) ⊆
∏
α∈I

K ′
α = K ′′.

Clearly, we have

K ′′ =
∏
α∈I

K ′
α ⊆

∏
α∈I

Kα =
∏
α∈I

Kα = K .

On the other hand, for any x ∈ K ′′ ,

T (x) ⊆ T
(

K ′′) ⊆ T (K ) ⊆ K ′.

Hence

Tα(x) = Pα

(
T (x)

) ⊆ Pα

(
K ′) = K ′

α ⊆ K ′
α.

That is, Tα(K ′′) ⊆ K ′
α . Thus, K ′′ ∈F and hence K ⊆ K ′′ . So we conclude that K = K ′′ and hence

Kα = Pα(K ) = Pα

(
K ′′) = K ′

α.

Finally, by Lemma 1.5, we can easily check that

K ′
α = Pα

(
K ′) = Pα

(
H-co{x0} ∪ T (K )

)
⊆ H-coPα

({x0} ∪ T (K )
)

= H-co
(

Pα

({x0} ∪ T (K )
))

= H-co
(

Pα

({x0}
) ∪ Pα

(
T (K )

))
= H-co

(
Pα

({x0}
) ∪ Tα(K )

)
. (1)

To show that K is compact, it is sufficient to show that each Kα is compact by Tychonoff theorem. Assume that Kα is
not compact for some α ∈ I . Thus, Kα is not precompact since Kα is closed. It follows that

Q α(Kα) = Q α

(
Pα(K )

)
� Q α

(
Tα(K )

)
.

Applying Proposition 1.1 and Corollary 1.1, we have

Q α

(
K ′

α

) ⊇ Q α

(
H-co

(
Pα

({x0}
) ∪ Tα(K )

))
= Q α

(
Pα

({x0}
) ∪ Tα(K )

)
= Q α

(
Pα(x0)

) ∩ Q α

(
Tα(K )

)
= B ∩ Q α

(
Tα(K )

)
= Q α

(
Tα(K )

)
� Q α(Kα), (2)

which contradicts with the fact Kα = K ′
α . Therefore, Kα is compact for each α ∈ I and the proof is complete. �

In particular, when I = {1}, we have the following:

Corollary 2.1. Let (X,U ,B) be an l.c.-space with precompact polytope. If T : X → 2X is a Q -condensing mapping, then there exists a
nonempty compact H-convex subset K of X such that T (K ) ⊆ K .

We remark that Corollary 2.1 generalizes Mehta’s result in Banach spaces [7] and Kim’s result in locally convex topo-
logical vector spaces [5]. A precompact version in locally G-convex spaces can be found in [3], where the derived set K is
precompact, instead of a compact set.
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3. Applications to fixed point theorems

In 1992, Tarafdar [8] proved the following fixed point theorem:

Theorem A. Let X = ∏
α∈I Xα be the product space of compact H-spaces Xα , α ∈ I . Suppose that Tα : X → 2Xα satisfies the following

conditions for each α ∈ I .

(1) For each x ∈ X, Tα(x) is a nonempty H-convex subset of Xα for each α ∈ I .
(2) For each xα ∈ Xα , T −1

α (xα) contains an open subset O xα of X such that⋃
xα∈Xα

O xα = X (where O xα may be empty for some xα ).

Then T := ∏
α∈I Tα has a fixed point.

Recall that a set-valued mapping T : X → 2X is upper semicontinuous (u.s.c.), if for each x ∈ X and for any open set G
containing T (x), there is an open neighborhood U of x such that T (y) ⊆ G for all y ∈ U . In 1997, Tarafdar and Watson [10]
established the following fixed point theorem for upper semicontinuous set-valued mappings in a compact l.c.-space.

Theorem B. Let (X,U ,B) be a compact l.c.-space. If T : X → 2X is an upper semicontinuous set-valued mapping with compact
H-convex values, then T has a fixed point.

We note that a nonempty subset D of a topological space X is said to be compactly open, if D ∩ K is open for all
compact subsets K of X . Based on the above results, we are able to show two generalized fixed point theorems as follows.

Theorem 3.1. Let X := ∏
α∈I Xα be the product space of l.c.-spaces (Xα,Uα,Bα), α ∈ I with precompact polytope and let

Tα : X → 2Xα be a Q α-condensing mapping for each α ∈ I . Suppose that Tα satisfies the following conditions for each α ∈ I .

(1) For each x ∈ X, Tα(x) is a nonempty H-convex subset of Xα for each α ∈ I .
(2) For each xα ∈ Xα , T −1

α (xα) contains a compactly open subset O xα of X such that
⋃

xα∈Xα
O xα = X (where O xα may be empty

for some xα ).

Then T := ∏
α∈I Tα has a fixed point; that is, there exists x = (xα) such that xα ∈ Tα(x) for each α.

Proof. By Theorem 2.1, there exists a nonempty compact H-convex subset K of X with K = ∏
α∈I Kα and Tα(K ) ⊆ Kα . Also,

for each x ∈ K ⊆ X , each Tα(x) is a nonempty H-convex subset of Kα by (1). Further, by (2), we have some xα ∈ Xα such
that

x ∈ O xα ⊆ T −1
α (xα).

Equivalently,

xα ∈ Tα(x) ⊆ Tα(K ) ⊆ Kα.

This yields K ⊆ ⋃
xα∈Kα

O xα . It follows that

K =
( ⋃

xα∈Kα

O xα

)
∩ K =

⋃
xα∈Kα

(O xα ∩ K ).

Define

O ′
xα

:= O xα ∩ K for each xα ∈ Kα.

Then each O ′
xα

is an open subset of K satisfying K = ⋃
xα∈Kα

O ′
xα

, and O ′
xα

⊆ O xα ⊆ T −1(xα) for each xα ∈ Kα . All conditions
of Theorem A are fulfilled w.r.t. Tα : K −→ 2Kα , and hence T has a fixed point. �

As a consequence, we obtain the following corollary:

Corollary 3.1. Let (X,U ,B) be an l.c.-space with precompact polytope. Suppose that T : X → 2X is a Q -condensing mapping with
nonempty H-convex values such that for each y ∈ X, T −1(y) contains a compactly open subset O y of X with

⋃
y∈X O y = X. Then T

has a fixed point.

Theorem 3.2. Let X := ∏
α∈I Xα be the product space of l.c.-spaces (Xα,Uα,Bα) with precompact polytope, where α ∈ I . If each

Tα : X → 2Xα is an upper semicontinuous Q α-condensing mapping with nonempty H-convex values, then T := ∏
α∈I Tα has a fixed

point.
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Proof. By Theorem 2.1, there exists a nonempty compact H-convex subset K of X with K = ∏
α∈I Kα and Tα(K ) ⊆ Kα for

each α ∈ I . Clearly, the restriction Tα : K → Kα is also u.s.c., and each Tα(x) is nonempty, compact and H-convex for all
x ∈ K . Since Tα(K ) ⊆ Kα , we obtain

T (x) =
∏
α∈I

Tα(x) ⊆
∏
α∈I

Kα = K , ∀x ∈ K .

That is, T (K ) ⊆ K . Applying Lemma 1.1, we note that T is also u.s.c. with nonempty H-convex values. Thus, it follows from
Theorem B that T has a fixed point. �

In case I = {1}, we have the following immediate result.

Corollary 3.2. Let (X,U ,B) be an l.c.-space with precompact polytope. Suppose that T : X → 2X is an upper semicontinuous Q -
condensing mapping with H-convex values. Then T has a fixed point.
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