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a b s t r a c t

We study improper affine spheres with some admissible singularities, called improper
affine maps, and associated to the unimodular Hessian equation. In particular, we charac-
terizewhen a curve ofR3 is the singular curve of some improper affinemapwith prescribed
cuspidal edges and swallowtails. Also, we consider improper affinemaps with isolated sin-
gularities and show some similarities and differences between the Hessian +1 equation
and the Hessian −1 equation. As a consequence, we construct global examples with the
desired singularities.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

A celebrated fact in geometric analysis is the correspondence between the solutions of the Monge–Ampère equation

fxxfyy − f 2xy = ε = ±1 (1.1)

and the umbilical surfaces of the unimodular affine theory inR3, obtained locally as the graphs of f (x, y) and called improper
affine spheres; see [2,15,13,22].

Thus, in the definite case (ε = +1), the lack of global examples seems a natural consequence of the famous result
by Jörgens [10], which states that all the solutions of the (elliptic) Hessian +1 equation on R2 are quadratic polynomials.
Actually, up to unimodular affine transformations, the elliptic paraboloid is the unique improper affine spherewith complete
definite affine metric; see [3,5,21].

This situation motivates the study of solutions and surfaces with some singularities. In particular, Jörgens proved in [11]
that the revolution surfaces provide the only entire solutions with at most an isolated singularity.

Recently, thanks to the conformal representation of the definite improper affine spheres obtained in [6,7], the above
theorem has been extended to the finitely punctured plane in [8]. Moreover, from a local viewpoint, we remark that around
a non-removable isolated singularity the conformal structure is always that of an annulus and the solution is determined
by a planar convex analytic curve; see [1].

Now, although the indefinite case (ε = −1) is different, we use similar methods. However, with the corresponding
geometric model, we can also construct solutions of the (non-elliptic) Hessian −1 equation with isolated singularities and
the conformal structure of a punctured disk.
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First, following [16,19], we extend the conformal representation given in [18] and introduce the improper affine maps
as improper affine spheres with some admissible singularities. These are, mainly, isolated singularities and singular curves
with cuspidal edges and swallowtails; see [9,12].

Then, we solve the associated Björling problem and prove that any indefinite improper affine map can be recovered
in terms of its set of singularities. Moreover, we give a priori conditions for a curve of R3 to be the singular curve of
some indefinite (or definite) improper affine map with prescribed cuspidal edges and swallowtails. Thus, one can obtain
interesting examples with the desired singularities.

Finally, we construct indefinite improper affinemaps with isolated singularities, some of themwith the conformal struc-
ture of an annulus and determined by a planar convex analytic curve, and otherswith the conformal structure of a punctured
disk. As consequence, we get entire solutions of the Hessian−1 equation in the punctured plane, but the corresponding im-
proper affine maps are not revolution surfaces.

2. Improper affine maps

Considerψ : Σ −→ R3 an improper affine sphere, that is, an immersionwith constant affine normal ξ . Then, see [14,20],
up to an unimodular affine transformation, one has ξ = (0, 0, 1), andψ can be locally seen as the graph of a solution f (x, y)
of the unimodular Hessian equation (1.1).

In such a case, the affine conormal N and the affine metric h of ψ are given by

N = (−fx,−fy, 1),

h = fxxdx2 + 2fxydxdy + fyydy2,
(2.1)

and (1.1) is equivalent to

(dfx)2 + ε dy2 = fxxh, (dfy)2 + ε dx2 = fyyh. (2.2)

Hence, the coordinates of N and ψ provide conformal parameters for h. Note that the ruled solution f (x, y) = xy
seems special, because fxx = 0 = fyy; however, up the unimodular change (x, y) by (x − y, x + y)/

√
2, we can take

f (x, y) = (x2 − y2)/2 and recover h from (2.2).
Actually, when ε = +1, it is well known that N + i ξ ×ψ : Σ −→ C3 is a global holomorphic curve, with respect to the

conformal structure induced by the Riemannian metric h, where the standard inner product ⟨ξ × ψ, X⟩ is the determinant
[ξ, ψ, X], for any X ∈ R3; see [4,7].

Similarly, when ε = −1, we can change C by the split-complex numbers

C′
= {z = s + jt : s, t ∈ R, j2 = 1, 1j = j1}

and prove thatN+ j ξ×ψ : Σ −→ C′3 is a global split-holomorphic curve, with respect to the conformal structure induced
by the Lorentzian metric h; see [18].

In fact, from (1.1) and (2.1), we get

h = −⟨dN, dψ⟩, ⟨N, ξ⟩ = 1, ⟨N, dψ⟩ = 0, (2.3)

and 
h(ψx, ψy)2 − h(ψx, ψx)h(ψy, ψy) = [ψx, ψy, ξ ] = −[Nx,Ny,N].

Thus, for a local conformal parameter z, we have

h = 2ρ dz dz, ρ = ⟨N, ψzz⟩ = −j[ψz, ψz, ξ ] = j[N,Nz,Nz] > 0 (2.4)

and the split-holomorphic condition

Nz = jξ × ψz, Nz = −jξ × ψz, (2.5)

with the usual notation z = s − jt, Re(z) = s, Im(z) = t and the partial derivatives

ψz =
1
2
(ψs + jψt) , ψz =

1
2
(ψs − jψt) .

Moreover, from (2.3)–(2.5), we obtain

ψzz = ρξ = jNz × Nz, Nzz = 0

and the Lelieuvre formula

ψ = 2 Re


jNz × Ndz = −2 Re


j

Φ + Φ


× Φzdz, (2.6)

with the global split-holomorphic curve

Φ =
1
2
N +

j
2
ξ × ψ. (2.7)
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Conversely, we can introduce the class of indefinite improper affine spheres with admissible singularities, where the
affine metric h is degenerated, but the affine conormal is well defined.

Definition 2.1. A map ψ : Σ −→ R3 is an indefinite improper affine map, with constant affine normal ξ , if it admits the
representation (2.6) for a split-holomorphic curveΦ such that [Φ+Φ,Φz,Φz] does not vanish identically and 2⟨Φ, ξ⟩ = 1.

From (2.3), (2.4), and the above definition, it is clear that

ψz = −j(Φ + Φ)× Φz, N = Φ + Φ, (2.8)

ψzz = jΦz × Φz = ρξ, ρ = j

Φ + Φ,Φz,Φz


, (2.9)

and that z0 ∈ Σ is a non-degenerate singular point of the map ψ if and only if

ρ(z0) = 0, dρ|z0 ≠ 0. (2.10)

In this case, either ψ(z0) is an isolated singularity or the singular set of ψ around z0 locally becomes a regular curve
γ : I ⊂ R −→ Σ and we have the KRSUY criterion for the singular curve α = ψ ◦ γ .

Theorem 2.2 ([12]). If η is a vector field along γ , with η(s) ≠ 0 in the kernel of dψγ (s) for any s in the interval I, then the
following hold.

1. γ (0) = z0 is a cuspidal edge if and only if det(γ ′(0), η(0)) ≠ 0, where det denotes the determinant of 2 × 2 matrices and
prime indicates differentiation with respect to s.

2. γ (0) = z0 is a swallowtail if and only if det(γ ′(0), η(0)) = 0 and

d
ds


s=0

det(γ ′(s), η(s)) ≠ 0.

3. Singular curves

First, we solve the affine Björling problem, consisting in finding the indefinite improper affine map containing an analytic
curve α with a prescribed affine conormal U along it. That is, we determine the corresponding split-holomorphic curve Φ
with α and U .

Motivated by (2.3), we say that a pair of analytic curves α,U : I −→ R3 is admissible for a non-zero vector ξ ∈ R3 if the
equations

0 = ⟨α′,U⟩, 1 = ⟨ξ,U⟩, (3.1)

hold on the interval I .
Thus, see (2.7) and (2.9), if we take the split-holomorphic curveΦ : Ω −→ C′3 given by

Φ(z) =
1
2


U(z)+ jξ × α(z)


, z = s + jt ∈ Ω ⊂ C′,

in a domainΩ containing I , where the split-holomorphic extensions of U and α exist, then

2⟨Φ, ξ⟩ = ⟨U, ξ⟩ = 1

inΩ (by analyticity) and

ρ = j

Φ + Φ,Φz,Φz


=

j
4


U,U ′

+ jξ × α′,U ′
− jξ × α′


= −

1
2
⟨U × U ′, ξ × α′

⟩ = −
1
2
⟨U ′, α′

⟩

in I . Hence, if we denote by I0 the zero set of the function λ : I −→ R,

λ = ⟨α′′,U⟩ = −⟨α′,U ′
⟩, (3.2)

we can obtain the following extension of Theorem 3.1 in [18].

Theorem 3.1. Let α,U : I −→ R3 be an admissible pair of curves for a non-zero vector ξ , with I0 ≠ I . Then there exists a
unique indefinite improper affine map ψ , containing α(I), with affine normal ξ , affine conormal U(s) at α(s) for all s ∈ I , and
α(I0) contained in its set of singularities.

The case I0 = I is special, because ρ = 0 = λ in I and the map ψ can be recovered in terms of its set of singularities.
From now on, without loss of generality, we will fix ξ = (0, 0, 1).
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Theorem 3.2. Let α : I −→ R3 be an analytic curve satisfying

[α′, α′′, α′′′
]
2

≠ [α′, α′′, ξ ]4 ≠ 0, ∀s ∈ I. (3.3)

Then, there exists a unique indefinite improper affine map ψ containing α(I) in its set of singularities.
Actually, α is a singular curve of ψ and α(s) is a cuspidal edge for all s ∈ I .

Proof. From (3.1) and (3.2), with λ ≡ 0, there is a unique U : I −→ R3,

U =
α′

× α′′

[α′, α′′, ξ ]
, (3.4)

such that {α,U} is an admissible pair of curves for ξ and the map ψ is defined by (2.6) with

Φ =
αz × αzz

2[αz, αzz, ξ ]
+

j
2
ξ × α,

in a neighborhood of I in C′, where the split-holomorphic extension of α exists.
In fact, from (2.8) and (3.4), we have, along I ,

ψz = −j(Φ + Φ)× Φz =
−j
2

U × U ′
−

1
2
U ×


ξ × α′


=

1
2
α′

−
j
2
U × U ′

=
1
2
α′

−
j
2

[α′, α′′, α′′′
]

[α′, α′′, ξ ]2
α′,

and ψ contains the curve α with

ψs = α′, ψt = −
[α′, α′′, α′′′

]

[α′, α′′, ξ ]2
α′. (3.5)

Thus, from (2.9), (2.10), (3.3) and (3.5), we get [ψs, ψt , ξ ](s, 0) = 0, ∀s ∈ I ,

d
dt


(s,0)

[ψs, ψt , ξ ] = [ψts, ψt , ξ ](s, 0)+ [ψs, ψss, ξ ](s, 0)

= [α′, α′′, ξ ]


1 −

[α′, α′′, α′′′
]
2

[α′, α′′, ξ ]4


≠ 0, (3.6)

and α is a singular curve. Moreover, the kernel of dψ at γ (s) = (s, 0) is spanned by

η = ([α′, α′′, α′′′
], [α′, α′′, ξ ]2),

and we conclude from

det(γ ′, η) = [α′, α′′, ξ ]2 ≠ 0

and Theorem 2.2 that α(s) is a cuspidal edge for all s ∈ I . �

Example 3.3. If we take the curve α : R −→ R3 given by

α(s) = (cos(s), sin(s), as),

then [α′, α′′, ξ ] = 1 and [α′, α′′, α′′′
] = a. So, from Theorem 3.2, when a ∈ R − {±1},

U(s) = (a sin(s),−a cos(s), 1),

and the associated improper affine map ψ : R2
−→ R3 has coordinates

ψ1(s, t) = cos(s) cos(t)+ a sin(s) sin(t),
ψ2(s, t) = sin(s) cos(t)− a cos(s) sin(t),

ψ3(s, t) = as −
1
2
(1 + a2)t +

1
4
(1 − a2) sin(2t).

It is clear that the affine metric

h = [ψs, ψt , ξ ](ds2 − dt2) = (1 − a2) cos(t) sin(t)(ds2 − dt2)

does not vanish identically, because a ≠ ±1.
Moreover, around t = 0, α = ψ( , 0) is the only singular curve with cuspidal edges (see Fig. 1, with a = 0 and a = 0.1).
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Fig. 1. Improper affine maps with cuspidal edges.

Theorem 3.4. Let α : I −→ R3 be an analytic curve such that

[α′, α′′, α′′′
]
2

≠ [α′, α′′, ξ ]4 ≠ 0, ∀s ∈ I − {0},

and 0 ∈ I is a zero of α′, α′
× α′′, [α′, α′′, ξ ] and [α′, α′′, α′′′

] of order 1, 2, 2 and 3 respectively.
Then, α is a singular curve of an unique indefinite improper affine map ψ , and α(0) is a swallowtail.

Proof. We follow the same arguments from (3.4) to (3.6). Note that U and ψt are well defined by the hypothesis and

d
dt


(s,0)

[ψs, ψt , ξ ] = [α′, α′′, ξ ] −
[α′, α′′, α′′′

]
2

[α′, α′′, ξ ]3
≠ 0.

Now, the kernel of dψ at γ (s) = (s, 0) is spanned by

η =


1,

[α′, α′′, ξ ]2

[α′, α′′, α′′′]


,

and, from Theorem 2.2, α(0) is a swallowtail, because 0 is a zero of order 1 of

det(γ ′, η) =
[α′, α′′, ξ ]2

[α′, α′′, α′′′]
. �

Example 3.5. The curve α : R −→ R3 defined by

α(s) =


cos(s)+

1
2
cos(2s),− sin(s)+

1
2
sin(2s),

1
6
cos(3s)


has

[α′, α′′, ξ ] = 1 − cos(3s) and [α′, α′′, α′′′
] = sin(3s)−

1
2
sin(6s),

with the same 2π-periodic zeros 2
3π,

4
3π , and 2π . Thus, one can check the conditions of Theorem3.4 and obtain an improper

affine map with α as a singular curve with three swallowtails connected by three arcs with cuspidal edges. In fact,

U(s) =


− cos(s)+

1
2
cos(2s), sin(s)+

1
2
sin(2s), 1


and ψ : R2

−→ R3 has coordinates

ψ1(s, t) = cos(s)(cos(t)+ sin(t))+
1
2
cos(2s)(cos(2t)+ sin(2t)),

ψ2(s, t) = − sin(s)(cos(t)+ sin(t))+
1
2
sin(2s)(cos(2t)+ sin(2t)),

ψ3(s, t) =
1
24
(12t + 12 cos(2t)− 3 cos(4t)+ 4 cos(3s))(cos(3t)+ 3 sin(t)).

Now, the affine metric is

h = 2 sin(t)

sin(3t)− cos(3s)


(ds2 − dt2),

and t = 0 gives α = ψ( , 0)with the expected properties (see Fig. 2).

Theorem 3.6. There are no indefinite improper affine maps containing a singular curve α : I −→ R3 satisfying

[α′, α′′, ξ ] = 0, ∀s ∈ I. (3.7)
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Fig. 2. Improper affine map with swallowtails.

Proof. If we assume that α is contained in an indefinite improper affine mapψ , with affine conormal U along α, then (3.1),
(3.2) and (3.7), with λ ≡ 0, give

α′
× α′′

= ⟨α′
× α′′, ξ⟩U = 0,

and α is a line with direction vector v, such that ⟨v,U⟩ = 0.
As a consequence, ⟨v,N⟩ = 0, and [N,Nz,Nz] vanishes in a neighborhood of α, which is a contradiction. �

Remark 1. We can change C′ by C and prove in a similar way the above theorems for definite improper affine maps, with
the holomorphic curves N + i ξ × ψ and the conformal representation used in [1] for the classification of the isolated
singularities of the Hessian +1 equation. Note that the 1 in (3.6) becomes −1 in the definite case and we can simplify the
hypotheses; see [17].

4. Isolated singularities

Conversely, we can apply the ideas of [1] for the isolated singularities of the Hessian −1 equation, when the conformal
structure of the affine metric around the singularity is that of an annulus A.

Theorem 4.1. Let U : R −→ R2
× {1} be a 2π-periodic regular analytic parameterization of a convex curve.

Then, there exists a unique indefinite improper affine mapψ : A −→ R3, with an isolated singularity at the origin, where the
affine conormal tends to U.

Proof. Here, we take the constant curve α0 : R −→ R3, α0 ≡ 0, and so

Φ(z) =
1
2


U(z)+ jξ × 0


=

1
2
U(z),

in a neighborhood of R × {0} in C′, where the split-holomorphic extension of U exists.
We observe thatΦ is well defined on the annulus

A = {z = s + jt ∈ C′
: 0 < t < r}/(2πZ),

and 2⟨Φ, ξ⟩ = 1, by the hypothesis.
Moreover, from (2.8) and (2.9), we get along the circle S ≡ R × {0}/(2πZ)

ψs = 0, ψt = −U × U ′, ρ = 0,

and
d
dt


(s,0)

[ψs, ψt , ξ ] = [ψts, ψt , ξ ](s, 0) = −[U,U ′,U ′′
](s) ≠ 0.

Thus, from (2.10), we conclude that 0 = ψ(S) is an isolated singularity, where the affine conormal of ψ tends to U . �

Example 4.2. Similarly to Example 3.3, if we take U : R −→ R2
× {1} with

U(s) = (cos(s), sin(s), 1),

then Theorem 4.1 gives the revolution improper affine map ψ : R2
−→ R3 with

ψ(s, t) =


cos(s) sin(t), sin(s) sin(t),

t
2

+
1
4
sin(2t)


,

and it is clear that ψ(R × {0}) = (0, 0, 0) is an isolated singularity (see Fig. 3).
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Fig. 3. Improper affine map with isolated singularities.

Fig. 4. Non-embedded isolated singularity.

We also observe that ψ(R × [0, π4 ]) and ψ(R2) provide a solution of the Hessian −1 equation on the same punctured
disk.

Remark 2. If U(R) is not a simple curve in R2
× {1}, then the isolated singularity is not embedded (see Fig. 4).

Unlike what happens in the definite case, where an isolated singularity is non-removable if and only if its underlying
conformal structure is that of an annulus, see [11,8], we can construct indefinite improper affine maps with isolated
singularities and the conformal structure of a punctured disk D∗.

In general, if the split-holomorphic curve Φ of an indefinite improper affine map ψ : Σ −→ R3 has coordinates
(Φ1,Φ2, 1/2), then

ρ = j

Φ + Φ,Φz,Φz


= j(Φ1zΦ2z − Φ2zΦ1z). (4.1)

Theorem 4.3. Let Φ : D −→ C′2
× {1/2} be a split-holomorphic curve with

Φ1z ≡ j and Φ2z = F 2, (4.2)

such that the split-holomorphic function F : D −→ C′ only vanishes at z0 ∈ D . Then, the corresponding indefinite improper
affine map ψ : D −→ R3 is regular on D∗

= D − {z0} and has an isolated singularity.

Proof. It is clear from (4.1) and (4.2), because ρ = F 2
+ F 2 > 0 on D∗. �

Remark 3. Similarly, we get a global indefinite improper affine map ψ : C′
−→ R3 with a finite number of singularities,

associated to the zeros of a split-holomorphic function F : C′
−→ C′.

In this way, in contrast to [11,8], we also find solutions of the Hessian −1 equation in the finitely punctured plane.

Example 4.4. Of course, the simplest choice in Theorem 4.3 is F(z) = z and

Φ(z) =


jz,

1
3
z3,

1
2


,

with z = s + jt ∈ C′. Thus, the affine conormal is given by

N(s, t) =


2t,

2
3
s3 + 2st2, 1


,

and the corresponding improper affine map ψ : R2
−→ R3 has

ψ(s, t) =


2s2t +

2
3
t3,−2s,

1
3
s4 − 2s2t2 − t4


.

Now, the affine metric is h = 4(s2 + t2)(ds2 − dt2), and ψ(0, 0) = (0, 0, 0) is the only singularity (see Fig. 5).
Moreover, we see that ψ(R2

− {(0, 0)}) is the graph of a global solution of the Hessian −1 equation on the punctured
plane.
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Fig. 5. Entire solution on the punctured plane.

Fig. 6. Improper affine map with two isolated singularities.

Remark 4. We can follow with F(z) = z(z − 1) and obtain a solution on the twice-punctured plane. Alternately, we can
distribute the zeros between the coordinates ofΦz and choose, for instance,

Φ(z) =
1
2


jz3, z3 − 3z2 + 3z, 1


.

In this case, from (4.1), the associated improper affine map ψ : R2
−→ R3 has affine metric

h = 9

t2 + (s − s2 + t2)2


(ds2 − dt2),

and ψ(0, 0), ψ(1, 0) are the only singularities (see Fig. 6).
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