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We consider a quasilinear parabolic–parabolic Keller–Segel system involving a source term
of logistic type,{

ut = ∇ · (φ(u)∇u
) − ∇ · (ψ(u)∇v

) + g(u), (x, t) ∈ Ω × (0, T ),

vt = �v − v + u, (x, t) ∈ Ω × (0, T ),
(0.1)

with nonnegative initial data under Neumann boundary condition in a smooth bounded
domain Ω ⊂ R

n , n � 1. Here, φ and ψ are supposed to be smooth positive functions
satisfying c1sp � φ and c1sq � ψ(s) � c2sq when s � s0 with some s0 > 1, and we assume
that g is smooth on [0,∞) fulfilling g(0) � 0 and g(s) � as − μs2 for all s > 0 with
constants a � 0 and μ > 0. Within this framework, it is proved that whenever q < 1, for
any sufficiently smooth initial data there exists a unique classical solution which is global
in time and bounded. Our result is independent of p.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

This paper deals with the initial–boundary value problem for two coupled parabolic equations with logistic source,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut = ∇ · (φ(u)∇u
) − ∇ · (ψ(u)∇v

) + g(u), (x, t) ∈ Ω × (0, T ),

τ vt = �v − v + u, (x, t) ∈ Ω × (0, T ),

∂u

∂n
= ∂v

∂n
= 0, (x, t) ∈ ∂Ω × (0, T ),

u(x,0) = u0(x), v(x,0) = v0(x), x ∈ Ω,

(1.1)

where Ω ∈ R
n (n � 1) is a bounded convex domain with smooth boundary and τ ∈ {0,1}. The functions φ and ψ are

assumed to satisfy

φ,ψ ∈ C2([0,∞)
)
, φ(s) > 0 for all s � 0, (1.2)

c1sp � φ(s), s � s0, (1.3)

c1sq � ψ(s) � c2sq, s � s0 (1.4)

E-mail address: caoxinru@gmail.com.
1 Supported by China Scholarship Council (201206060107).
0022-247X/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jmaa.2013.10.061

http://dx.doi.org/10.1016/j.jmaa.2013.10.061
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:caoxinru@gmail.com
http://dx.doi.org/10.1016/j.jmaa.2013.10.061
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2013.10.061&domain=pdf


182 X. Cao / J. Math. Anal. Appl. 412 (2014) 181–188
with some c2 > c1 > 0, p,q ∈ R and s0 > 1. Initial data fulfill

u0 ∈ Cβ(Ω̄) (0 < β < 1), v0 ∈ W 1,r(Ω) (r > n). (1.5)

Moreover, g ∈ C∞([0,∞)) is supposed to be a smooth function which satisfies

g(0) � 0 as well as g(s) � as − μs2 for all s > 0 (1.6)

with constants a � 0 and μ > 0.
This is a version of the well-known Keller–Segel model which was initially introduced by Keller and Segel in 1970.

The system is used in mathematical biology to describe chemotaxis processes, where certain bacteria move toward higher
densities of a chemical substance emitted by themselves, and which diffuse at the same time. In this context, φ and ψ

denote the diffusivity and chemotactic sensitivity, respectively.
When g(u) ≡ 0, the classical parabolic–elliptic chemotaxis model with τ = 0, φ ≡ 1 and ψ ≡ u has been extensively

studied through the past decades. There have been numerous results on criteria for existence of global bounded solutions,
and on the detection of some solutions blowing up in either finite or infinite time. When τ = 1, the analysis of fully
parabolic system seems to be more involved (see [6,16,17]).

Beyond this, one type of refined models was pursued by Hillen and Painter [5] on the basis of the assumption that in
contrast to chemicals, the bacterial cells have a positive size which is not negligible. The associated system accounting for
this so-called volume-filling effect is then quasilinear and involves more general functions φ and ψ as in (1.2) and (1.4),
and in the case g ≡ 0 this has been widely studied as well [2,7,16]. For instance, in the corresponding parabolic–elliptic
version obtained when φ(s) = sp and ψ(s) = sq for large s, and when the second equation is replaced with 0 = �v − M + u,
where M denotes the spatial mean of u, the results are essentially complete in the sense that a critical exponent on the
interplay of φ and ψ has been found: Namely, if q − p < 2

n , then all solutions are global and uniformly bounded; however,
if q − p > 2

n and q > 0, then there exist radial solutions which become unbounded in finite time [20]. Similarly, also in
the fully parabolic system (1.1) with τ = 1, the exponent 2

n also plays an important role when g ≡ 0: It is known that if
q − p < 2

n , the system exclusively possesses global bounded solutions [13], whereas if q − p > 2
n with n � 2, unbounded

solutions do exist [16], and even finite-time blow-up may occur under the additional conditions n � 3 and q � 1 [1].
It is our purpose in this paper to investigate the effect of a logistic source. Indeed, in related classical semilinear chemo-

taxis systems when φ(u) ≡ 1 and ψ(u) = χu with χ > 0, such proliferation mechanisms in the style of (1.6) are known
to prevent chemotactic collapse: In [14], for instance, it is proved that when μ > n−2

n χ , solutions of the parabolic–elliptic
system with τ = 0 are global and remain bounded. The same conclusion is true for the parabolic–parabolic system with
τ > 0 when either n = 2 [11], or when n � 3 and μ > μ0 with some constant μ0 > 0 [15]. This is in sharp contrast to the
possibility of blow-up which is known to occur in such systems when g ≡ 0 and n � 2 [3,8,10,19]. In presence of dampening
sources of logistic type, only a partial result on the existence of explosions seems available [18].

In the present paper, we shall study (1.1) with τ = 1 under the conditions (1.2)–(1.6). In this context, our main result
says that for any choice of q < 1, the logistic dampening rules out the occurrence of blow-up:

Theorem 1. Suppose that Ω ∈ R
n, n � 1, is a convex bounded domain with smooth boundary. Assume that ψ and φ satisfy (1.2)–(1.4)

with some q < 1, g satisfies (1.6) with μ > 0. Then for any nonnegative u0 ∈ Cβ(Ω̄) with 0 < β < 1 and v0 ∈ W 1,r(Ω) with r > n,
there exists a pair (u, v) ∈ C0(Ω̄ × [0,∞)) ∩ C2,1(Ω̄ × (0,∞)) which solves (1.1) in the classical sense. Moreover, both u and v are
bounded in Ω × (0,∞).

We underline that the above result is independent of the value of p in (1.3).
The plan of this paper is as follows.
In Section 2, we are going to prove local existence of classical solution to (1.1). Theorem 1 will be proved in Section 3,

based on a series of lemmata providing appropriate a priori estimates.

2. Local existence

The question of local solvability to (1.1) for sufficiently smooth initial data can be addressed by methods involving
standard parabolic regularity theory in a suitable fixed point framework.

Now let us assert that the system is locally well-posed under appropriate assumptions. Moreover, we are going to make
sure a solution terminates in finite time if and only if it blows up in a certain norm.

Lemma 2.1. Suppose Ω ∈ R
n, n � 1, is a convex bounded domain with smooth boundary, ψ , φ satisfy (1.2)–(1.4), g fulfills (1.6) and

u0 ∈ Cβ(Ω̄) with β ∈ (0,1), v0 ∈ W 1,r(Ω) with (r > n) both are nonnegative. Then there exist Tmax ∈ (0,∞) and a pair nonnegative
functions (u, v) ∈ C0(Ω̄ × [0, Tmax)) ∩ C2,1(Ω̄ × (0, Tmax)) classically solving (1.1) in Ω × (0, Tmax). Moreover, Tmax < ∞ if and
only if

lim sup
t↗Tmax

(∥∥u(·, t)
∥∥

L∞(Ω)
+ ∥∥v(·, t)

∥∥
W 1,r(Ω)

) = ∞. (2.1)
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Proof. Let ‖u0‖L∞(Ω) = K . We can pick smooth functions φK , ψK on [0,∞) such that φK ≡ φ, ψK ≡ ψ when 0 � s � 2K
and φK = 2K , ψK = 2K when s � 2K . We define the following closed convex subset of the Banach Space C(Ω̄ × (0, T ))

S := {
ũ ∈ C

(
Ω̄ × [0, T ]) ∣∣ ‖ũ‖L∞(Ω×[0,T ]) � 2K

}
(with T < 1 to be fixed below), and consider a fixed point problem, F (ũ) = u, where u is the first component of the solution
(u, v) to the decoupled problem⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut = ∇ · (φK (u)∇u
) − ∇ · (ψK (u)∇v

) + g(u),

vt = �v − v + ũ,

∂u

∂n
= ∂v

∂n
= 0,

u0 ∈ C0(Ω̄), v0 ∈ W 1,r(Ω).

(2.2)

By linear parabolic theory, there exists a unique solution v(x, t) ∈ C1+β̄,
1+β̄

2 (Ω̄ × [0, T ]) which satisfies

‖∇v‖L∞(Ω×(0,T )) � ‖v‖
C1+β̄,

1+β̄
2 (Ω̄×[0,T ])

� C
(

K , T ,‖v0‖W 1,r(Ω)

)
,

and combined with infφK > 0 and u0 ∈ Cβ(Ω̄), we may derive that u enjoys a uniform bound in Cβ,
β
2 (Ω̄ ×[0, T ]) for some

β ∈ (0,1) [12]. So u ∈ Cβ,
β
2 (Ω̄ × [0, T ]) ⊂ C(Ω̄ × [0, T ]). Next, since ‖u0‖L∞ = K , by continuity we can choose appropriate

T > 0 such that u � 2K in Ω̄ ×[0, T ], then F (S) ⊂ S . Moreover, F (S) is a compact subset in S , and evidently F is continuous
since the solution of the first equation is unique. Applying the Schauder fixed point theorem, we obtain that there exists at
least one fixed point u ∈ S . Standard parabolic regularity [9] then implies that (u, v) actually is classical solution of (2.2) in
C0(Ω̄ ×[0, Tmax))∩C2,1(Ω̄ ×(0, Tmax)). Note that φK = φ, ψK = ψ when u � 2K , whence (u, v) in fact classically solves (1.1).
Since the maximum existence time depends on ‖u0‖L∞(Ω) and ‖v0‖W 1,r(Ω) , (2.1) holds. By applying the maximum principle
to each scalar equation, we finally obtain that (u, v) is nonnegative. �

Before we proceed to show global existence, let us first weaken the above extensibility criterion in the following lemma.

Lemma 2.2. Suppose u0 ∈ C0(Ω̄), v0 ∈ W 1,r(Ω) both are nonnegative. Then the solution constructed in Lemma 2.1 has the property
that if for some C1 > 0 and T ∈ (0, Tmax) we have,

∥∥u(·, t)
∥∥

L∞(Ω)
� C1, t ∈ [0, T ],

then there exists C2 > 0 such that
∥∥v(·, t)

∥∥
W 1,r(Ω)

� C2, t ∈ [0, T ].
Moreover, if Tmax < ∞, then

lim sup
t↗Tmax

∥∥u(·, t)
∥∥

L∞(Ω)
= ∞. (2.3)

Proof. Assume ‖u(·, t)‖L∞(Ω) � C1 for all t ∈ [0, T ]. Hence by semigroup estimate
∥∥v(·, t)

∥∥
W 1,r(Ω)

� C2, t ∈ [0, T ] (2.4)

for some C2 > 0, which depends on ‖u(·, t)‖L∞(Ω) , ‖v0‖W 1,r(Ω) and T .
Suppose on contrary that Tmax < ∞, but there exists C1 > 0,

∥∥u(·, t)
∥∥

L∞(Ω)
� C1 for all t ∈ [0, Tmax), (2.5)

then ‖v(·, t)‖W 1,r(Ω) � C2 in [0, Tmax), which contract (2.3). �
3. A priori estimates

In this section, we are going to establish an iteration step to develop the main ingredient of our result. The iteration
depends on a series of a priori estimate. In the course of our proof to the estimate, we shall refer to the following result
which is a consequence of Lemma 3.1 in [4], which is on so-called maximal Sobolev regularity. Since it will turn out to
be quite crucial to our approach, we shall formulate it here for completeness. On the other hand, the classical regularity
requires boundary condition on initial data. We don’t have such an assumption initial data in this context. We would like to
use any positive time as the “initial” time in the regularity, on which the solution fulfills the boundary condition naturally.
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Lemma 3.1. (See [4].) Let r ∈ (1,∞). Consider the following evolution equation⎧⎪⎨
⎪⎩

vt = �v + f ,
∂v

∂n
= 0,

v(x,0) = v0(x).

(3.1)

For each v0 ∈ W 2,r(Ω) such that ∂v0
∂ν = 0 on ∂Ω and any f ∈ Lr((0, T ); Lr(Ω)), there exists a unique solution

v ∈ W 1,r((0, T ); Lr(Ω)
) ∩ Lr((0, T ); W 2,r(Ω)

)
.

Moreover, there exists C > 0 such that

T∫
0

∥∥v(·, t)
∥∥r

Lr(Ω)
dt +

T∫
0

∥∥vt(·, t)
∥∥r

Lr(Ω)
dt +

T∫
0

∥∥�v(·, t)
∥∥r

Lr(Ω)
dt

� C

T∫
0

∥∥ f (·, t)
∥∥r

Lr(Ω)
dt + C‖v0‖r

Lr(Ω) + C‖�v0‖r
Lr(Ω). (3.2)

If s ∈ (0, T ), and v(s) satisfies v(s) ∈ W 2,r(Ω) with ∂v
∂n (s) = 0 on ∂Ω , then with the same constant C > 0 as above, we have the

following,

T∫
s

∥∥v(·, t)
∥∥r

Lr(Ω)
dt +

T∫
s

∥∥vt(·, t)
∥∥r

Lr(Ω)
dt +

T∫
s

∥∥�v(·, t)
∥∥r

Lr(Ω)
dt

� C

T∫
s

∥∥ f (·, t)
∥∥r

Lr(Ω)
dt + C

∥∥v(·, s)
∥∥r

Lr(Ω)
+ C

∥∥�v(s)
∥∥r

Lr(Ω)
. (3.3)

Proof. If v0 = 0, (3.2) is precisely proved in [4]. The general case can be easily derived by letting ṽ := v − χ(t)v0, where
χ ∈ C∞

0 ([0,∞)) is a cut-off function such that χ(t) � 1 for any t � max{ d
4 ,1}. Finally, (3.3) follows upon replacing v(t) by

v(t + s). �
In order to proceed, let us now pick any s ∈ (0, Tmax) and s � 1. Then by the regularity principle asserted by Lemma 2.1,

we have (u(·, s), v(·, s)) ∈ C2(Ω̄) with ∂v(·,s)
∂n = 0 on ∂Ω , so that in particular, we can pick K > 0 such that

sup
0�τ�s

∥∥u(τ )
∥∥

L∞(Ω)
� K , sup

0�τ�s

∥∥v(τ )
∥∥

L∞(Ω)
� K and

∥∥�v(s)
∥∥

L∞(Ω)
� K . (3.4)

Now we proceed to derive a priori estimate which will construct the main part of this work.

Lemma 3.2. Assume that g satisfies (1.4). Then there exist C > 0 such that for any T ∈ (0, Tmax) the solution of (1.1) satisfies

∫
Ω

u � C for all t ∈ (0, T ),

T∫
s

∫
Ω

u2 � C(T + 1). (3.5)

Proof. Integrating the first equation in (1.1) and using Hölder’s inequality gives

d

dt

∫
Ω

u � a

∫
Ω

u − μ

∫
Ω

u2

� a

∫
Ω

u − μ

|Ω|
(∫

Ω

u

)2

for all t ∈ (s, T ). (3.6)

This yields∫
u � max

{
a|Ω|
μ

, K |Ω|
}

for all t ∈ (s, T ). (3.7)
Ω
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Whereupon by integrating (3.6) on (s, T ) with respect to t , we obtain

T∫
s

∫
Ω

u2 � a

μ

T∫
s

∫
Ω

u + 1

μ

∫
Ω

u(s)

�
(

a

μ

∫
Ω

u

)
T + K

μ
|Ω| for all t ∈ (s, T ). (3.8)

Therefore, by an evident choice of C we complete the proof. �
Having (3.5) as a rough a priori estimate, we are in a position to improve the regularity of u in a higher Lp space. The

following lemma shows how this can be achieved. The technique again is based on maximal Sobolev regularity, that is, on
Lemma 3.1.

Lemma 3.3. Let α � 1. Then there exist C2 > 0 and M > 0, depending on μ, q, a, K and |Ω| only, such that if for some T ∈ (0, Tmax)

and some C1 > 0, we have

∫
Ω

uα � C1(T + 1) for any t ∈ (s, T ),

T∫
s

∫
Ω

uα+1 � C1(T + 1), (3.9)

then

∫
Ω

uγ � C2Mγ C1(T + 1) for any t ∈ (s, T ),

T∫
s

∫
Ω

uγ +1 � C2Mγ C1(T + 1), (3.10)

where γ = (2 − q)α + 1 − q.

Proof. We multiply the first equation by γ uγ −1, then integrate by parts and use (1.3), (1.4) to obtain

d

dt

∫
Ω

uγ = −γ (γ − 1)

∫
Ω

φ(u)uγ −2|∇u|2 + γ (γ − 1)

∫
Ω

ψ(u)uγ −2∇u · ∇v + γμ

∫
Ω

uγ −1 g(u)

� c2γ (γ − 1)

∫
Ω

uq+γ −2∇u · ∇v + aγ

∫
Ω

uγ − μγ

∫
Ω

uγ +1 for all t ∈ (s, T ), (3.11)

where c2 is provided by (1.4). Since q + γ − 1 > 0, and with the help of the second equation, we see that

c2γ (γ − 1)

∫
Ω

uq+γ −2∇u · ∇v = c2γ (γ − 1)

q + γ − 1

∫
Ω

∇uq+γ −1 · ∇v

= − c2γ (γ − 1)

q + γ − 1

∫
Ω

uγ +q−1(vt + v − u)

� − c2γ (γ − 1)

q + γ − 1

∫
Ω

uq+γ −1 vt + c2γ (γ − 1)

q + γ − 1

∫
Ω

uq+γ

� −c3γ

∫
Ω

uq+γ −1vt + c4γ

∫
Ω

uq+γ (3.12)

for all t ∈ (s, T ), where c3 = infγ �3−2q
c2(γ −1)
γ +q−1 > 0, c4 = supγ �3−2q

c2(γ −1)
γ +q−1 > 0. Furthermore, Young’s inequality entails

−
∫
Ω

uγ +q−1vt � μ

4c3

∫
Ω

u(γ +q−1)s1 + C(s1,μ)

∫
Ω

|vt |
s1

s1−1 , (3.13)

where⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s1 = γ + 1

γ + q − 1
,

C(s1,μ) = (s1 − 1)s1
− s1

s1−1

(
μ

)− 1
s1−1

= 2 − q
(

1 + 2 − q
)− γ +1

2−q
(

μ
)− γ +q−1

2−q

.

4c3 γ + q − 1 γ + q − 1 4c3



186 X. Cao / J. Math. Anal. Appl. 412 (2014) 181–188
Since 2−q
γ +q−1 � 3−2q

γ , we may choose

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M1 > max

{(
4c3

μ

) 1
2−q

,1

}
,

c5 > sup
γ >3−2q

(3 − 2q)

(
1 + 2 − q

γ + q − 1

)− γ +1
2−q

(
μ

4c3

)− q−1
2−q

.

We rewrite (3.13) as

−
∫
Ω

uγ +q−1vt � μ

4c3

∫
Ω

uγ +1 + c5

γ
M1

γ

∫
Ω

|vt |α+1, (3.14)

here we use s1
s1−1 = α + 1.

By supposing that c5 and M1 > 1 are large enough, a similar computation gives
∫
Ω

uq+γ � μ

4c4

∫
Ω

uγ +1 + c5

γ
M1

γ |Ω|, (3.15)

and ∫
Ω

uγ � μ

4a

∫
Ω

uγ +1 + c5

γ
M1

γ |Ω|. (3.16)

By (3.14)–(3.16) we conclude that

d

dt

∫
Ω

uγ � −γμ

4

∫
Ω

uγ +1 + c3c5M1
γ

∫
Ω

|vt |α+1 + c4c5M1
γ |Ω| + ac5M1

γ |Ω|

� −μγ

4

∫
Ω

uγ +1 + c6M1
γ

∫
Ω

|vt |α+1 + c6M1
γ , (3.17)

for all t ∈ (s, T ), where we choose c6 := max{ac5|Ω| + c4c5|Ω|, c3c5}. Integrating (3.17) on (s, T ), we have

∫
Ω

uγ + μγ

4

T∫
s

∫
Ω

uγ +1 �
∫
Ω

uγ (s) + c6M1
γ

T∫
s

∫
Ω

|vt |α+1 + c6M1
γ (T + 1) (3.18)

for all t ∈ (s, T ). Now, we multiply the second equation by (α + 1)vα , integrate by parts and apply Young’s inequality again
to see

d

dt

∫
Ω

vα+1 = −α(α + 1)

∫
Ω

vα−1|∇v|2 − (α + 1)

∫
Ω

vα+1 + (α + 1)

∫
Ω

uvα

� −
∫
Ω

vα+1 +
∫
Ω

uα+1 (3.19)

for all t ∈ (s, T ). This yields

t∫
s

∫
Ω

vα+1 �
∫
Ω

vα+1(s) +
T∫

s

∫
Ω

uα+1

� K α+1|Ω| +
T∫

s

∫
Ω

uα+1

� K α+1|Ω| + C1(T + 1)

� c7M2
αC1(T + 1), (3.20)
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where M2 := max{1, K } and c7 := K + 1. Lemma 3.1 thus entails

t∫
s

∫
Ω

|vt |α+1 � C3

t∫
s

∫
Ω

uα+1 + C3

t∫
s

∫
Ω

vα+1 + C3

∫
Ω

∣∣�v(s)
∣∣α+1 + C3

∫
Ω

vα+1(s)

� C1C3(T + 1) + c7M2
αC1C3(T + 1) + 2K α+1|Ω|C3(T + 1)

� c8M2
αC1(T + 1) (3.21)

where C3 is constant from Lemma 3.1 in (3.3), c8 := C3(1 + c7 + 2M2|Ω|). Combined with (3.18), this gives∫
Ω

uγ � Mγ
2 |Ω| + c6Mγ

1 c8Mα
2 C1(T + 1) + c6M1(T + 1)

� c10Mγ C1(T + 1) for all t ∈ (s, T ), (3.22)

and

T∫
s

∫
Ω

uγ +1 � 4

μ
c9Mγ C1(T + 1), (3.23)

with c9 := |Ω| + c6c8 + c6, M := M1M2 and C2 := max{c9,
4
μ c9}. �

Now, we can set up the iteration procedure to derive the main result in this section.

Lemma 3.4. Let q < 1, there exists C = C(|Ω|,q) > 0 such that for any T ∈ (0, Tmax), ‖u(·, t)‖∞ � C for all t ∈ (0, T ), where C is
independent of T .

Proof. Let γ0 = 1, γk = (2 − q)γk−1 + 1 − q (k � 1). Then Lemma 3.2 and Lemma 3.3 give us∫
Ω

uγk � Ck
2M

∑k
i=1 γi C(T + 1) for all t ∈ (s, T ) and k � 0. (3.24)

Notice that by the definition of γk , there exist a1,a2 > 0 such that a1(2 − q)k < γk < a2(2 − q)k . Therefore

∥∥u(·, t)
∥∥

Lγk (Ω)
� C

k
a1(2−q)k

2 C
1

a1(2−q)k (T + 1)
1

a1(2−q)k M
a2

∑k
i=1(2−q)k

a1(2−q)k for all t ∈ (s, T ), k � 0. (3.25)

Since q < 1, we have γk → ∞ as k → ∞. Thus letting k → ∞ on both sides of (3.25), we find that

∥∥u(·, t)
∥∥

L∞(Ω)
� M

a2(2−q)

a1 for all t ∈ (s, T ). (3.26)

(3.4) gives
∥∥u(·, t)

∥∥
L∞(Ω)

� K for t ∈ [0, s]. (3.27)

By choosing C := max{K , M
a2(2−q)

a1 }, we complete the proof. �
The assertion of Theorem 1 is an immediate consequence of the above lemmata.

Proof of Theorem 1. Suppose on contrary that Tmax < ∞. By Lemma 3.4, we have ‖u(·, t)‖L∞(Ω) � C for all t ∈ (0, Tmax),
where C is independent on Tmax . This contracts Lemma 2.2, thus we derive that Tmax = ∞. Thanks to (2.4) and embedding
theorem, (u, v) is global and bounded. �
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