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a b s t r a c t

We consider the nonhomogeneous Yamabe equation on a bounded set of the Heisenberg
group−∆Hu = |u|q

∗
−2u+ f , where f is a small perturbation in the C0 sense. Under suitable

hypotheses, we will state a multiplicity existence result for positive solutions with zero
Dirichlet boundary conditions.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Let Ω be a bounded domain in the Heisenberg group Hn. In this work we are interested in finding multiple solutions of
the following nonhomogeneous Dirichlet problem

−∆Hu = |u|q
∗
−2u + f , inΩ,

u > 0, inΩ,
u = 0, on ∂Ω,

f ∈ C(Ω̄), f ≢ 0 f ≥ 0.

(1)

Here∆H denotes the sub-laplacian of the group and q∗
= (2n+2)/2.When f ≡ 0, problem (1) coincideswith theCR-Yamabe

equation on Ω which has been intensively studied in the last years (see for instance [15,13,6] and the references therein).
Regarding perturbation results on bounded domain, we recall the result obtained by Garagnani and Uguzzoni in [12]: they
consider the homogeneous equation

−∆Hu = |u|q
∗
−2u + λu, inΩ

with zero Dirichlet boundary conditions; under suitable hypotheses on the boundary ofΩ , they provide amultiplicity result
for positive solutions involving the Lusternik–Schnirelmann category.

In [18] the authors with Pistoia prove the existence of concentrating solutions for the slightly sub-critical problem under
a suitable assumption on ∂Ω and that the Robin’s function of the domain has a non-degenerate critical point.

Here for our purpose we will also need a hypothesis on ∂Ω , in particular we will require that the boundary of Ω has no
characteristic points (see Definition 2.1 in the next section). Then, by denoting with Hk(Ω) the k-th homology group of Ω ,
we will prove the following:
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Theorem 1.1. Let Ω ⊆ Hn be a bounded domain with smooth boundary and with no characteristic points. Then there exist
a residual subset D ∈ C2(Ω̄) and ε0 > 0, such that for every f ∈ D with |f |C(Ω̄) < ε0, the problem (1) has at least 1 +

Σ∞

k=0dimHk(Ω) solutions.

The condition on Ω is needed in order to overcome some technical difficulties in proving some estimates: as consequence,
if we consider H1 for instance, we cannot take the Heisenberg ball as our domain, since its boundary has two characteristic
points; in particular any contractible domain in H1 with smooth boundary has characteristic points. Anyway, since the
multiplicity result is due to the topology of the domain we are interested in domains with ‘‘rich’’ topology: for example the

standard torus in H1 defined by


R −

x2 + y2

2
+ t2 − r2 < 0, R > r > 0


turns out to not have any characteristic

point.
We recall that the analogous problem for the standard Laplacian on bounded domains in Rn was solved by Hirano in [14].

Moreover we used the same technique also in [17] in which we first investigate the problem of existence andmultiplicity of
solutions for the non-homogeneous fourth order Yamabe type equation involving the bi-Laplacian by exhibiting a family of
solutions concentrating at two points, provided the domain contains one hole and giving a multiplicity result if the domain
has multiple holes (as in [7,8]); then we prove a multiplicity result for vanishing positive solutions in a general domain.

2. Setting of the problem

Let Hn
= (R2n+1, �) be the Heisenberg group. If we denote by ξ = (x, y, t) ∈ (Rn

× Rn
× R) then the group law is

ξ0 � ξ = (x + x0, y + y0, t + t0 + 2(x · y0 − x0 · y)), ∀ξ, ξ0 ∈ Hn

where · denotes the inner product in Rn. The left translations are then given by

τξ0(ξ) := ξ0 � ξ .

The dilations of the group are

δλ : Hn
→ Hn, δλ(ξ) = (λx, λy, λ2t)

for any λ > 0. We define the homogeneous norm

ρ(ξ) =

(|x|2 + |y|2)2 + t2

1/4
,

and the distance

d(ξ , ξ0) = ρ(ξ−1
0 � ξ).

It holds

d(δλξ, δλξ0) = λ d(ξ , ξ0).

We will denote by Bd(ξ , r) the ball with respect to the distance d, of center ξ and radius r . We have

Bd(ξ , r) = τξ (Bd(0, r)), Bd(0, r) = δr(Bd(0, 1)).

The canonical left-invariant vector fields are

Xj =
∂

∂xj
+ 2yj

∂

∂t
, Yj =

∂

∂yj
− 2xj

∂

∂t
, j = 1, . . . , n.

The (intrinsic) gradient of the group is

DH = (X1, . . . , Xn, Y1, . . . , Yn).

The Kohn Laplacian (or sublaplacian) on Hn is the following second order operator invariant with respect to the left
translations and homogeneous of degree two with respect to the dilations:

∆H =

n
j=1

X2
j + Y 2

j .

By a result in [9], the fundamental solution on Hn of −∆H with pole at the origin is

Γ (ξ) =
cq

ρ(ξ)q−2

where cq is a suitable positive constant and q = 2n + 2 is the homogeneous dimension of the group. The fundamental
solution on Hn of −∆H with pole at the ξ will be

Γ (ξ , η) =
cq

d(ξ , η)q−2
.
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Let now

q∗
=

2q
q − 2

then the following Sobolev-type inequality holds

∥ϕ∥
2
q∗ =


Hn

|ϕ|
q∗

 2
q∗

≤ C


Hn
|DHϕ|

2
= C∥DHϕ∥

2
2, ∀ϕ ∈ C∞

0 (Hn)

with C a positive constant. For every domain Ω ⊆ Hn, the Folland–Stein Sobolev space S10(Ω) is defined as the completion
of C∞

0 (Ω) with respect to the norm

∥ϕ∥ = ∥DHϕ∥2.

The exponent q∗ is called critical since the embedding

S10(Ω) ↩→ Lq
∗

(Ω)

is continuous but not compact for every domain Ω . Moreover, by defining the inner product on S10(Ω)

⟨u, v⟩ =


Ω

⟨DHu,DHv⟩

then there exists a natural orthogonal projection

P : S10(H
n) −→ S10(Ω).

Let us define the function

ω(x, y, t) =
c0

(1 + |x|2 + |y|2)2 + t2
 q−2

4

with c0 a suitable positive constant; we recall that Jerison and Lee showed in [16] that all the positive solutions to the
problem

− ∆Hu = |u|q
∗
−2u, u ∈ S10(H

n) (2)

are in the form

ωλ,ξ = λ
q−2
2 ω ◦ δλ ◦ τξ−1

for some λ > 0 and ξ ∈ Hn. Using the variational framework, a positive solution of the problem (2) on Ω can be found as
critical point of the following functional

JΩ : S10(Ω) → R, JΩ(u) =
1
2


Ω

|DHu|2 −
1
q∗


Ω

|u+
|
q∗

where u+
= max{0, u} denotes the positive part of u. Moreover any variational solution is actually a classical

solution [10,13].
We will denote by c = JH(ωλ,ξ ) the common critical value of the bubbles ωλ,ξ . Finally, next is the definition of charac-

teristic points.

Definition 2.1. Let ϕ : Hn
→ R a smooth defining function for Ω , namely

Ω = {ξ ∈ Hn
: ϕ(ξ) < 0}, ∂Ω = {ξ ∈ Hn

: ϕ(ξ) = 0}.

A point ξ0 ∈ ∂Ω is said to be characteristic if DHϕ(ξ0) = 0.

3. Proof of Theorem 1.1

It is known (see [19]) that a solution of the linearized problem

− ∆Hu = (q∗
− 1)|ωλ,ξ |

q∗
−2u, u ∈ S10(H

n) (3)

belongs to the following set

Tλ,ξ = span


∂ωλ,ξ

∂λ
,
∂ωλ,ξ

∂ξj
, j = 1, . . . , 2n + 1


.



336 A. Maalaoui, V. Martino / J. Math. Anal. Appl. 399 (2013) 333–339

Now we consider the eigenvalue problem

− ∆Hu = µg(ωλ,ξ )u, u ∈ S10(H
n) (4)

where g(t) = (q∗
− 1)|t+|

q∗
−2, and let µ− = (q∗

− 1)−1 be the eigenvalue with eigenfunctions ωλ,ξ . Just by differentiating
(2), we get that all the functions in Tλ,ξ are eigenfunctions with eigenvalue µ0 = 1. We will call E−

λ,ξ the eigenspace
corresponding to µ−, E0

λ,ξ the eigenspace corresponding to µ0, and E+

λ,ξ = (E−

λ,ξ ∪ E0
λ,ξ )

⊥. Then we have that there exists
µ1 > 0 such that for every (λ, ξ) ∈ (1, ∞) × Hn, it holds

⟨−∆Hu − g(ωλ,ξ )u, u⟩ ≥ µ1


Hn

g(ωλ,ξ )u2 (5)

for all the functions u ∈ E+

λ,ξ .
Nowweneed a result concerning the existence of a solution for (1). The following lemma is the analogous of the Euclidean

setting: the proof is similar to that case and we will omit it (see [4,14]).

Lemma 3.1. Let Ω ⊆ Hn be a bounded domain with smooth boundary and with no characteristic points. There exist ε0 > 0 and
C0 > 0 such that if f ∈ C2(Ω̄), f ≥ 0, |f |C(Ω̄) < ε0, then there exists a unique solution u0 ∈ S10(Ω) of problem (1) with

|u0|C1(Ω̄) < C0|f |C(Ω̄)

and

c0 :=
1
2


Ω

|DHu0|
2
−

1
q∗


Ω

|u0|
q∗

−


Ω

fu0 <
c
2
.

Let now consider the solution u0 obtained in Lemma 3.1 and let us define the following functional

J(v) =
1
2


Ω

|DHv|
2
−

1
q∗


Ω

|(v + u0)
+
|
q∗

+
1
q∗


Ω

|u0|
q∗

+


Ω

|u0|
q∗

−1v, v ∈ S10(Ω)

so that for every critical point v of J , then v + u0 is a critical point of the functional JΩf associated to problem (1)

JΩf (u) =
1
2


Ω

|DHu|2 −
1
q∗


Ω

|u+
|
q∗

−


Ω

fu.

Arguing as in [3] we have that there exists ε1 > 0 such that for every f ∈ C(Ω̄), f ≥ 0, f ≢ 0, |f |C(Ω̄) < ε1 and for every
v ∈ S10(Ω), v+

≢ 0, there exists a unique positive number tv such that J(tvv) is increasing on [t1, tv) for some t1 > 0,
decreasing on (tv, +∞) and J(tvv) = max{J(tv) : t > 0}.

Now let us define the following set

S =


u ∈ S10(Ω) \ {0} s.t.


Ω

|DHu|2 =


Ω

|u+
|
q∗


and the Nehari type manifold

S =

tvv : v ∈ S10(Ω) \ {0}


.

Then one has that J(v) > 0 on S and every non zero critical point of J is contained in S. Moreover, by the concentration
compactness principle in our subelliptic setting and the representation theorem for Palais–Smale sequences proved in [5],
we get that J satisfies the Palais–Smale condition on the interval (0, c).

We introduce now the functionsWλ,ξ := Pωλ,ξ , namely the S10(Ω) projections of ωλ,ξ , defined by
Wλ,ξ = ωλ,ξ − hλ,ξ

where
−∆HWλ,ξ = −∆Hωλ,ξ = ω

q∗
−1

λ,ξ , inΩ,

Wλ,ξ = 0, on ∂Ω,

and 
−∆Hhλ,ξ = 0, inΩ,
hλ,ξ = ωλ,ξ , on ∂Ω.

In the next lemma we provide some estimates on the functionsWλ,ξ and we explicitly remark that in [14], the author does
not use any projection: indeed he considers the bubbles themselves times a cut-off function.

Let us first define the following sets, for every ρ > 0:
Π(ρ) :


(λ, ξ) ∈ (1, ∞) × Ω : d(ξ)λ = ρ


Π(ρ) :


(λ, ξ) ∈ (1, ∞) × Ω : d(ξ)λ ≥ ρ


where d(ξ) = min{d(∂Ω, ξ), d0} and d0 is a small positive number. Then we have the following estimates:
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Lemma 3.2. Let Ω ⊆ Hn be a bounded domain with smooth boundary and with no characteristic points. Let ρ0 > 2, then for
(λ, ξ) ∈ Π(ρ0) we have:

∥Wλ,ξ∥
2

≤ qc + O(d(ξ)λ)−(q−2) (6)

∥Wλ,ξ∥
q∗

Lq∗ (Ω)
≥ qc − O(d(ξ)λ)−(q−2) (7)

Ω

u0W
q∗

−1
λ,ξ ≥ O


d(ξ)λ−

(q−2)
2


(8)

Ω

uq∗/2
0 W q∗/2

λ,ξ ≤ O(d(ξ)q
∗/2λ−q∗/2

| log λ|). (9)

Proof. First we note that since the boundary of our domain has no characteristic points, then the intrinsic normal is always
defined, in particular we obtain by Lemma 3.1 and the Hopf Lemma (see [2]) that there exists a constant ℓ > 0 such that

ℓd(η) ≤ u0(η), ∀ η ∈ Ω. (10)

We recall now that Green’s function G and its regular part H are defined by

G(ξ , η) = Γ (ξ , η) − H(ξ , η)

and 
−∆HH(ξ , ·) = 0, inΩ,
H(ξ , ·) = Γ (ξ , ·), on ∂Ω,

where Γ (ξ , ·) is the fundamental solution of−∆H with pole at ξ . By using themaximum principle for∆H we have a control
on the L∞ norm of hλ,ξ , in particular

hλ,ξ (η) =
H(ξ , η)

λ
q−2
2


Hn

ωq∗
−1

+ o


1

λ
q−2
2


.

Other useful estimates on Green’s function and the projections can be found in [11]; we recall also some similar estimates
in the Appendix of [20]: the only technical assumption that we will add is that ∂Ω is without characteristic points.

Moreover, we explicitly note that at best of our knowledge, we do not know any explicit formula for Green’s function for
any bounded domain in the Heisenberg group.

The first estimate (6) is essentially contained in [6, Proposition 5.1]: we only need to rewrite it, taking into account also
the distance d(ξ). For the second one we can argue in the same way. In fact for some r > 0, we consider a ball Bd(ξ , r)
contained in Ω centered at ξ . We get

Ω

W q∗

λ,ξ ≥


Bd(ξ ,r)

W q∗

λ,ξ =


Bd(ξ ,r)

(ωλ,ξ − hλ,ξ )
q∗

≥


Bd(ξ ,r)

ω
q∗

λ,ξ −


Bd(ξ ,r)

q∗hλ,ξω
q∗

−1
λ,ξ

=


H

ω
q∗

λ,ξ −


H\Bd(ξ ,r)

ω
q∗

λ,ξ −


Bd(ξ ,r)

q∗hλ,ξω
q∗

−1
λ,ξ .

By rescaling the last two integrals after a change of variables, and then by direct computation, we get (7). Now by (10) we
have that for every η ∈ Ω it holds

ℓ

2
d(ξ) ≤ u0(η), ∀ η s.t. d(ξ) ≤ 2d(η).

Moreover d(ξ)λ > 2 since ρ0 > 2. Then
Ω

u0W
q∗

−1
λ,ξ ≥

ℓ

2
d(ξ)


Ω∩{d(ξ)≤2d(η)}

W q∗
−1

λ,ξ ≥
ℓ

2
d(ξ)


Bd(ξ ,1/λ)

W q∗
−1

λ,ξ

≥
ℓ

2
d(ξ)


Bd(ξ ,1/λ)

ω
q∗

−1
λ,ξ −

ℓ

2
d(ξ)(q∗

− 1)

Bd(ξ ,1/λ)

hλ,ξω
q∗

−2
λ,ξ

=
ℓ

2
d(ξ)


H

ω
q∗

−1
λ,ξ −

ℓ

2
d(ξ)


H\Bd(ξ ,1/λ)

ω
q∗

−1
λ,ξ −

ℓ

2
d(ξ)(q∗

− 1)

Bd(ξ ,1/λ)

hλ,ξω
q∗

−2
λ,ξ

and again after a rescaling we get (8). The last estimate (9) can be obtained in a similar way. �
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Let us define now the following sets:
M = {Wλ,ξ : (λ, ξ) ∈ (1, ∞) × Ω}

and
N = {sWλ,ξ : (λ, ξ) ∈ (1, ∞) × Ω, s ∈ (1/2, 2)}.

We will also denote by
F−

λ,ξ = {sWλ,ξ : s ∈ R}, F+

λ,ξ = (Tλ,ξN )⊥, Fλ,ξ = F−

λ,ξ ⊕ F+

λ,ξ

and for every function v = v− + v+ ∈ Fλ,ξ wewill denote Kv = v− − v+. The following two results are the same as in [14]:
we refer to it for the proof. First we have a sort of ‘‘convexity’’ property:

Lemma 3.3. There exist positive numbers r1, ρ1, C1, ε2, with ρ1 > ρ0 and such that if |f |C(Ω̄) < ε2, (λ, ξ) ∈ Π(ρ1) and
w ∈ Br1(Wλ,ξ ) then

⟨−∆Hv − g(w + u0)v, Kv⟩ ≥ C1∥v∥
2

for every v ∈ Fλ,ξ .

Next we have the existence of a suitable function:

Lemma 3.4. There exist positive numbers ρ2, C2, such that if |f |C(Ω̄) < ε2, (λ, ξ) ∈ Π(ρ2) then there exists wλ,ξ ∈ S ∩

B r1
2
(Wλ,ξ ) with

∥wλ,ξ − Wλ,ξ∥ ≤ C2∥∇J(Wλ,ξ )∥

and

J(wλ,ξ ) = min
v∈F+

λ,ξ ∩B r1
2

(0)
max

w∈F−

λ,ξ ∩B r1
2

(0)
J(wλ,ξ + v + w)

= max
w∈F−

λ,ξ ∩B r1
2

(0)
J(wλ,ξ + w) = min

v∈F+

λ,ξ ∩B r1
2

(0)
J(wλ,ξ + v).

We need now a transversality result: here we state it, in the Appendix we will prove it as byproduct of a more general
statement.

Lemma 3.5. Let Ω ⊆ Hn be a bounded domain with smooth boundary and with no characteristic points. There exists a residual
subset D ⊆ C2(Ω̄) such that for f ∈ D, every solution u of the problem (1) is a nondegenerate critical point for the functional JΩf .

Proof of Theorem 1.1. Let us consider a function f ∈ C(Ω̄), f ≢ 0 f ≥ 0 and f ∈ D, the residual set of the Lemma 3.5.
Following [14], by estimates in Lemmas 3.2–3.4 we have that there exist ρ3 > ρ0, 0 < ε3 < min{ε1, ε2} and a subset
Ψ ⊆ Π(ρ3) with Ψ , Π(ρ3) and Ω homological equivalent and such that if |f |C(Ω̄) < ε3 then

J(wλ,ξ ) < c, ∀ (λ, ξ) ∈ Ψ

where wλ,ξ is the function obtained in Lemma 3.4. Moreover

J(wλ,ξ ) > c, ∀ (λ, ξ) ∈ ∂Π(ρ3).

We also define a functional

J̄ : Π(ρ3) → R, J̄(λ, ξ) = J(wλ,ξ ).

By results in [1,21] we have that if (λ, ξ) ∈ intΠ(ρ3) is a critical point for J̄ , then wλ,ξ is a critical point for J; moreover J̄
satisfies the Palais–Smale condition on (0, c). We set, for every non zero class [α] ∈ H∗(Ψ ), the value

cα = min
α∈[α]

max
(λ,ξ)∈α

J(wλ,ξ ).

It follows that there exists a critical point (λ, ξ) ∈ intΠ(ρ3) for J̄ , with critical value cα . This implies that there exists a critical
point wλ,ξ for J with J(wλ,ξ ) = cα . Since f ∈ D, by the transversality theorem, every critical point of J is nondegenerate.
Therefore, by using the previous minmax argument, the number of critical points of J , and therefore of JΩf , is at least
1 + Σ∞

k=0dimHk(Ω). �
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Appendix

Here we state a well known transversality theorem from which we derive the Lemma 3.5.

Theorem A.1. Let X, Y , Z be separable Banach spaces and Φ : X × Y → Z a C1 map. Suppose that

(i) ∀ (x, y) ∈ Φ−1(z), DxΦ(x, y) : X → Z is Fredholm of index 0
(ii) ∀ (x, y) ∈ Φ−1(z), DxΦ(x, y) : X → Z is surjective.

Then the set of y ∈ Y such that z ∈ Z is a regular value of Φ(·, y) is residual in Y .

Proof of Lemma 3.5. We are going to apply the previous theorem to DJΩf . Let

X = S2(Ω) ∩ S10(Ω), Y = C2(Ω̄), Z = L2(Ω)

Φ(u, f ) = ∆Hu + |u|q
∗
−2u + f .

For every u ∈ X , the map

DuΦ(u, f )v = ∆Hv + g(u)v

is Fredholm of index zero. Let z = 0 and (u, f ) ∈ Φ−1(0), namely

−∆Hu = |u|q
∗
−2u + f .

We have that u ∈ C(Ω̄) and the kernel of ∆H + g(u) is a finite dimensional subspace of C2(Ω̄). Now we want to prove that
there exist (v, f̄ ) ∈ X × Y such that, for every h ∈ Z

DΦ(u, f )v = DuΦ(u, f )v + Df Φ(u, f ) = ∆Hv + g(u)v + f̄ = h.

Now P̄h ∈ C2(Ω̄), where P̄ is the projection from X to the kernel. Then if we set f̄ = P̄h then it follows that such a v
exists. �
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