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a b s t r a c t

In this paper, we study the problem of solving multivalued mixed variational inequalities.
By using some sequential approximation techniques of fixed point theory, we solve the
multivalued mixed variational inequalities involving locally Lipschitzian or locally cocoer-
cive multivalued mappings. We establish that the convexity of the multivalued mapping
values is not needed and construct by using the Banach contraction principle converging
sequences to the solutions. Also,we showhow to choose regularization parameters to com-
pute these solutions.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Let C be a nonempty closed convex subset of Rn and let F : Rn
→ 2Rn

be a multivalued mapping such that F (x) is
nonempty closed subset, for every x ∈ C . Suppose further that ϕ : C → R is a convex subdifferentiable function. We
consider the following multivalued mixed variational inequality:

Find x∗
∈ C such that

∃w∗
∈ F


x∗


,


w∗, y − x∗


+ ϕ (y) − ϕ


x∗


≥ 0 ∀y ∈ C . (1.1)

This problem has been considered by several authors (see [1–6]). One usually calls F the cost operator and C the set of
constraints.

A large variety of problems arising in elasticity, fluid flow, economics, oceanography, transportation, optimization, pure
and applied sciences can be seen as special cases of problem (1.1). See [4,7,8,5,9–11] and the references therein.

The methods based on fixed point theory for solving variational inequalities have been largely developed by several
authors (see [1–4,12–16] and the references therein).

In this paper, we extend some results of [1] about solving the multivalued mixed variational inequality (1.1). By using
the Banach contractionmapping principle,we introduce some sequential approximation techniques to construct converging
sequences for solving the multivalued mixed variational inequality (1.1) when the involved multivalued mapping is locally
Lipschitzian with respect to the Hausdorff metric or locally cocoercive. We prove that the multivalued mixed variational
inequality (1.1) has a unique solution if F is locally Lipschitzian and strongly monotone or locally Lipschitzian monotone
and ϕ is strongly convex. It has at least one solution if F is locally cocoercive. Also, we show how to choose regularization
parameter α such that these solutions can be obtained by computing fixed points of a certain multivalued mapping.

Variational inequality problems as well as optimization, saddle points, Nash equilibrium, fixed points, complementarity
problems and many other problems in nonlinear analysis are special cases of the more general concept of equilibrium
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problems (see, for example, [17–27,5,28–31] and the references therein). Recall that an equilibrium problem on C in the
sense of Blum and Oettli [19] is a problem of the form

Find x∗
∈ C such that Φ


x∗, y


≥ 0 ∀y ∈ C (1.2)

where Φ : C × C → R ∪ {+∞} is a function such that Φ (x, x) = 0, for every x ∈ C . The function Φ is called an equilibrium
bifunction.

The last section of this paper is devoted to a discussion in order to compare the results obtained here for multivalued
mixed variational inequalities with the old existing for equilibrium problems.

2. Preliminaries and fixed point formulation

Throughout the paper, ⟨·, ·⟩ denotes the Euclidian inner product on Rn and ∥ · ∥ its associated norm.
Let ϕ : Rn

→ R ∪ {+∞} be a function. Recall that the domain of ϕ is

dom (ϕ)
def
=


x ∈ Rn

| ϕ (x) < +∞

.

The function ϕ is said to be proper if dom (ϕ) ≠ ∅.
Let C be a nonempty convex subset of Rn, that is:

λx + (1 − λ) y ∈ C ∀x, y ∈ C, ∀λ ∈ [0, 1] .

Suppose that C ⊂ dom (ϕ). Recall that the function ϕ is said to be:

• Convex on C if

∀x, y ∈ C, ∀λ ∈ [0, 1]
ϕ (λx + (1 − λ) y) ≤ λϕ (x) + (1 − λ) ϕ (y) .

If the above inequality is strict whenever x ≠ y, then the function ϕ is said to be strictly convex.
• Strongly convex with modulus η > 0 or briefly η-strongly convex on C if

∀x, y ∈ C, ∀λ ∈ [0, 1]

ϕ (λx + (1 − λ) y) ≤ λϕ (x) + (1 − λ) ϕ (y) −
1
2
λ (1 − λ) η∥x − y∥2.

Obviously, every η-strongly convex function is strictly convex and every strictly convex function is convex. The converse
is false is general.

Let M be a nonempty subset of Rn and let F : Rn
→ 2Rn

be a multivalued mapping from Rn to Rn such that M ⊆

dom (F)
def
= {x ∈ Rn

| F (x) ≠ ∅}. The multivalued mapping F is called:

• Monotone onM if

∀x1, x2 ∈ M, ∀w1 ∈ F (x1) , ∀w2 ∈ F (x2)
⟨w1 − w2, x1 − x2⟩ ≥ 0.

If the above inequality is strict whenever x1 ≠ x2, then the multivalued mapping F is said to be strictly monotone.
• Strongly monotone with modulus β > 0 or briefly β-strongly monotone onM if

∀x1, x2 ∈ M, ∀w1 ∈ F (x1) , ∀w2 ∈ F (x2)
⟨w1 − w2, x1 − x2⟩ ≥ β∥x1 − x2∥2.

Obviously, every β-strongly monotonemultivaluedmapping is strictly monotone and every strictly monotonemultival-
ued mapping is monotone. The converse is false is general.

Recall that for a convex function ϕ : Rn
→ R ∪ {+∞}:

• The subgradient of ϕ at x0 ∈ dom (ϕ) is the set

∂ϕ (x0)
def
=


z ∈ Rn

| ϕ (x) − ϕ (x0) ≥ ⟨z, x − x0⟩ ∀x ∈ Rn .

• The function ϕ is said to be subdifferentiable at x0 if ∂ϕ (x0) ≠ ∅.

It is well known that the subdifferential operator x → ∂ϕ (x) of a convex function ϕ is a monotonemultivaluedmapping
and ∂ϕ (x) is closed and convex, for every x ∈ dom (ϕ). One can consult [32] to see that a subdifferentiable function ϕ is
strictly convex (resp., β-strongly convex) if and only if ∂ϕ is estimated strictly monotone (resp., β-strongly monotone).
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The function ϕ is said to be:

• Lower semicontinuous at x ∈ C if for every sequence (xn)n, we have

lim
n→+∞

xn = x H⇒ lim inf
n→+∞

ϕ (xn) ≥ ϕ (x)

where lim infn→+∞ ϕ (xn) = supn∈N infk≥n ϕ (xk).
• Lower semicontinuous on C if it is lower semicontinuous at every point of C .

It is well known that if C is a nonempty closed convex subset of Rn and f is a strictly convex function on C to R, then the
optimization problem

min
x∈C

f (x)

has at most one solution. If f is lower semicontinuous and η-strongly convex on C , then the problem has a unique solution.
Existence and uniqueness of the solutions of variational inequalities have been already studied by several authors.

(See [12,10] and the references therein). The following result concerns uniqueness of solutions of the multivalued mixed
variational inequality (1.1).

Theorem 2.1. Suppose that one of the following two conditions holds:

1. The multivalued mapping F is strictly monotone on C.
2. The multivalued mapping F is monotone and ϕ is strictly convex function on C.

Then, the multivalued mixed variational inequality (1.1) has at most one solution.

To study the existence of solutions of the multivalued mixed variational inequality (1.1), we need the following well-
known result (see [33,1,34,4,5,10]) which provides us with a construction of a multivalued mapping which is essential to
solve the multivalued mixed variational inequality (1.1).

Theorem 2.2. Let G be a symmetric positive definite matrix. Let x and w two points such that F (x) ≠ ∅ and w ∈ F (x).

1. The optimization problem

min
y∈C


1
2

⟨y − x,G (y − x)⟩ + ⟨w, y − x⟩ + ϕ (y)


(2.1)

has a unique solution. We denote this solution by h (x, w).
2. A point h ∈ C is a solution of the problem (2.1) if and only if there exists z ∈ ∂ϕ (h) such that

⟨w + G (h − x) + z, y − h⟩ ≥ 0 ∀y ∈ C . (2.2)

Following Theorem 2.2, we can associate to each pair (x, w) with x ∈ dom (F) and w ∈ F (x) a unique point h (x, w)
which is the unique solution of the optimization problem (2.1). Now, we consider the multivalued mapping H : Rn

→ 2Rn

defined by

H (x) =


{h (x, w) | w ∈ F (x)} if x ∈ dom (F) ,
∅ otherwise.

We have C ⊆ dom (F) = dom (H).
The following lemma gives a characterization of the solutions of the multivalued mixed variational inequality (1.1) by

means of fixed points of the multivalued mapping H . See [33,1].

Lemma 2.3. A point x∗ is a solution of the multivalued mixed variational inequality (1.1) if and only if x∗ is a fixed point of H.
More precisely, we have x∗

= h (x∗, w∗) ∈ H (x∗) if and only if
w∗, y − x∗


+ ϕ (y) − ϕ


x∗


≥ 0 ∀y ∈ C .

In the sequel we shall restrict our attention to the important case of G = αI where α > 0 and I is the identity matrix. In
this case, the optimization problem (2.1), for x ∈ C and w ∈ F (x), becomes

min
y∈C

α

2
∥y − x∥2

+ ⟨w, y − x⟩ + ϕ (y)


.
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We need again some notions of continuous properties of multivalued mappings. The multivalued mapping F is said to
be:

• Closed at x if for every sequences (xn)n and (yn)n, we have

lim
n→+∞

xn = x,

lim
n→+∞

yn = y,

yn ∈ F (xn) , ∀n

 H⇒ y ∈ F (x) .

• Closed on M if it is closed at every point ofM .
• Upper semicontinuous at x if for every open subset G containing F (x), there exists an open subset U containing x such that

F

x′


⊆ G, for every x′

∈ U .
• Upper semicontinuous on M if it is upper semicontinuous at every point ofM .

Remark 2.1. • Amultivalued mapping F is upper semicontinuous at x if and only if it is continuous at x as a mapping from
Rn to the set of subsets of Rn endowed with the upper Vietoris topology (see [35,36]).

• If F is closed at x, then F (x) is closed.
• If F is upper semicontinuous at x and if F (x) is closed, then F is closed at x.

3. Solutions with locally Lipschitzian multivalued mappings

Let A and B be two nonempty closed subsets of Rn. Recall that the Hausdorff metric dH between A and B is given by

dH (A, B) def
= max


sup
a∈A

inf
b∈B

∥a − b∥, sup
b∈B

inf
a∈A

∥a − b∥


.

This metric could take the value +∞; see [37].
Let F be a multivalued mapping such that F (x) is closed, for every x ∈ M . The multivalued mapping F is said to be

Lipschitzian with a constant L > 0 or briefly L-Lipschitzian on M if

dH

F (x) , F


x′


≤ L∥x − x′

∥ ∀x, x′
∈ M.

In particular, F is said to be L-contraction on M if L < 1 and nonexpansive on M if L = 1.
The following lemma is useful for the sequel.

Lemma 3.1. Let F : Rn
→ 2Rn

be a multivalued mapping such that, for every x ∈ M, F (x) is nonempty closed subset. Then,

∀x, x′
∈ M, ∀wx ∈ F (x) , ∃wx′ ∈ F


x′


∥wx − wx′∥ ≤ dH


F (x) , F


x′


.

Proof. Let x, x′
∈ M and let wx ∈ F (x). Assume that dH


F (x) , F


x′


is finite, otherwise we are finished. For every n ≥ 1,

let w (n) ∈ F

x′


such that

∥wx − w (n) ∥ <
1
n

+ dH

F (x) , F


x′


.

This is possible since dH

F (x) , F


x′


< 1

n + dH

F (x) , F


x′


. Without loss of generality, we may assume that (w (n))n

converges to some wx′ and since F(x′) is closed, then wx′ ∈ F(x′). It is clear that

∥wx − wx′∥ ≤ dH

F (x) , F


x′


. �

The last lemma extends Lemma 2.2 of [1] to multivalued mappings with nonempty closed values. Recall that such a wx′ is
not necessarily unique and if F


x′


is nonempty closed convex subset, then wx′ could be taken the orthogonal projection of

wx on F

x′


.

The following theorem provides us with a tool for solving the multivalued mixed variational inequality (1.1).

Theorem 3.2. Let C be a nonempty closed convex subset of Rn and let M be a nonempty subset of C. Let ϕ be a proper convex
subdifferentiable function on C and let F : Rn

→ 2Rn
be an L-Lipschitzian multivalued mapping on M such that, for every x ∈ M,

F (x) is a nonempty closed subset. Then,

∀x, x′
∈ M, ∀wx ∈ F (x) , ∃wx′ ∈ F


x′

h (x, wx) − h

x′, wx′

 ≤ δ∥x − x′
∥
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where

1. δ =


1 −

2β
α

+
L2
α2 with α > L2

2β if F is β-strongly monotone on M and

2. δ =

√
L2+α2

α+η
with α >

L2−η2

2η if F is monotone on M and ϕ is η-strongly convex on C.

Proof. Let x, x′
∈ M , w ∈ F (x) and w′

∈ F

x′


. Let h (x, w) and h


x′, w′


the unique solutions of the optimization

problem (2.1)

min
y∈C

α

2
∥y − x∥2

+ ⟨w, y − x⟩ + ϕ (y)


associated to x and w and to x′ and w′ respectively. From Theorem 2.2, let z ∈ ∂ϕ (h (x, w)) and z ′
∈ ∂ϕ


h

x′, w′


be such

that

⟨α (h (x, w) − x) + w + z, y − h (x, w)⟩ ≥ 0 ∀y ∈ C

and 
α


h

x′, w′


− x′


+ w′

+ z ′, y − h

x′, w′


≥ 0 ∀y ∈ C .

Substituting h

x′, w′


for y in the first inequality, h (x, w) for y in the second, and by addition, we obtain

x − x′
−

1
α


w − w′


−

1
α


z − z ′


, h (x, w) − h


x′, w′


−


h (x, w) − h


x′, w′


, h (x, w) − h


x′, w′


≥ 0.

It follows that

∥h(x, w) − h(x′, w′)∥2
≤


x − x′

−
1
α


w − w′


, h (x, w) − h


x′, w′


−

1
α


z − z ′, h (x, w) − h


x′, w′


≤

x − x′
−

1
α


w − w′

 h (x, w) − h

x′, w′

 −
1
α


z − z ′, h (x, w) − h


x′, w′


.

If F is L-Lipschitzian and β-strongly monotone onM , we use the monotonicity of ∂ϕ and obtainh (x, w) − h

x′, w′

2
≤

x − x′
−

1
α


w − w′

 h (x, w) − h

x′, w′

 .

Then h (x, w) − h

x′, w′

2
≤

x − x′
−

1
α


w − w′

2

= ∥x − x′
∥
2
−

2
α


x − x′, w − w′


+

1
α2

∥w − w′
∥
2.

By Lemma 3.1, replacew bywx and takewx′ in place ofw′ such that ∥wx −wx′∥ ≤ dH

F (x) , F


x′


. Since F is L-Lipschitzian

and β-strongly monotone onM , we have thenh (x, wx) − h

x′, wx′

2
≤


1 −

2β
α

+
L2

α2


∥x − x′

∥
2

and thenh (x, wx) − h

x′, wx′

 ≤


1 −

2β
α

+
L2

α2
∥x − x′

∥ ∀x, x′
∈ M.

In the case where F is L-Lipschitzian and monotone on M and ϕ is η-strongly convex on C , we use the strong monotonicity
of ∂ϕ and obtainh (x, w) − h


x′, w′

2
≤

x − x′
−

1
α


w − w′

 h (x, w) − h

x′, w′

 −
η

α

h (x, w) − h

x′, w′

2
.

Then 
1 +

η

α

2 h (x, w) − h

x′, w′

2
≤

x − x′
−

1
α


w − w′

2

= ∥x − x′
∥
2
−

2
α


x − x′, w − w′


+

1
α2

∥w − w′
∥
2.
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By Lemma 3.1, replacew bywx and takewx′ in place ofw′ such that ∥wx −wx′∥ ≤ dH

F (x) , F


x′


. Since F is L-Lipschitzian

and monotone onM , we have then
1 +

η

α

2 h (x, wx) − h

x′, wx′

2
≤


1 +

L2

α2


∥x − x′

∥
2

and thenh (x, wx) − h

x′, wx′

 ≤

√
L2 + α2

α + η
∥x − x′

∥ ∀x, x′
∈ M. �

The following theorem allows us to construct by the Banach contraction principle, a convergent sequence to the unique
fixed point of the multivalued mapping H and then to the unique solution of the multivalued variational inequality (1.1).
This theorem is based on some techniques of fixed point theory (see [38,39]). Recall that, for x0 ∈ Rn and r > 0,

B (x0, r)
def
=


x ∈ Rn

| ∥x − x0∥ < r


denotes the open ball around x0 with radius r .

Theorem 3.3. Let r > 0, C a nonempty closed convex subset of Rn and let x0 ∈ C. Let ϕ be a proper convex subdifferentiable
function on C and let F : Rn

→ 2Rn
be a closed multivalued mapping on C and L-Lipschitzian on C ∩ B (x0, r) such that F (x) is

a nonempty subset, for every x ∈ C ∩ B (x0, r). Suppose further that there exists w0 ∈ F (x0) such that

∥h (x0, w0) − x0∥ < (1 − δ) r

where δ =


1 −

2β
α

+
L2
α2 with α > L2

2β if F is β-strongly monotone on C and δ =

√
L2+α2

α+η
with α >

L2−η2

2η if F is monotone
and ϕ is η-strongly convex on C. Then the problem (1.1) has a unique solution x∗

∈ C.
More precisely, there exist a sequence (xn)n in C ∩ B (x0, r) converging to x∗ and a sequence (wn)n converging to w∗

∈ F (x∗)
such that wn ∈ F (xn),

∥xn+2 − xn+1∥ ≤ δ∥xn+1 − xn∥, ∥xn − x∗
∥ ≤

1
1 − δ

∥xn+1 − xn∥,

∥wn+1 − wn∥ ≤ L∥xn+1 − xn∥ and ∥wn − w∗
∥ ≤

δn+1

1 − δ
L∥x1 − x0∥,

for every n ∈ N.

Proof. Put x1 = h (x0, w0). We have then

∥x1 − x0∥ < (1 − δ) r.

We will construct two sequences (xn)n and (wn)n satisfying the above conditions. The first step of the recurrence being
similar to the step of order n, then suppose that (xk)k≤n+1 and (wk)k≤n are constructed. By Lemma 3.1, let wn+1 ∈ F (xn+1)
be such that

∥wn − wn+1∥ ≤ dH (F (xn) , F (xn+1))

and put xn+2 = h (xn+1, wn+1). By Theorem 3.2, we have then

∥xn+2 − xn+1∥ ≤ δ∥xn+1 − xn∥.

It follows that xn+2 ∈ C ∩ B (x0, r), since

∥xn+2 − xn+1∥ ≤ δn+1
∥x1 − x0∥ < (1 − δ) δn+1r

and then

∥xn+2 − x0∥ ≤

n+1
i=0

∥xi+1 − xi∥ <

n+1
i=0

(1 − δ) δir

=
1 − δn+2

1 − δ
(1 − δ) r =


1 − δn+2 r < r.

Now, we will prove that the sequence (xn)n is converging in C . For every n ∈ N and every p ∈ N∗, we have

∥xn+p − xn∥ ≤

p−1
i=0

∥xn+i+1 − xn+i∥ ≤

p−1
i=0

δi
∥xn+1 − xn∥

=
1 − δp

1 − δ
∥xn+1 − xn∥ <

1 − δp

1 − δ
(1 − δ) δnr =


1 − δp δnr.
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Then the sequence (xn)n is a Cauchy sequence in C . It converges then to some x∗
∈ C . Also, by tending p to +∞, we have

∥xn − x∗
∥ ≤

1
1 − δ

∥xn+1 − xn∥.

Now, we will prove that the sequence (wn)n is converging in Rn. By its construction, for every n ∈ N, we have

∥wn+1 − wn∥ ≤ L∥xn+1 − xn∥.

It follows that, for every n ∈ N and every p ∈ N∗, we have

∥wn+p − wn∥ ≤ L∥xn+p − xn∥ <

1 − δp δnLr.

This means that (wn)n is a Cauchy sequence in Rn too and then converges to some w∗
∈ Rn. Since F is a closed multivalued

mappings on C and since wn ∈ F (xn), for every n ∈ N, then w∗
∈ F (x∗).

It remains to prove that x∗
= h (x∗, w∗) ∈ H (x∗) and then x∗ is the unique solution of the multivalued mixed variational

inequality (1.1). Since xn+1 = h (xn, wn), for every n ∈ N, we have then

1
2
α∥y − xn∥2

+ ⟨wn, y − xn⟩ + ϕ (y) ≥
1
2
α∥xn+1 − xn∥2

+ ⟨wn, xn+1 − xn⟩ + ϕ (xn+1) ∀y ∈ C .

By the continuity of the inner product and since ϕ is lower semicontinuous, we have

1
2
α∥y − x∗

∥
2
+


w∗, y − x∗


+ ϕ (y) ≥

1
2
α∥x∗

− x∗
∥
2
+


w∗, x∗

− x∗

+ ϕ


x∗


∀y ∈ C .

Thus x∗
= h (x∗, w∗) and then by Theorem 2.1 and Lemma 2.3, x∗ is the unique solution of themultivaluedmixed variational

inequality (1.1). �

As a corollary, we obtain Theorem 3.1 of [1].

Corollary 3.4. Let C be a nonempty closed convex subset of Rn. Let ϕ be a proper convex subdifferentiable function on C and let
F : Rn

→ 2Rn
be a closed L-Lipschitzian multivalued mapping on C such that F (x) is a nonempty convex subset, for every x ∈ C.

If F is β-strongly monotone on C or F is monotone and ϕ is η-strongly convex on C, then the problem (1.1) has a unique solution
x∗

∈ C.

Proof. Choose x0 ∈ C and r > 0 such that ∥x1 − x0∥ < (1 − δ) r where x1 = h (x0, w0) is the unique solution of the
optimization problem (2.1)

min
y∈C

α

2
∥y − x0∥2

+ ⟨w0, y − x0⟩ + ϕ (y)


.

Now, apply Theorem 3.3. �

Here an example where the conditions of Theorem 3.3 are fulfilled.

Example 3.1. Let C = {(x, 0) | x ≥ 0} be a closed convex subset of R2. Define a multivalued mapping F on C by

F ((x, 0)) =


{(2x, y) | 0 ≤ y ≤ x} if x < 4,
(2x, y) | 0 ≤ y ≤ x2


if x ≥ 4.

The multivalued mapping F is strongly monotone on C with modulus β = 2 and Lipschitzian on {(x, 0) | x ≥ 0 and
|x− 1| < 3} with constant L =

√
5. It is easily seen that F is a closed and locally Lipschitzian–non-Lipschitzian multivalued

mapping on C . For the sake of simplicity, take ϕ : C → R the constant function such that ϕ (X) = 1, for every X ∈ C . Note
that ϕ is not strongly convex. Let X0 = (1, 0) and W0 = (2, 1) ∈ F (X0). Let r = 3 and α = 2 > L2

2β =
5
4 . By a simple

calculation, we have δ =


1 −

2β
α

+
L2
α2 =

1
2 . The problem of optimization (2.1) associated to X0 andW0 ∈ F (X0) is

min
(y,0)∈C

α

2
∥ (y, 0) − (1, 0) ∥

2
+ ⟨(2, 1) , (y, 0) − (1, 0)⟩ + ϕ ((y, 0))


.

The objective function f is defined by

f ((y, 0)) =
α

2
∥(y, 0) − (1, 0)∥2

+ ⟨(2, 1) , (y, 0) − (1, 0)⟩ + ϕ ((y, 0))

= (y − 1)2 + 2 (y − 1) + 1 = y2 − 2y + 1 + 2y − 2 + 1 = y2.

It is clear that X1 = (0, 0) is the unique solution of the above optimization problem and ∥X1 − X0∥ = 1 < 3
2 = (1 − δ) r .

By Theorem 3.3, the multivalued mixed variational inequality (1.1) associated to C , ϕ and F has a unique solution.



632 B. Alleche / J. Math. Anal. Appl. 399 (2013) 625–637

In what follows by ε-solution of the multivalued mixed variational inequality (1.1) we mean a point x ∈ C such that
∥x − x∗

∥ ≤ ε where x∗ is an exact solution of the multivalued mixed variational inequality (1.1).
Applying Theorem 3.3, we have the following algorithm for solving the multivalued mixed variational inequality (1.1).

Algorithm 3.1. Choose a tolerance ε ≥ 0.

Choose α > L2
2β if F is β-strongly monotone and α >

L2−η2

2η if ϕ is η-strongly convex.

Fix r > 0, x0 ∈ C and x1 ∈ C ∩ B (x0, r).
Iteration n (n = 1, 2 · · ·).
Find wn ∈ F (xn) such that ∥wn − wn−1∥ ≤ dH (F (xn) , F (xn−1)).
Solve the strongly convex program

min
y∈C

α

2
∥y − xn∥2

+ ⟨wn, y − xn⟩ + ϕ (y)


to obtain its unique solution xn+1.
If ∥xn+1 − xn∥ ≤ (1 − δ) ε, then terminate: xn is an ε-solution of the problem (1.1).
Otherwise, let n = n + 1 and go to iteration n.

4. Solutions with locally cocoercive multivalued mappings

Nowwe deal with the case when the multivalued mapping F is cocoercive. Note that in this case, the multivalued mixed
variational inequality (1.1) is not necessarily uniquely solvable. Recall that a multivalued mapping F is said to be cocoercive
with a constant γ or briefly (γ -cocoercive) on M if

∀x, x′
∈ M, ∀w ∈ F (x) , ∀w′

∈ F

x′


γ d2H


F (x) , F


x′


≤


w − w′, x − x′


.

As noted in [1], we will say that F is projectively cocoercive with a constant γ or briefly (projectively γ -cocoercive) on M if

∀x, x′
∈ M, ∀wx ∈ F (x) , ∃wx′ ∈ F


x′


∥wx − wx′∥ ≤ dH


F (x) , F


x′


≤


⟨wx − wx′ , x − x′⟩

γ
.

Every γ -cocoercive multivalued mapping onM is projectively γ -cocoercive onM .

Theorem 4.1. Let C be a nonempty closed convex subset of Rn and let M be a nonempty subset of C. Let ϕ be a proper convex
subdifferentiable function on C and let F : Rn

→ 2Rn
be a projectively γ -cocoercive multivalued mapping on M such that F (x)

is a nonempty closed subset, for every x ∈ M. Then,

∀x, x′
∈ M, ∀wx ∈ F (x) , ∃wx′ ∈ F


x′

h (x, wx) − h

x′, wx′

 ≤ ∥x − x′
∥.

Proof. By the same way as in the proof of Theorem 3.2, for every x′, x′
∈ M , we have

∀w ∈ F (x) , ∀w′
∈ F


x′


h (x, w) − h


x′, w′

2
≤ ∥x − x′

∥
2
−

2
α


x − x′, w − w′


+

1
α2

∥w − w′
∥
2.

Since F is s projectively γ -cocoercive onM , take wx in place of w and choose wx′ satisfying the definition of cocoerciveness.
We have then

∥h (x, wx) − h

x′, wx′


∥
2

≤ ∥x − x′
∥
2
−

2γ
α

d2H

F (x) , F


x′


+

1
α2

∥wx − wx′∥
2

and thenh (x, wx) − h

x′, wx′

2
≤ ∥x − x′

∥
2
−


2γ
α

−
1
α2


∥wx − wx′∥

2.

Choose α ≥
1
2γ . Thenh (x, wx) − h


x′, wx′

 ≤ ∥x − x′
∥ ∀x, x′

∈ M. �
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Recall that, for x0 ∈ Rn and r > 0,

B (x0, r)
def
=


x ∈ Rn

| ∥x − x0∥ ≤ r


denotes the closed ball around x0 with radius r .

Theorem 4.2. Let r > 0, C a nonempty compact convex subset of Rn and x0 ∈ C. Let ϕ be a proper convex subdifferentiable
function on C and let F : Rn

→ 2Rn
be a closed projectively γ -cocoercive multivalued mapping on C ∩ B (x0, r) such that

F

C ∩ B (x0, r)


is bounded and F (x) is a nonempty subset, for every x ∈ C ∩ B (x0, r). Let α ≥

1
2γ and suppose further that

x − x0 ≠ θ (h (x, w) − x0) whenever 0 < θ < 1, x ∈ C such that ∥x − x0∥ = r and w ∈ F (x). Then the problem (1.1) has at
least one solution x∗

∈ C.
More precisely, there exist a sequence (yn)n in C, two sequences (xn)n and (zn)n in C ∩ B (x0, r) and a sequence (wn)n such that
1. the sequence (xn)n has at least a cluster point x∗,
2. every cluster point of (xn)n is a cluster point of (yn)n and (zn)n and it is a solution of the problem (1.1),
3. the sequence (wn)n has at least a cluster point w∗

∈ F (x∗) and wn ∈ F (xn) , ∀n ∈ N,
4. ∥yn+1 − yn∥ ≤ ∥xn+1 − xn∥, ∀n ∈ N,
5. the sequence (∥xn − zn∥)n is decreasing and
6. limn→+∞ ∥xn − zn∥ = 0.

Proof. First, define a (radical retraction) mapping fr : C → C ∩ B (x0, r) by

fr (x) =

x if ∥x − x0∥ ≤ r,

r
x − x0

∥x − x0∥
+ x0 if ∥x − x0∥ > r.

Themapping fr is nonexpansive (see [40]). Fix 0 < λ < 1 and define by induction the sequences (xn)n, (wn)n, (zn)n and (yn)n
as follows: Choose w0 ∈ F (x0), put y0 = h (x0, w0) the unique solution of the optimization problem (2.1)

min
y∈C

α

2
∥y − x0∥2

+ ⟨w0, y − x0⟩ + ϕ (y)


and put z0 = fr (y0). Suppose now xn, wn, yn and zn are constructed. Put

xn+1 = (1 − λ) xn + zn.

By assumption, choose wn+1 ∈ F (xn+1) such that

∥wn − wn+1∥ ≤ dH (F (xn) , F (xn+1)) ≤


⟨wn − wn+1, xn − xn+1⟩

γ
.

Put yn+1 = h (xn+1, wn+1) and finally, put zn+1 = fr (yn+1).
For every n ∈ N, by Theorem 4.1, we have ∥yn+1 − yn∥ ≤ ∥xn+1 − xn∥ and since fr is a nonexpansive mapping, it follows

that

λ∥xn − zn∥ = ∥xn+1 − xn∥ = ∥(1 − λ) xn + λzn − ((1 − λ) xn−1 − λzn−1)∥

≤ (1 − λ) ∥xn − xn−1∥ + λ∥zn − zn−1∥

≤ ∥xn − xn−1∥ = λ∥xn−1 − zn−1∥.

Thus the sequence (∥zn − xn∥)n is decreasing.
Before proving that limn→+∞ ∥xn − zn∥ = 0, we shall prove the following statement: for each i, n ∈ N,

∥zi+n − xi∥ ≥ (1 − λ)−n (∥zi+n − xi+n∥ − ∥zi − xi∥) + (1 + λn) ∥zi − xi∥.

We proceed with induction on n. Since it is obvious for n = 0, suppose that the statement is true for a given n and all i.
Replacing i with i + 1, we obtain

∥zi+n+1 − xi+1∥ ≥ (1 − λ)−n (∥zi+n+1 − xi+n+1∥ − ∥zi+1 − xi+1∥) + (1 + λn) ∥zi+1 − xi+1∥.

On the other hand, we have

∥zi+n+1 − xi+1∥ = ∥zi+n+1 − ((1 − λ) xi + λzi)∥
≤ λ∥zi+n+1 − zi∥ + (1 − λ) ∥zi+n+1 − xi∥

≤ (1 − λ) ∥zi+n+1 − xi∥ + λ

n
k=0

∥zi+k+1 − zi+k∥

≤ (1 − λ) ∥zi+n+1 − xi∥ + λ

n
k=0

∥xi+k+1 − xi+k∥.
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It follows that

∥zi+n+1 − xi∥ ≥ (1 − λ)−(n+1) (∥zi+n+1 − xi+n+1∥ − ∥zi+1 − xi+1∥) + (1 − λ)−1 (1 + λn) ∥zi+1 − xi+1∥

− λ (1 − λ)−1
n

k=0

∥xi+k+1 − xi+k∥.

Since ∥xi+k+1 − xi+k∥ = λ∥zi+k − xi+k∥, then

∥zi+n+1 − xi∥ ≥ (1 − λ)−(n+1) (∥zi+n+1 − xi+n+1∥ − ∥zi+1 − xi+1∥) + (1 − λ)−1 (1 + λn) ∥zi+1 − xi+1∥

− λ2 (1 − λ)−1 (n + 1) ∥zi − xi∥
= (1 − λ)−(n+1) (∥zi+n+1 − xi+n+1∥ − ∥zi − xi∥)

+

(1 − λ)−1 (1 + λn) − (1 − λ)−(n+1)

∥zi+1 − xi+1∥

+

(1 − λ)−(n+1)

− λ2 (1 − λ)−1 (n + 1)

∥zi − xi∥.

Since the sequence (∥zn − xn∥)n is decreasing and 1 + λn ≤ (1 − λ)−n, we have then

∥zi+n+1 − xi∥ ≥ (1 − λ)−(n+1) (∥zi+n+1 − xi+n+1∥ − ∥zi − xi∥) +

(1 − λ)−1 (1 + λn) − (1 − λ)−(n+1)

∥zi − xi∥

+

(1 − λ)−(n+1)

− λ2 (1 − λ)−1 (n + 1)

∥zi − xi∥

= (1 − λ)−(n+1) (∥zi+n+1 − xi+n+1∥ − ∥zi − xi∥) + (1 + λ (n + 1)) ∥zi − xi∥.

Thus the statement holds for n + 1.
Suppose now that limn→+∞ ∥xn − zn∥ = l > 0 and choose a positive integer k ≥

2r
lλ and ε > 0 such that ε < l (1 − λ)k.

Since (∥yn − xn∥)n is decreasing, there exists an integer i such that

0 ≤ ∥zi − xi∥ − ∥zk+i − xk+i∥ ≤ ε.

Therefore, by using the above statement, we arrive at the contradiction

2r + l ≤ (1 + kλ) l ≤ (1 + kλ) ∥zi − xi∥
≤ ∥zk+i − xi∥ − (1 − λ)−k (∥zk+i − xk+i∥ − ∥zi − xi∥)
≤ ∥zk+i − xi∥ + (1 − λ)−k ε < 2r + l.

Then limn→+∞ ∥xn − zn∥ = 0.
By the construction and the convexity of C ∩ B (x0, r), the sequence (xn)n lies in C ∩ B (x0, r). Without lost of generality,

we may assume that (xn)n converges to some x∗
∈ C ∩ B (x0, r).

Since F (C ∩ B (x0, r)) is bounded, then without lost of generality too we may assume that (wn)n converges to w∗ and since
F is closed on C ∩ B (x0, r), we have w∗

∈ F (x∗).
Also the sequences (yn)n and (zn)n lie in C and C ∩ B (x0, r) respectively and, once again, we may assume without lost of
generality that (yn)n converges to y∗

∈ C and (zn)n to z∗
∈ C ∩ B (x0, r).

It follows from the definition of the sequence (xn)n that z∗
= x∗.

We shall prove now that y∗
= x∗

= h (x∗, w∗) ∈ H (x∗) and then x∗ is a solution of the multivalued mixed variational
inequality (1.1). Since yn = h (xn, wn), for every n ∈ N, then

1
2
α∥y − xn∥2

+ ⟨wn, y − xn⟩ + ϕ (y) ≥
1
2
α∥yn − xn∥2

+ ⟨wn, yn − xn⟩ + ϕ (yn) ∀y ∈ C .

By the continuity of the inner product and the lower semicontinuity of ϕ, we have

1
2
α∥y − x∗

∥
2
+


w∗, y − x∗


+ ϕ (y) ≥

1
2
α∥y∗

− x∗
∥
2
+


w∗, y∗

− x∗

+ ϕ


y∗


∀y ∈ C .

Thus y∗
= h (x∗, w∗) and since fr (y∗) = z∗

= x∗, it follows that y∗
∈ C ∩ B (x0, r). Otherwise r y∗−x0

∥y∗−x0∥
+ x0 = x∗ and then

x∗
− x0 =

r
∥y∗−x0∥

(y∗
− x0) with ∥x∗

− x0∥ = r and 0 < θ =
r

∥y∗−x0∥
< 1. Contradiction.

Then x∗
= z∗

= y∗
= h (x∗, w∗) and then x∗ is a solution of the multivalued mixed variational inequality (1.1). �

As a corollary, we obtain Theorem 3.4 of [1].

Corollary 4.3. Let C be a nonempty compact convex subset of Rn. Let ϕ be a proper convex subdifferentiable function on C and
let F : Rn

→ 2Rn
be an upper semicontinuous γ -cocoercive multivalued mapping on C such that F (x) is a nonempty compact

convex subset, for every x ∈ C. Then the problem (1.1) has at least one solution x∗
∈ C.

Proof. Choose x0 ∈ C , r > diam (C) and apply Theorem 4.2. �
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Here is an example where the conditions of Theorem 4.2 are fulfilled.

Example 4.1. Let C = {(x, 0) | 0 ≤ x ≤ 10} be a compact convex subset of R2. Define a multivalued mapping F on C by

F ((x, 0)) =


{(2x, y) | 0 ≤ y ≤ x} if x ≤ 4,

2x,
1

x − 4


if 4 < x < 5,

{(10, 2)} if x ≥ 5.

Clearly the multivalued mapping F is neither closed nor cocoercive on C . Also, it is neither Lipschitzian nor strongly
monotone on C too. However, the multivalued mapping F is closed, bounded and cocoercive on the subset {(x, 0) | x ≥ 0
and |x−1| ≤ 3} with modulus γ =

2
5 . For the sake of simplicity, take ϕ : C → R the constant function such that ϕ (X) = 1,

for every X ∈ C . Let X0 = (1, 0). Let r = 3 and α = 2 > 1
2γ =

5
4 . Let X = (4, 0) be the unique point of C such that

∥X − X0∥ = 3. Let W = (8, a) ∈ F (X0) where 0 ≤ a ≤ x. The problem of optimization (2.1) associated to X and W is

min
(y,0)∈C

α

2
∥(y, 0) − (4, 0)∥2

+ ⟨(8, a) , (y, 0) − (4, 0)⟩ + ϕ ((y, 0))


.

The objective function f is defined by

f ((y, 0)) =
α

2
∥(y, 0) − (4, 0)∥2

+ ⟨(8, a) , (y, 0) − (4, 0)⟩ + ϕ ((y, 0))

= (y − 4)2 + 8 (y − 4) + 1 = y2 − 8y + 16 + 8y − 32 + 1 = y2 − 15.

It is clear that h (X,W ) = (0, 0) is the unique solution of the above optimization problem and, for every 0 < θ < 1,
X − X0 = (3, 0) ≠ θ (−1, 0) = (h (X,W ) − X0). By Theorem 4.2, the multivalued mixed variational inequality (1.1)
associated to C , ϕ and F has at least one solution.

Now, applying Theorem 4.2, we have the following algorithm for solving the multivalued mixed variational inequal-
ity (1.1).

Algorithm 4.1. Step 0. Choose a tolerance ε > 0, λ ∈ ]0, 1[, α ≥
1
2γ , x0 ∈ C and seek w0 ∈ F (x0). Let k = 0.

Step 1. Solve the strongly convex program

min
y∈C

α

2
∥y − xn∥2

+ ⟨wn, y − xn⟩ + ϕ (y)


to obtain its unique solution yn. Take zn := fr (yn).
If ∥zn − xn∥ < ε, then the algorithm terminates. xn is an ε-solution. Otherwise go to Step 2.

Step 2. Take xn+1 := (1 − λ) xn + λzn. Find wn+1 ∈ F (xn+1) such that

∥wn+1 − wn∥ ≤ dH (F (xn+1) , F (xn)) ≤


⟨wn+1 − wn, xn+1 − xn⟩

γ
.

Let n = n + 1 and return to Step 1.

Remark 4.1. Clearly, if xn0 = zn0 for some n0, then xn0 = fr

h

xn0 , wn0


= h


xn0 , wn0


. It follows that xn0 is a fixed point

of H and therefore, it is a solution of the multivalued mixed variational inequality (1.1).

5. Equilibrium problems: discussion and conclusion

Many results concerning existence of solutions of equilibriumproblems are known in the literature and they are generally
based on two techniques. The first technique is related to the separation of convex sets, the second, to fixed point theory.

Any solution of the multivalued mixed variational inequality (1.1) is a solution of the equilibrium problem (1.2) where
Φ is defined on C × C by

Φ (x, y) = sup
z∈F(x)

Ψx (z, y) ∀x, y ∈ C (5.1)

and Ψx is a bifunction defined on F (x) × C by

Ψx (z, y) = ⟨z, y − x⟩ + ϕ (y) − ϕ (x) .

The converse is true under additional conditions (see, for example, [19,21,25,26,5]).
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If ϕ is a convex function, then the bifunction Ψx defined above is convex in its second variable, for every x ∈ C . It follows
from [26, Proposition 2.3] that if x∗

∈ C is such that Ψx∗ is weakly concavelike in its first variable, then the two following
conditions are equivalent:

1. If x∗ is a solution of the equilibrium problem (1.2) where Φ is defined by (5.1), then x∗ is a solution of the multivalued
mixed variational inequality (1.1),

2. F (x∗) satisfies the following strong closedness condition: if
z ∈ F


x∗


| Ψx∗ (z, y) < −δ


| y ∈ C, δ > 0


covers F (x∗), then it contains a finite subcover. We say in this case that F (x∗) is compactly adapted to Ψx∗ .

Obviously, if F (x) is a compact convex subset, for every x ∈ C , then by the upper semicontinuity of Ψx in its first variable,
the set F (x) is compactly adapted to Ψx, for every x ∈ C and then any solution of the equilibrium problem (1.2) where Φ is
defined by (5.1) is a solution of the multivalued mixed variational inequality (1.1).

Remark 5.1. Observe that under assumptions of Theorems 3.3 and 4.2, the sets (F (x))x∈C are not supposed convex and
neither closed are when x ∈ C \ B (x0, r) under assumptions of Theorem 4.2. In other words, no Ψx is supposed weakly
concavelike in its first variable and no F (x) is supposed compactly adapted to Ψx except under assumptions of Theorem 4.2
when x ∈ C ∩ B (x0, r).

Generally in the literature, most results on existence of solutions of equilibrium problems, except Proposition 2.3 of [26],
provide sufficient conditions. Standard assumptions on the equilibrium bifunction Φ are

1. monotonicity of Φ on C , that is, Φ (x, y) + Φ (y, x) ≤ 0, ∀x, y ∈ C;

2. hemicontinuity of Φ in its first variable on C;
3. convexity and lower semicontinuity of Φ in its second variable on C .

The following coercivity condition on unbounded sets: there exist a compact subset L and a point y0 ∈ L ∩ C such that

Ψ (x, y0) < 0 ∀x ∈ C \ L,

as well as some general convexity concepts are also usually assumed. Proofs of the results concerning existence of
solutions of equilibrium problems are generally based on KKM Lemma and Ky Fan Lemma in infinite dimensional spaces
(see [20,23,27]). See also [25] for an exposition of some classical and recent results concerning existence of solutions of
equilibrium problems.

Remark 5.2. If Φ is defined by (5.1), then the monotonicity of Φ on the whole C is only assumed in Theorem 3.3 and no
other property of continuity on Φ on the whole C is assumed in both Theorems 3.3 and 4.2. In comparison with [21, Lemma
2.15], the maximal monotonicity is nowhere assumed and therefore the sets (F (x))x∈C are not assumed to be compacts. The
above coercivity condition becomes: there exist a compact subset L and a point y0 ∈ L ∩ C such that

ϕ (x) − ϕ (y0) > sup
z∈F(x)

⟨z, y0 − x⟩ ∀x ∈ C \ L.

Thus, the coercivity condition is in this case very close to the subdifferentiable function ϕ. Finally, we point out that under
assumptions of Theorems 3.3 and 4.2, both the solutions obtained and their approximation sequences are constructed in
the compact convex set C ∩ B (x0, r).

To our knowledge, there does not seem to be any result in the literature concerning existence of solutions of multivalued
mixed variational inequalities and equilibrium problems when the subdifferentiable function ϕ is not constant and the
multivaluedmapping values are not necessarily convex. Also, there does not seem to be any consideration of local conditions
on themultivaluedmapping and on the equilibriumbifunction. In conclusion, the approach used in this paper provides again
sufficient conditions for solving multivalued mixed variational inequalities and equilibrium problems and offers, at least,
another attempt in order to reach optimal conditions.
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