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The main purpose of this paper is to prove existence and uniqueness of (proba-
bilistically weak and strong) solutions to stochastic differential equations (SDE) on
Hilbert spaces under a new approximation condition on the drift, recently proposed
in [6] to solve Fokker–Planck equations (FPE), extended in this paper to a con-
siderably larger class of drifts. As a consequence we prove existence of martingale
solutions to the SDE (whose time marginals then solve the corresponding FPE).
Applications include stochastic semilinear partial differential equations with white
noise and a non-linear drift part which is the sum of a Burgers-type part and a re-
action diffusion part. The main novelty is that the latter is no longer assumed to be
of at most linear, but of at most polynomial growth. This case so far had not been
covered by the existing literature. We also give a direct and more analytic proof for
existence of solutions to the corresponding FPE, extending the technique from [6] to
our more general framework, which in turn requires to work on a suitable Gelfand
triple rather than just the Hilbert state space.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let H be a separable real Hilbert space with inner product 〈· , ·〉 and corresponding norm |·|. L(H) denotes
the set of all bounded linear operators on H, B(H) its Borel σ-algebra.

Consider the following type of non-autonomous stochastic differential equations on H and time interval
[0, T ]:

{
dX(t) =

(
AX(t) + F

(
t,X(t)

))
dt +

√
GdW (t),

X(s) = x ∈ H, t � s.
(1.1)
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Here W (t), t � 0, is a cylindrical Wiener process on H defined on a stochastic basis (Ω,F , {Ft}t�0, P ),
G is a linear symmetric positive definite operator in H, D(F ) ∈ B([0, T ]×H), F : D(F ) ⊂ [0, T ]×H → H

is a Borel measurable map, and A : D(A) ⊂ H → H is the infinitesimal generator of a C0-semigroup etA,
t � 0, on H.

Even in this case, where the noise is additive, it is a fundamental question in the theory of stochastic
differential equations (SDE) in infinite dimensional state spaces with numerous applications to concrete
(non-linear) stochastic partial differential equations (SPDE), whether there exists a (unique) weak or strong
(in the probabilistic sense) solution to SDE (1.1). In [6], for a large class of semigroup generators A and
in the fully elliptic case, i.e., where G has an inverse G−1 ∈ L(H) (in particular including the case of
space–time white noise), a quite general approximation condition on F was identified, which implies that
(at least) the corresponding Fokker–Planck equation (FPE) has a solution, which is also unique under some
L2-conditions on F (see [7] and the recent paper [8]). The purpose of this paper is to generalize this result
under the same approximation condition on F (see Hypothesis 2.2 (i), (ii)) in two ways:

(a) We prove that (1.1) has indeed a weak (= martingale) solution (in the sense of Stroock–Varadhan). In
particular, its time marginals solve the corresponding FPE.

(b) We prove (a) in a more general framework, namely allowing (as is usual in the variational approach
to SDE on Hilbert spaces, see e.g. [20,21] and also [25]) that F takes values in a larger space, more
precisely in D((−A)1/2)∗, assuming (as in [6]) that A is negative definite and self-adjoint. In short: we
shall work in a Gelfand triple.

This is done in Section 2 of this paper and the corresponding main result is summarized in Theorem 2.3
there. In order to include degenerate cases, where e.g. TrG < ∞, we assume, instead of the requirement
G−1 ∈ L(H) from [6], that the approximating equations have martingale solutions (see Hypothesis 2.2 (iii)
below), which can be easily checked in many applications.

We would like to stress, however, that, though (b) above may hint in this direction, our result is not
at all covered by the variational approach to SDE on Hilbert spaces (see e.g. [25]), since, first, there is no
monotonicity condition on F and, second, the noise coefficient operator G is not assumed to have finite
trace.

We would also like to stress that in our main application (see Section 4 below) by a standard result
from the seminal paper [23] we can also prove uniqueness of the martingale solutions. This, however, by
principle cannot generally imply uniqueness of solutions to the corresponding FPE, because the latter might
have solutions which are not the time marginals of a martingale solution. However, it is well-known that
uniqueness for FPE implies uniqueness of martingale problems (see [27]). Therefore, as FPE are concerned
our uniqueness results in this paper are much weaker and, in fact, far from those in [7] and [8] for FPE.

Our more general framework, indicated under (b) above, considerably widens the range of applications
in comparison with those in [6].

Let us briefly describe a class of examples, which we present in detail in Section 4 of this paper and
which have been studied intensively in the literature, however, under more stringent assumptions (on the
function f in (1.2) below).

Consider the stochastic semilinear partial differential equation (SPDE)

dX(t) =
(

∂2

∂ξ2X(t) + f
(
t,X(t)

)
+ ∂

∂ξ
g
(
t,X(t)

))
dt +

√
GdW (t), (1.2)

on H := L2(0, 1) with Dirichlet boundary condition

X(t, 0) = X(t, 1) = 0, t ∈ [0, T ],
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and initial condition

X(0) = x ∈ H,

where f(ξ, t, z), g(ξ, t, z) are Borel measurable functions of (ξ, t, z) ∈ [0, 1] × R+ × R, W is a cylindrical
Wiener process on H and G is a linear symmetric positive definite operator in H.

This kind of stochastic partial differential equations has been studied intensively. If f = 0 and g = 1
2r

2,
the above equation is just the stochastic Burgers equation and has been investigated in many papers (see e.g.
[11,14] and the references therein). When g = 0 then the above equation is a stochastic reaction–diffusion
equation which has also attracted a lot of attention (see e.g. [13,10,6] and the references therein). In the
general case, this kind of equations has been studied e.g. in [20,21], where, however, f was assumed to be
of at most linear growth. We stress that the linear growth of f cannot be dropped in [20,21], since the
approximation technique used there requires this assumption.

As an application of our main result (Theorem 2.3 below) we obtain that (1.2) has a martingale solu-
tion which under a natural integrability condition is unique (see Theorem 4.2), where we assume the usual
conditions on the “Burgers-part” g of the drift, but in contrast to [20,21] we can allow f to be of polyno-
mial growth. We, however, pay a price for considering such more general f , because we do not recover all
results from [20,21] where e.g. (1.2) with multiplicative noise is included under certain assumptions, g is
allowed to be of polynomial growth in [21] and under local Lipschitz assumptions on f (and g) also existence
and uniqueness of strong solutions is shown. If, however, we assume one sided local Lipschitz assumption
on f (see (4.14) below), we also get existence and uniqueness of strong solutions under only polynomial
growth conditions on f (see Theorem 4.7 below) by proving pathwise uniqueness and applying the Yamada–
Watanabe Theorem. We also stress that our condition for f is more general than the one imposed in the
corresponding applications in [6] (see condition (f2) in Section 4), which allows us to take more general f
(see Example 4.0).

At least if TrG < ∞, we can also apply our framework to a lot of other stochastic semilinear equations,
as e.g. the stochastic 2D Navier–Stokes equation (see Remark 4.9). Since in this case there are many known
existence results (cf. [19] and the references therein) based on Itô’s formula and the Burkholder–Davis–
Gundy inequality to obtain the estimates required for tightness of the distributions of the approximations,
we do not give details here, but concentrate on (1.2) in our applications.

Though, as mentioned above, our Theorem 2.3 implies the existence of solutions to the FPE associated
to (1.1), we nevertheless also give an alternative direct proof for the latter which is more analytic in nature
and a generalization of the corresponding one in [6]. We think that this proof is of sufficient independent
interest. Therefore, we include it here, stressing the modifications needed in our (in comparison with that
in [6]) more general framework.

We mention here that recently, there has been quite an interest in Fokker–Planck equations with irregular
coefficients in finite dimensions (see e.g. [1,15,17,3] and the references therein). In [4–6], Bogachev, Da Prato
and the first named author have started the study of Fokker–Planck equations also in infinite dimensions,
more precisely, on Hilbert spaces. Let us briefly present the formulation of the FPE corresponding to (1.1)
in our framework.

The Kolmogorov operator L0 corresponding to (1.1) reads as follows:

L0u(t, x) := Dtu(t, x) + 1
2 Tr

[
GD2u(t, x)

]
+
〈
x,A∗Du(t, x)

〉
+ V ∗

〈
F (t, x), Du(t, x)

〉
V
, (t, x) ∈ D(F ),

where Dt denotes the derivative in time and D, D2 denote the first- and second-order Frechet derivatives
in space, i.e., in x ∈ H, respectively. Furthermore, V := D((−A)1/2), V ∗ is its dual and V ∗〈· , ·〉V denotes
their dualization, assuming again that A is negative definite and self-adjoint. The operator L0 is defined
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on the space D(L0) := EA([0, T ] ×H), defined to be the linear span of all real and imaginary parts of all
functions uφ,h of the form

uφ,h(t, x) = φ(t)ei〈x,h(t)〉, t ∈ [0, T ], x ∈ H,

where φ ∈ C1([0, T ]), φ(T ) = 0, h ∈ C1([0, T ];D(A∗)) and A∗ denotes the adjoint of A.
For a fixed initial time s ∈ [0, T ] the Fokker–Planck equation is an equation for measures μ(dt, dx) on

[s, T ] ×H of the type

μ(dt, dx) = μt(dx) dt,

with μt ∈ P(H) for all t ∈ [s, T ], and t 	→ μt(A) measurable on [s, T ] for all A ∈ B(H), i.e. μt(dx), t ∈ [s, T ],
is a probability kernel from ([s, T ],B([s, T ])) to (H,B(H)). Then the FPE corresponding to (1.1) for an
initial condition ζ ∈ P(H) reads as follows: ∀u ∈ D(L0)

∫
H

u(t, y)μt(dy) =
∫
H

u(s, y)ζ(dy) +
t∫

s

ds′
∫
H

L0u
(
s′, y

)
μs′(dy), for dt-a.e. t ∈ [s, T ], (1.3)

where the dt-zero set may depend on u.
In Section 3 of this paper, we prove directly the existence of solutions to FPE (1.3) within the same

framework as in Section 2, which generalizes the results in [6]. In Section 4 as an application we prove the
existence of solutions for the FPE associated with concrete SPDE of type (1.2), i.e. allowing polynomially
growing nonlinearities for the reaction–diffusion part f and Burgers type nonlinearities g at the same time
(see Theorem 4.3 below), which cannot be handled within the framework of [6].

Finally, we recall that our work covers the case G−1 ∈ L(H), i.e. the case of full (including white) noise.
If TrG < ∞, there are many other known existence results for FPE (cf. [4,5]), based on the method of
constructing Lyapunov functions with weakly compact level sets for the Kolmogorov operator L0. These
techniques so far could, however, not be used when TrG = ∞.

2. Existence of martingale solutions

Let us start with formulating our assumptions on the coefficients of SDE (1.1).

Hypothesis 2.1. (i) A is self-adjoint such that there exists ω ∈ (−∞, 0) such that 〈Ax, x〉 � ω|x|2, x ∈ D(A),
and A−1 is compact on H.

(ii) G ∈ L(H) is symmetric, nonnegative.
(iii) There exists δ, δ1 > 0 such that

T∫
0

Tr
[
(−A)δerAG(−A)δerA

]
dr < ∞,

1∫
0

r−2δ1 Tr
[
erAGerA

]
dr < ∞.

Under Hypothesis 2.1, there exists an orthonormal basis {ek}k�0 for H consisting of eigenfunctions of −A

such that the associated sequence of eigenvalues {λk} form an increasing unbounded sequence. It is well
known (see [10, Theorem 2.9]) that under Hypothesis 2.1 (iii) the stochastic convolution

WA(t) =
t∫
e(t−r)A

√
GdW (r), t � 0,
0
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is a well-defined continuous process in H with values in D((−A)δ) and

sup
t∈[0,T ]

E
∣∣(−A)δWA(t)

∣∣2 �
T∫

0

Tr
[
(−A)δerAG(−A)δerA

]
dr < ∞. (2.1)

Remark. If (−A)2δ−1 is of trace-class for some δ > 0 and G ∈ L(H), Hypothesis 2.1 (iii) is obviously
satisfied. We would like to point out here that there is a misprint in Hypothesis 2.1 (iii) in [6], where
(−A)−2δ should be replaced by (−A)2δ−1. Likewise in the right hand side of inequality (2.1) in [6].

We weaken resp. modify Hypotheses 2.2, 2.3 in [6] as follows: let V := D((−A)1/2) and consider the
following Gelfand triple:

D(A) ⊂ V ⊂ H ∼= H∗ ⊂ V ∗ ⊂ D(A)∗,

where V ∗ and D(A)∗ are the dual of V , D(A) respectively and D(A)∗〈· , ·〉D(A) = V ∗〈· , ·〉V = 〈· , ·〉 if restricted
to H ×D(A). We have the following formulas for the norm in V , V ∗,

| · |2V =
∑
k

λk

∣∣〈·, ek〉∣∣2, | · |2V ∗ =
∑
k

λ−1
k

∣∣〈·, ek〉∣∣2.
Furthermore, we relax the assumptions on F in (1.1) to be just V ∗-valued. More precisely, let F : D(F ) ⊂
[0, T ] ×H → V ∗ be Borel measurable. Then the Kolmogorov operator is given as follows

L0u(t, x) := Dtu(t, x) + 1
2 Tr

[
GD2u(t, x)

]
+

〈
x,ADu(t, x)

〉
+ V ∗

〈
F (t, x), Du(t, x)

〉
V
,

for u ∈ D(L0). Below we fix s ∈ [0, T ] as starting time.

Hypothesis 2.2. There exist measurable maps Fα : [s, T ] × H → D(A)∗, α ∈ (0, 1], K > 0 and a lower
semicontinuous function J : [s, t] ×H → [1,∞], such that the following four conditions are satisfied for all
α ∈ (0, 1]:

(i) For all (t, x) ∈ D(F ) and all h ∈ D(A)

Fα(t, x) ∈ V ∗,
∣∣Fα(t, x)

∣∣
V ∗ � J(t, x) < ∞,∣∣

V ∗
〈
F (t, x) − Fα(t, x), h

〉
V

∣∣ � αc(h)J2(t, x),

for some constant c(h) > 0.
(ii) (t, x) 	→ D(A)∗〈Fα(t, x), h〉D(A) is continuous on [s, T ] ×H, ∀h ∈ D(A), α ∈ (0, 1].
(iii) The following approximating stochastic equations for α ∈ (0, 1]

dXα(t) =
[
AXα(t) + Fα

(
t,Xα(t)

)]
dt +

√
GdW (t), Xα(s) = x ∈ H, (2.2)

have a martingale solution which we denote by Xα(·, s, x), i.e. there exists a stochastic basis
(Ω,F , {Ft}t∈[s,T ], P ), a cylindrical Wiener process W on H and a progressively measurable process
Xα : [s, T ] ×Ω → H, such that for P -a.e. ω ∈ Ω and φ ∈ D(A),

Xα(·, ω) ∈ L2([s, T ];H
)
∩ C

(
[s, T ];D(A)∗

)
,

〈
Xα(t) − x, φ

〉
=

t∫ (〈
Xα(τ), Aφ

〉
+ D(A)∗

〈
Fα

(
τ,Xα(τ)

)
, φ

〉
D(A)

)
dτ +

t∫ 〈
φ,

√
GdW (τ)

〉
, ∀t ∈ [s, T ].
s s
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(iv) |F |V ∗ � J on [s, T ] ×H, where we set |F |V ∗ := +∞ on [s, T ] ×H\D(F ), and setting

Pα
s,tϕ(x) := E

[
ϕ
(
Xα(t, s, x)

)]
, 0 � s < t � T, ϕ ∈ Bb(H),

we have

t∫
s

Pα
s,s′J

2(s′, ·)(x) ds′ � K

t∫
s

J2(s′, x) ds′, ∀x ∈ H, t ∈ [s, T ], α ∈ (0, 1].

Remark. (i) Since J ≡ ∞ on [s, T ] × H\D(F ), the latter inequality obviously holds if it holds on D(F ).
Therefore, if we can find a function which is a Lyapunov function for Pα

s,t uniformly in α i.e.

Pα
s,tJ

2(t, ·)(x) � KJ2(t, x), ∀(t, x) ∈ D(F ), t ∈ [s, T ], α ∈ (0, 1],

Hypothesis 2.2 (iv) is satisfied.
(ii) If G has a bounded inverse and if the approximation in Hypothesis 2.2 can be chosen such that Fα

are bounded measurable maps, then we can use Girsanov’s Theorem to obtain the existence of a martingale
solution. For the case that TrG < ∞, we could choose Fα = P[ 1

α ]+1F , where Pn is the orthogonal projection
onto the linear space spanned by the first n eigenvectors ek. Then we can apply the results in [25, Chapter 4]
to the equation

dXα(t) =
[
AXα(t) + Fα

(
t,Xα(t)

)]
dt + GdW (t),

provided Fα satisfies the monotonicity assumptions specified there, and obtain the existence of a martingale
solution required in Hypothesis 2.2 (iii).

(iii) In Hypothesis 2.2 (iii) the stochastic basis (Ω,F , {Ft}t∈[s,T ], P ) and the cylindrical Wiener process W
may depend on α. However, this will not change our proof since we want to prove the laws of Xα are tight
in a suitable space.

Theorem 2.3. Assume Hypotheses 2.1, 2.2. Then for every x ∈ B := {x ∈ H:
∫ T

s
J2(t, x) dt < ∞}, there

exists a martingale solution to (1.1), i.e. there exists a stochastic basis (Ω,F , {Ft}t∈[s,T ], P ), a cylindrical
Wiener process W on H and a progressively measurable process X : [s, T ] × Ω → H, such that for P -a.e.
ω ∈ Ω and φ ∈ D(A),

X(·, ω) ∈ L2([s, T ];H
)
∩ C

(
[s, T ];D(A)∗

)
,

and

〈
X(t) − x, φ

〉
=

t∫
s

(〈
X(τ), Aφ

〉
+ D(A)∗

〈
F
(
τ,X(τ)

)
, φ

〉
D(A)

)
dτ +

t∫
s

〈
φ,

√
GdW (τ)

〉
, ∀t ∈ [0, T ].

Moreover, for δ2 := δ ∧ 1
2 with δ as in Hypothesis 2.1

E

T∫
s

(
J2(s′, X(

s′
))

+
∣∣(−A)δ2X

(
s′
)∣∣2 +

∣∣X(
s′
)∣∣2) ds′ � C

T∫
s

(
J2(s′, x) + |x|2

)
ds′.
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Proof. For simplicity we assume s = 0. For α ∈ (0, 1], set Xα(t) := Xα(t, 0, x), x ∈ B, and

Yα(t) := Xα(t) −WA(t), t � 0.

Then for φ ∈ D(A), we have

〈
Yα(t) − x, φ

〉
=

t∫
0

(〈
Yα

(
s′
)
, Aφ

〉
+ D(A)∗

〈
Fα

(
s′, Xα

(
s′
))
, φ

〉
D(A)

)
ds′, ∀t ∈ [0, T ].

Choosing φ = ek in the above equation and using Newton–Leibniz formula, we obtain

〈
Yα(t), ek

〉2 = 〈x, ek〉2 + 2
t∫

0

〈
Yα

(
s′
)
, ek

〉(〈
Yα

(
s′
)
, Aek

〉
+ D(A)∗

〈
Fα

(
s′, Xα

(
s′
))
, ek

〉
D(A)

)
ds′, ∀t ∈ [0, T ].

Then by the Cauchy–Schwarz inequality and, since Aek = −λkek, we have

〈
Yα(t), ek

〉2 +
t∫

0

λk

〈
Yα

(
s′
)
, ek

〉2
ds′ � 〈x, ek〉2 +

t∫
0

λ−1
k

∣∣
D(A)∗

〈
Fα

(
s′, Xα

(
s′
))
, ek

〉
D(A)

∣∣2 ds′.
Summing over k we get

∣∣Yα(t)
∣∣2 +

t∫
0

∣∣(−A)1/2Yα

(
s′
)∣∣2 ds′ � |x|2 +

t∫
0

∣∣Fα

(
s′, Xα

(
s′
))∣∣2

V ∗ ds
′,

where we set |Fα|V ∗ := +∞ on [0, T ] ×H\D(F ). Taking expectation and applying Hypothesis 2.2 yield

E
∣∣Yα(t)

∣∣2 +
t∫

0

E
∣∣(−A)1/2Yα

(
s′
)∣∣2 ds′ � |x|2 + K

t∫
0

J2(s′, x) ds′, t � 0. (2.3)

Then we deduce that for any ε > 0 there exists R1 > 0 such that

P

( T∫
0

∣∣(−A)1/2Yα

(
s′
)∣∣2 ds′ > R1

)
< ε, ∀α ∈ (0, 1].

Since by Hypothesis 2.2 we have

E

T∫
0

∣∣Fα

(
s′, Xα

(
s′
))∣∣2

V ∗ ds
′ � E

T∫
0

J2(s′, Xα

(
s′
))

ds′ � K

T∫
0

J2(s′, x) ds′, (2.4)

and

E

T∫ ∣∣(−A)Yα

(
s′
)∣∣2

V ∗ ds
′ = E

T∫ ∣∣(−A)1/2Yα

(
s′
)∣∣2 ds′,
0 0
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we deduce that for any ε > 0 there exists R2 > 0 such that

P

( T∫
0

∣∣∣∣dYα

dt

∣∣∣∣
2

V ∗
ds′ > R2

)
< ε, ∀α ∈ (0, 1].

Then by the compactness Theorems 2.1 and 2.2 in [18], the laws of Xα = Yα + WA are tight in
L2([0, T ];H)∩C([0, T ];D(A)∗). Thus, by Skorokhod’s representation theorem there exists a subsequences nk

and a sequence of random elements X̂k, k = 1, 2, 3, . . . in L2([0, T ];H) ∩ C([0, T ];D(A)∗), on some proba-
bility space (Ω̂, F̂ , P̂ ), such that X̂k converges almost surely in L2([0, T ];H)∩C([0, T ];D(A)∗) to a random
element X̂ for k → ∞ and the distributions of X̂k and X 1

nk

coincide. Then the second inequality in (2.4)
holds for X̂k and X̂ by the lower semicontinuity of J . Define for φ ∈ D(A),

M̂k(φ)(t) :=
〈
X̂k(t) − x, φ

〉
−

t∫
0

〈
X̂k

(
s′
)
, Aφ

〉
ds′ −

t∫
0

D(A)∗
〈
F1/nk

(
s′, X̂k

(
s′
))
, φ

〉
D(A) ds

′.

M̂k(φ) is a family of martingales with respect to the filtration

Gk
t = σ

(
X̂k(r), r � t

)
.

For all r � t ∈ [0, T ] and all bounded continuous functions ϕ on L2([0, r];H) ∩ C([0, r];D(A)∗) we have

Ê
((
M̂k(φ)(t) − M̂k(φ)(r)

)
ϕ(X̂k|[0,r])

)
= 0,

and

Ê

[(
M̂k(φ)(t)2 − M̂k(φ)(r)2 −

t∫
r

|
√
Gφ|2H ds′

)
ϕ(X̂k|[0,r])

]
= 0.

By the Burkholder–Davis–Gundy inequality we have that for 1 < p < ∞ there exists Cp ∈ (0,∞) such that

sup
k

Ê
∣∣M̂k(φ)(t)

∣∣2p � CpÊ

( t∫
0

|
√
Gφ|2H dr

)p

< ∞. (2.5)

Now we prove the following estimate: for fixed η > 0

Ê

t∫
0

∣∣
D(A)∗

〈
Fη

(
s′, X̂k

(
s′
))

− Fη

(
s′, X̂

(
s′
))
, φ

〉
D(A)

∣∣ ds′ → 0, k → ∞. (2.6)

Indeed, we set GR(t, x) := D(A)∗〈Fη(t, x), φ〉D(A)χR(D(A)∗〈Fη(t, x), φ〉D(A)), where χR ∈ C∞
0 : R → [0, 1]

is a cutoff function with χR(r) = 1 when |r| � R and χR(r) = 0 when |r| > 2R. Then by the dominated
convergence theorem we obtain

lim
k→∞

Ê

t∫ ∣∣GR

(
s′, X̂k

(
s′
))

−GR

(
s′, X̂

(
s′
))∣∣ ds′ = 0.
0
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Then we have

lim
R→∞

sup
k

Ê

t∫
0

∣∣
D(A)∗

〈
Fη

(
s′, X̂k

(
s′
))
, φ

〉
D(A) −GR

(
s′, X̂k

(
s′
))∣∣ ds′

� 2 lim
R→∞

sup
k

Ê

t∫
0

∣∣
D(A)∗

〈
Fη

(
s′, X̂k

(
s′
))
, φ

〉
D(A)

∣∣1{|D(A)∗ 〈Fη(s′,X̂k(s′)),φ〉D(A)|>R} ds
′

� C lim
R→∞

sup
k

Ê

t∫
0

J2(s′, X̂k

(
s′
))

ds′/R = 0,

where we used Hypothesis 2.2 in the second inequality and (2.4) to deduce the last convergence. The above
convergence also holds for X̂. Combining the above estimates (2.6) follows.

By Hypothesis 2.2 we have

Ê

t∫
0

∣∣
D(A)∗

〈
F1/nk

(
s′, X̂k

(
s′
))

− F
(
s′, X̂

(
s′
))
, φ

〉
D(A)

∣∣ ds′

� Ê

t∫
0

∣∣
D(A)∗

〈
F1/nk

(
s′, X̂k

(
s′
))

− F
(
s′, X̂k

(
s′
))
, φ

〉
D(A)

∣∣ ds′

+ Ê

t∫
0

∣∣
D(A)∗

〈
F
(
s′, X̂k

(
s′
))

− Fη

(
s′, X̂k

(
s′
))
, φ

〉
D(A)

∣∣ ds′

+ Ê

t∫
0

∣∣
D(A)∗

〈
F
(
s′, X̂

(
s′
))

− Fη

(
s′, X̂

(
s′
))
, φ

〉
D(A)

∣∣ ds′

+ Ê

t∫
0

∣∣
D(A)∗

〈
Fη

(
s′, X̂k

(
s′
))

− Fη

(
s′, X̂

(
s′
))
, φ

〉
D(A)

∣∣ ds′

� CÊ

t∫
0

1
nk

J2(s′, X̂k

(
s′
))

ds′ + CÊ

t∫
0

ηJ2(s′, X̂k

(
s′
))

ds′ + CÊ

t∫
0

ηJ2(s′, X̂(
s′
))

ds′

+ Ê

t∫
0

∣∣
D(A)∗

〈
Fη

(
s′, X̂k

(
s′
))

− Fη

(
s′, X̂

(
s′
))
, φ

〉
D(A)

∣∣ ds′
→ 0, k → ∞, (2.7)

where in the second inequality we use Hypothesis 2.2 and the last convergence follows by (2.4) for X̂k and
X̂ and (2.6). In fact, we could choose η0 small enough such that the second term and the third term in the
right hand side of last inequality converge to 0. Then for such η0 we could find k large enough such that
the first term and the last term converge to 0. Then by (2.5) and (2.7) we obtain

lim
k→∞

Ê
∣∣M̂k(φ)(t) −M(φ)(t)

∣∣ = 0

and
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lim
k→∞

Ê
∣∣M̂k(φ)(t) −M(φ)(t)

∣∣2 = 0,

where

M(φ)(t) :=
〈
X̂(t) − x, φ

〉
−

t∫
0

〈
X̂
(
s′
)
, Aφ

〉
ds′ −

t∫
0

〈
F
(
s, X̂

(
s′
))
, φ

〉
ds′.

Taking the limit we obtain that for all r � t ∈ [0, T ] and all bounded continuous functions ϕ on L2([0, r];H)∩
C([0, r];D(A)∗)

Ê
((
M(φ)(t) −M(φ)(r)

)
ϕ(X̂ �[0,r])

)
= 0,

and

Ê

((
M(φ)(t)2 −M(φ)(r)2 −

t∫
r

|
√
Gv|2H ds

)
ϕ(X̂ �[0,r])

)
= 0.

Thus the existence of a martingale solution for (1.1) follows by a martingale representation theorem (cf.
[13, Theorem 8.2], [24, Theorem 2]). The last inequality follows by (2.1), (2.3), (2.4) and the lower semicon-
tinuity of J2 + |(−A)δ2 · |2 + | · |2. �

Set

Ps,tϕ(x) := E
[
ϕ
(
X(t, s, x)

)]
, 0 � s < t � T, ϕ ∈ Bb(H),

and

μt(dx) := (Ps,t)∗ζ(dx),

where ζ ∈ P(H) such that

T∫
s

∫
H

(
J2(s′, x) + |x|2

)
ζ(dx) ds′ < ∞.

Now Itô’s formula implies that this is a solution to the corresponding Fokker–Planck equation, i.e. ∀u ∈
D(L0)

∫
H

u(t, y)μt(dy) =
∫
H

u(s, y)ζ(dy) +
t∫

s

ds′
∫
H

L0u
(
s′, y

)
μs′(dy), for all t ∈ [s, T ].

3. Existence of solutions to the Fokker–Planck equation

In this section we prove directly the existence of solutions for the Fokker–Planck equation (1.3) under
the same conditions as in Section 2.

Set

WA(t, s) =
t∫
e(t−s′)A

√
GdW

(
s′
)
, t � s.
s
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The Kolmogorov operator Lα corresponding to (2.2) is given by

Lαu(t, x) := Dtu(t, x) + 1
2 Tr

[
GD2u(t, x)

]
+
〈
x,ADu(t, x)

〉
+ D(A)∗

〈
Fα(t, x), Du(t, x)

〉
D(A), (t, x) ∈ [0, T ] ×H, u ∈ D(L0).

Fix s ∈ [0, T ) and set

μα
t (dx) :=

(
Pα
s,t

)∗
ζ(dx),

where ζ ∈ P(H) is the initial condition, at t = s.
Now Itô’s formula implies that this is a solution to the corresponding Fokker–Planck equation, i.e. ∀u ∈

D(L0)

∫
H

u(t, y)μα
t (dy) =

∫
H

u(s, y)ζ(dy) +
t∫

s

ds′
∫
H

Lαu
(
s′, y

)
μα
s′(dy), for all t ∈ [s, T ]. (3.1)

Theorem 3.1. Assume Hypotheses 2.1, 2.2 and let ζ ∈ P(H) be such that

T∫
s

∫
H

(
J2(s′, x) + |x|2

)
ζ(dx) ds′ < ∞.

Then there exists a solution μt(dx) dt to the Fokker–Planck equation (1.3) such that

sup
t∈[s,T ]

∫
H

|x|2μt(dx) < ∞,

and

t 	→
∫
H

u(t, x)μt(dx)

is continuous on [s, T ] for all u ∈ D(L0). Finally, for some C > 0 and for δ2 := δ ∧ 1
2 with δ as in

Hypothesis 2.1 one has

T∫
s

∫
H

(
J2(s′, x) +

∣∣(−A)δ2x
∣∣2 + |x|2

)
μs′(dx) ds′ � C

T∫
s

∫
H

(
J2(s′, x) + |x|2

)
ζ(dx) ds′. (3.2)

Proof. For α ∈ (0, 1], set Xα(t) := Xα(s, t, x), x ∈ H, and

Yα(t) := Xα(t) −WA(t, s), t � s.

By the same arguments to obtain (2.3) we also have here that

E
∣∣Yα(t)

∣∣2 +
t∫
E
∣∣(−A)1/2Yα

(
s′
)∣∣2 ds′ � |x|2 + K

t∫
J2(s′, x) ds′, t � s. (3.3)
s s
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Then for s � t � T we obtain

E
∣∣Xα(t)

∣∣2 � 2|x|2 + 2K
T∫
s

J2(s′, x) ds′ + 2κ,

where κ := supt∈[s,T ] E|WA(t)|2 < ∞. Now we integrate with respect to ζ over x ∈ H and obtain for all
s � t � T and some C ∈ (0,∞) that

∫
H

|x|2μα
t (dx) � C

[
1 +

T∫
s

∫
H

(
J2(s′, x) + |x|2

)
ζ(dx) ds′

]
. (3.4)

Hence we can use Prohorov’ theorem (see [2, Theorem 8.6.7]) to obtain that for each t ∈ [s, T ], there exists a
sub-sequence {αn} (possibly depending on t) such that the measures μαn

t converge τw-weakly to a measure
μ̃t ∈ P(H) as n → ∞, where τw denotes the weak topology on H.

Now we have that for ϕ ∈ EA(H), defined to be the set of all linear combinations of all real parts of
functions of the form x 	→ ei〈x,h〉, h ∈ D(A),

t 	→ μα
t (ϕ) :=

∫
H

ϕ(x)μα
t (dx), α ∈ (0, 1] are equicontinuous on [s, T ]. (3.5)

In fact, for s � t1 � t2 � T

∣∣μα
t2(ϕ) − μα

t1(ϕ)
∣∣ � 1

2
∥∥Tr

[
GD2ϕ

]∥∥
∞|t2 − t1|

+ |t2 − t1|1/2‖ADϕ‖∞

( t2∫
t1

∫
H

|x|2μα
s′(dx) ds′

)1/2

+ |t2 − t1|1/2
∥∥(−A)1/2Dϕ

∥∥
∞

( t2∫
t1

∫
H

J2(s′, x)ζ(dx) ds′
)1/2

,

where ‖ · ‖∞ denotes the sup-norm on H. By (3.4) and Hypothesis 2.2, (3.5) follows.
Then by the same arguments as in the proof of [6, Theorem 2.6], we can construct a measure μt and a

subsequence {αn} such that μαn
t converge τw-weakly to μt for all t ∈ [0, T ]. Indeed, by a diagonal argument

we can choose {αn} such that μαn
t → μ̃t τω-weakly as n → ∞ for every rational t ∈ [s, T ]. Moreover (3.4)

holds for μ̃t in place of μα
t for t ∈ [s, T ] ∩Q. Hence by [2, Theorem 8.6.7], for each t ∈ [s, T ]\Q there exists

rn(t) ∈ [s, T ] ∩Q, n ∈ N converging to t and μt ∈ P(H) such that μ̃rn(t) → μt τw-weakly as n → ∞. Now
for fix t ∈ [s, T ]\Q suppose {μαn

t } does not weakly converge to μt. Then by (3.4) and [2, Theorem 8.6.7]
there exists a subsequence {αnk

}, ϕ ∈ EA(H) and ν ∈ P(H) such that μ
αnk
t → ν τw-weakly as k → ∞ and

μt(ϕ) �= ν(ϕ). On the other hand, for all n, k ∈ N

∣∣ν(ϕ) − μt(ϕ)
∣∣ �

∣∣ν(ϕ) − μ
αnk
t (ϕ)

∣∣ + sup
l∈N

∣∣μαnl
t (ϕ) − μ

αnl

rn(t)(ϕ)
∣∣

+
∣∣μαnk

rn(t)(ϕ) − μ̃rn(t)(ϕ)
∣∣ +

∣∣μ̃rn(t)(ϕ) − μt(ϕ)
∣∣.

Letting k → ∞ and then n → ∞ it follows from (3.5) that μt(ϕ) = ν(ϕ). Letting μt := μ̃t for t ∈ [s, T ]∩Q,
we have that μαn

t converge τw-weakly to μt for all t ∈ [0, T ].
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(3.4) and Lebesgue’s dominated convergence theorem imply that t 	→
∫
H
u(t, x)μt(dx) is continuous on

[s, T ] for all u ∈ D(L0).
Now for δ2 := δ ∧ 1

2 with δ as in Hypothesis 2.1 (iii) by (3.3) and (2.1) we obtain

T∫
s

∫
H

∣∣(−A)δ2x
∣∣2μα

t (dx) dt � C

[
1 +

T∫
s

∫
H

(
J
(
s′, x

)2 + |x|2
)
ζ(dx) ds′

]
, (3.6)

which implies that μαn
t (dx) dt converge weakly to μt(dx) dt on [s, T ] ×H by the compactness of (−A)−δ2 .

Now (3.2) follows from (3.4), (3.6) and the lower semicontinuity of J2 + |(−A)δ2 · |2 + | · |2.
It remains to prove that μt(dx) dt solves the Fokker–Planck equation (1.3). Since every h ∈ C1([0, T ];

D(A)) can be written as a uniform limit of piecewise affine hn ∈ C([0, T ];D(A)), n ∈ N, it follows by (3.2)
and linearity that μt(dx) dt satisfies the Fokker–Planck equation (1.3) if and only if it does so for all
u ∈ D(L0) such that u(t, x) = φ(t)ei〈h(t),x〉, x ∈ H, t ∈ [0, T ], with φ ∈ C1([0, T ]), φ(T ) = 0 and piecewise
affine h ∈ C([0, T ];D(A)). Fix such a function u ∈ D(L0), by (3.1) we have

T∫
s

∫
H

Lαn
u(t, x)μαn

t (dx) dt = −
T∫
s

u(s, x)ζ(dx),

with αn as above.
Since we already know that μαn

t (dx) dt → μt(dx) dt weakly and since the coefficient of the second order
part of Lαn

is just G (hence independent of n), it now suffices to prove that for all g ∈ Cb([s, T ] ×H) and
all piecewise affine h ∈ C([0, T ];D(A)),

lim
n→∞

T∫
s

∫
H

Fh
αn

(t, x)g(t, x)μαn
t (dx) dt =

T∫
s

∫
H

Fh(t, x)g(t, x)μt(dx) dt, (3.7)

where

Fh
α (t, x) := D(A)∗

〈
Fα(t, x), h(t)

〉
D(A) + 〈Ah(t), x〉

1 + α|〈Ah(t), x〉| ,

Fh(t, x) := D(A)∗
〈
F (t, x), h(t)

〉
D(A) +

〈
Ah(t), x

〉
.

For η ∈ (0, 1] we have

∣∣∣∣∣
T∫
s

∫
H

Fh
αn

(t, x)g(t, x)μαn
t (dx) dt−

T∫
s

∫
H

Fh(t, x)g(t, x)μt(dx) dt

∣∣∣∣∣
� ‖g‖∞

T∫
s

∫
H

∣∣Fh
αn

(t, x) − Fh(t, x)
∣∣μαn

t (dx) dt + ‖g‖∞
T∫
s

∫
H

∣∣Fh(t, x) − Fh
η (t, x)

∣∣μαn
t (dx) dt

+ ‖g‖∞
T∫
s

∫
H

∣∣Fh(t, x) − Fh
η (t, x)

∣∣μt(dx) dt

+

∣∣∣∣∣
T∫ ∫

Fh
η (t, x)g(t, x)μαn

t (dx) dt−
T∫ ∫

Fh
η (t, x)g(t, x)μt(dx) dt

∣∣∣∣∣. (3.8)

s H s H
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By Hypothesis 2.2 we have for all α, β ∈ (0, 1]

T∫
s

∫
H

∣∣Fh
β (t, x) − Fh(t, x)

∣∣μα
t (dx) dt � βC(h)

T∫
s

∫
H

(
J2(t, x) + |x|2

)
μα
t (dx) dt

� βC(h)C
(

1 +
T∫
s

∫
H

(
J2(t, x) + |x|2

)
ζ(dx) dt

)
, (3.9)

where C is a constant independent of α, β and we used Hypothesis 2.2 and (3.4) in the last step. This
implies that if n → ∞ and η → 0 the first two terms in (3.8) converge to zero. Since (3.9) holds for μt in
place of μα

t , we deduce that the third term converges to zero if η → 0. Now we consider the last summand.
Since Fh

η is continuous on [s, T ]×H by our assumption, there exists a continuous function G̃R on [s, T ]×H

satisfying ‖G̃R‖∞ � R, and G̃R(t, x) = Fh
η (t, x) on BR, for BR := {|Fh

η | � R}. By the weak convergence
we obtain

lim
n→∞

T∫
s

∫
H

G̃R(t, x)g(t, x)μαn
t (dx) dt =

T∫
s

∫
H

G̃R(t, x)g(t, x)μt(dx) dt.

By the above estimate we get

T∫
s

∫
H

∣∣G̃R(t, x) − Fh
η (t, x)

∣∣μαn
t (dx) dt

� CR

∫
Bc

R

μαn
t (dx) dt + CC(h)

∫
Bc

R

(∣∣Fη(t, x)
∣∣
V ∗ + |x|

)
μαn
t (dx) dt

� CR−1
T∫
s

∫
H

(
J2(t, x) + |x|2

)
μαn
t (dx) dt + Cγ(h)

∫
Bc

R

(
J(t, x) + |x|

)
μαn
t (dx) dt,

where in the last inequality we used Hypothesis 2.2. Then the last summand converges to zero if R → ∞
and n → ∞. Hence (3.7) is verified and the assertion follows. �
4. Application

Consider the stochastic semilinear partial differential equation

dX(t) =
(

∂2

∂ξ2X(t) + f
(
t,X(t)

)
+ ∂

∂ξ
g
(
t,X(t)

))
dt +

√
GdW (t), (4.1)

with Dirichlet boundary condition

X(t, 0) = X(t, 1) = 0, t ∈ [0, T ], (4.2)

and the initial condition

X(0) = x, (4.3)



M. Röckner et al. / J. Math. Anal. Appl. 415 (2014) 83–109 97
on H = L2(0, 1) := L2((0, 1), dξ), with dξ = Lebesgue measure. Here f, g : (0, 1) × [0, T ] × R → R are
functions such that for every ξ ∈ (0, 1) the maps f(ξ, · , ·), g(ξ, · , ·) are continuous on [0, T ] × R and satisfy
the following conditions:

(f1) There exist m ∈ N (without loss of generality m � 2) and a nonnegative function c1 ∈ L2(0, T ) such
that for all t ∈ [0, T ], z ∈ R, ξ ∈ (0, 1)

∣∣f(ξ, t, z)
∣∣ � c1(t)

(
1 + |z|m

)
.

(f2) There exists a nonnegative function c2 ∈ L1(0, T ) and m1 ∈ (0,∞) such that for all t ∈ [0, T ], z1, z2 ∈ R,
ξ ∈ (0, 1)

(
f(ξ, t, z1 + z2) − f(ξ, t, z1)

)
z2 � c2(t)

(
|z2|2 + |z1|m1 + 1

)
.

(g1) The function g is of the form g(ξ, t, z) = g1(ξ, t, z) + g2(t, z), where g1 and g2 are Borel functions of
(ξ, t, z) ∈ (0, 1) × [0, T ] × R and of (t, z) ∈ [0, T ] × R, respectively. The function g1 satisfies a linear
growth and the function g2 a quadratic growth condition, i.e. there is a constant K such that

∣∣g1(ξ, t, z)
∣∣ � K(1 + |z|),

∣∣g2(t, z)
∣∣ � K

(
1 + |z|2

)
,

for all t ∈ [0, T ], ξ ∈ (0, 1), z ∈ R.
(g2) g is a locally Lipschitz function with linearly growing Lipschitz constant, i.e. there exists a constant L

such that

∣∣g(ξ, t, z1) − g(ξ, t, z2)
∣∣ � L

(
1 + |z1| + |z2|

)
|z1 − z2|,

for all t ∈ [0, T ], ξ ∈ (0, 1), z1, z2 ∈ R.

Example 4.0. Now we give examples for f satisfying (f1), (f2). Let f : (0, 1) × [0, T ] × R → R be a function
such that for every ξ ∈ (0, 1) the maps f(ξ, · , ·) are continuous on [0, T ]×R. Moreover f = f1 + f2 satisfies
the polynomial growth condition (f1) for some m � 2 and there exists a constant C such that

f1(ξ, t, ·) ∈ C1(R), ∂zf1(ξ, t, z) � C, (ξ, t, z) ∈ (0, 1) × [0, T ] × R,

f2(ξ, t, z)z � C
[
1 + |z|2

]
,

∣∣f2(ξ, t, z)
∣∣ � C

(
1 + |z|2− 1

m

)
, (ξ, t, z) ∈ (0, 1) × [0, T ] × R.

It immediately follows from the mean value theorem that f1 satisfies (f2). Now we check (f2) for f2: for
t ∈ [0, T ], z1, z2 ∈ R, ξ ∈ (0, 1)

(
f2(ξ, t, z1 + z2) − f2(ξ, t, z1)

)
z2 � f2(ξ, t, z1 + z2)(z1 + z2) − f2(ξ, t, z1 + z2)z1 +

(
1 + |z1|2

)
|z2|

� C + C(z1 + z2)2 + C
(
1 + |z1 + z2|2−

1
m

)
|z1| +

(
1 + |z1|m

)
|z2|

� |z2|2 + C
(
1 + |z1|2m

)
.

Let A : D(A) ⊂ H → H be defined by

Ax(ξ) = ∂2

∂ξ2x(ξ), ξ ∈ (0, 1), D(A) = H2(0, 1) ∩H1
0 (0, 1).

Then V = H1
0 (0, 1). Let D(F ) := [0, T ] × L2m(0, 1) and for (t, x) ∈ D(F )
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F := F1 + F2, F1(t, x)(ξ) := f
(
ξ, t, x(ξ)

)
, F2(t, x)(ξ) := ∂ξg

(
ξ, t, x(ξ)

)
, ξ ∈ (0, 1),

where F2 takes values in V ∗.
Finally, let G ∈ L(H) be symmetric, nonnegative and such that G−1 ∈ L(H) and there exist θ, q � 0

with 1
2q + 2θ < 1 such that

∥∥∥∥
(∑

k

(
A−θ

√
G(ek)

)2)1/2∥∥∥∥
Lq

< ∞, (G.1)

where {ek} is an orthonormal basis of H.
If G = Id, (G.1) is obviously satisfied. By (G.1), [9, Corollary 3.5] and [10, Exercise 2.16] we know that

WA is a Gaussian random variable in C([0, T ] × [0, 1]).
It is easily checked that A, G satisfy Hypothesis 2.1 with δ, δ1 ∈ (0, 1

4 ).
For α ∈ (0, 1] and (t, x) ∈ [0, T ] ×H we define Fα : [0, T ] ×H → D(A)∗,

Fα := Fα
1 + F2, Fα

1 (t, x)(ξ) := F1(t, x)(ξ)
1 + α|F1(t, x)(ξ)| , ξ ∈ [0, 1].

If F1 ≡ 0, there exists a unique (probabilistically) strong solution to (4.1) by [20, Theorem 2.1]. Since Fα
1

is bounded, by Girsanov’s Theorem (cf. [23, Theorem 3.1], [12, Theorem 13]), we obtain that there exists a
stochastic basis (Ω,F , {Ft}t∈[0,T ], P ), a cylindrical Wiener process W on H and a progressively measurable
process Xα : [s, T ]×Ω → H as in Hypothesis 2.2 (iii) satisfying the following stochastic differential equation

dXα(t) =
[
AXα(t) + Fα

(
t,Xα(t)

)]
dt +

√
GdW (t), Xα(s) = x, s � t, (4.4)

for all x ∈ H.
Define for m � 2 as in (f1)

J(t, x) :=
{ 2(c1(t) + K)(1 + |x|mL2m(0,1)), if (t, x) ∈ D(F ),

+∞, otherwise.

By (g1) we have
∣∣F2(t, x)

∣∣
V ∗ � 2K

(
1 + |x|2L4

)
� J(t, x) < ∞, ∀(t, x) ∈ D(F ) = [0, T ] × L2m(0, 1).

By (f1) we obtain
∣∣F (t, x)

∣∣
V ∗ � J(t, x) < ∞, ∀(t, x) ∈ D(F ) = [0, T ] × L2m(0, 1).

One also easily checks that Fα satisfies Hypothesis 2.2 (i)–(iii). It remains to check the last part of Hypoth-
esis 2.2 (iv), which, however, immediately follows from the following proposition.

Proposition 4.1. For any s ∈ [0, T ), there exists C ∈ (0,∞), such that for α ∈ (0, 1], x ∈ L2m(0, 1)

E
(∣∣Xα(t, s, x)

∣∣2m
L2m(0,1)

)
� C

(
1 + |x|2mL2m(0,1)

)
, ∀t ∈ [s, T ].

Proof. Set Yα(t) := Xα(t, s, x) −WA(s, t), t ∈ [s, T ]. Then we obtain for φ ∈ D(A), t ∈ [s, T ]

〈
Yα(t) − x, φ

〉
=

t∫ (〈
Yα

(
s′
)
, Aφ

〉
+ D(A)∗

〈
Fα

(
s′, Xα

(
s′
))
, φ

〉
D(A)

)
ds′. (4.5)
s
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Since the trajectories of WA can be approximated by functions Wn
A := (1− 1

nA)−1WA from C([s, T ], H2) in
L2([s, T ], H)∩C([s, T ], H−2), we can replace WA by smooth functions Wn

A. Moreover, we can approximate
g by smooth functions gn := ϕn ∗ χn(g) for smooth functions ϕn on [0, 1] × R with suppϕn ⊂ [− 1

n ,
1
n ]2

and χn : R → [0, n] is a smooth function on R satisfying χn(r) = r if |r| � n, χn(r) = 0 if |r| > 2n and
|χ′

n| � C for a constant C independent of n. We also approximate x by smooth functions xn such that
|xn|L2m � |x|L2m . Then each gn has bounded derivative with respect to ξ and z and satisfies (g1), (g2) with
K, L replaced by 2K, 3CL respectively. By a standard method (see e.g. [19, Theorem 4.6]) we obtain that
there exists a stochastic basis (Ω,F , {Ft}, P ) and a pair process (Y n

α , W̄n
A) such that

Y n
α ∈ L∞(

[s, T ], H
)
∩ L2([s, T ], H1

0
)
∩ C

(
[s, T ], H−2), P -a.s.

and W̄n
A has the same distribution as Wn

A and for φ ∈ H1
0 , t ∈ [s, T ]

〈
Y n
α (t) − xn, φ

〉
=

t∫
s

(
V ∗

〈
Aφ, Y n

α

(
s′
)〉

V

+ V ∗
〈
Fα

1
(
s′, Y n

α

(
s′
)

+ W̄n
A

(
s′
))

+ Fn
2
(
s′, Y n

α

(
s′
)

+ W̄n
A

(
s′
))
, φ

〉
V

)
ds′, (4.6)

where Fn
2 (t, x)(ξ) := ∂ξgn(ξ, t, x(ξ)). Below we denote Wn

A as W̄n
A if there’s no confusion. Now taking

φ = λkek and ek as in (4.6) and by the product rule for λk〈Y n
α (t), ek〉 and 〈Y n

α (t), ek〉 we have

λk

〈
Y n
α (t), ek

〉2 +
t∫

s

λ2
k

〈
Y n
α

(
s′
)
, ek

〉2
ds′

� λk〈xn, ek〉2 +
t∫

s

∣∣
V ∗

〈
Fα

1
(
s′, Y n

α

(
s′
)

+ Wn
A

(
s′
))

+ Fn
2
(
s′, Y n

α

(
s′
)

+ Wn
A

(
s′
))
, ek

〉
V

∣∣2 ds′.
Then taking sum we have the following estimate since gn has bounded derivative,

∣∣Y n
α (t)

∣∣2
V

+
t∫

s

∣∣AY n
α

(
s′
)∣∣2 ds′

� |xn|2V +
t∫

s

Cα + Cn

(
1 +

∣∣Y n
α

(
s′
)∣∣2

V
+
∣∣Wn

A

(
s′
)∣∣2

V

)
ds′,

which combining with Gronwall’s lemma implies that Y n
α ∈ L∞([s, T ], H1

0 ) ∩ L2([s, T ], H2).
Moreover, (4.6) can be easily extended to φ ∈ {u ∈ L2([0, T ], H1

0 ): du
dt ∈ L2([0, T ], V ∗)}:

〈
Y n
α (t), φ(t)

〉
−

〈
xn, φ(s)

〉
=

t∫
s

(
V ∗

〈
dφ

dt

(
s′
)
, Y n

α

(
s′
)〉

V

+ V ∗
〈
Aφ

(
s′
)
, Y n

α

(
s′
)〉

V

+ V ∗
〈
Fα

1
(
s′, Y n

α

(
s′
)

+ Wn
A

(
s′
))

+ Fn
2
(
s′, Y n

α

(
s′
)

+ Wn
A

(
s′
))
, φ

(
s′
)〉

V

)
ds′.

Since Y n
α ∈ L∞([s, T ], H1

0 ) ∩ L2([s, T ], H2), we can choose φ = (Y n
α (t))2m−1 and obtain for t ∈ [s, T ]
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1
2m

d

dt

∫ ∣∣Y n
α (t)

∣∣2m dξ + (2m− 1)
∫ ∣∣Y n

α (t)
∣∣2m−2∣∣∂ξY n

α (t)
∣∣2 dξ

=
∫

Fα
1
(
t, Y n

α (t) + Wn
A(s, t)

)
Y n
α (t)2m−1 dξ + V ∗

〈
Fn

2
(
t, Y n

α (t) + Wn
A(s, t)

)
, Y n

α (t)2m−1〉
V

:= I1 + I2.

Let us estimate I2. We have

V ∗
〈
Fn

2
(
t, Y n

α (t) + Wn
A(s, t)

)
, Y n

α (t)2m−1〉
V

= V ∗
〈[
Fn

2
(
t, Y n

α (t) + Wn
A(s, t)

)
− Fn

2
(
t, Y n

α (t)
)]
, Y n

α (t)2m−1〉
V

+ V ∗
〈
Fn

2
(
t, Y n

α (t)
)
, Y n

α (t)2m−1〉
V
. (4.7)

For the first term on the right hand side of (4.7), we have by (g2), and Young’s inequality

V ∗
〈[
Fn

2
(
t, Y n

α (t) + Wn
A(s, t)

)
− Fn

2
(
t, Y n

α (t)
)]
, Y n

α (t)2m−1〉
V

� C

∫ (
1 +

∣∣Y n
α (t)

∣∣ +
∣∣Wn

A(s, t)
∣∣)∣∣Wn

A(s, t)
∣∣∣∣Y n

α (t)
∣∣2m−2∣∣∂ξY n

α (t)
∣∣ dξ

� 1
2

∫ ∣∣Y n
α (t)

∣∣2m−2∣∣∂ξY n
α (t)

∣∣2 dξ + C

∫ ∣∣Wn
A(s, t)

∣∣2∣∣Y n
α (t)

∣∣2m dξ

+ C

∫ (
1 +

∣∣Wn
A(s, t)

∣∣)∣∣Wn
A(s, t)

∣∣∣∣Y n
α (t)

∣∣2m−2∣∣∂ξY n
α (t)

∣∣ dξ
�

∫ ∣∣Y n
α (t)

∣∣2m−2∣∣∂ξY n
α (t)

∣∣2 dξ + C
∣∣Wn

A(s, t)
∣∣4m
L4m + C

∣∣Wn
A(s, t)

∣∣2m
L2m +

(
C
∣∣Wn

A(s, t)
∣∣2
L∞ + C

)∣∣Y n
α (t)

∣∣2m
L2m .

For the second term on the right hand side of (4.7), we have

1∫
0

gn2
(
t, Y n

α

)
Y n
α (t)2m−2∂ξY

n
α (t) dξ =

1∫
0

∂ξg3
(
t, Y n

α

)
dξ = 0,

where g3(t, r) =
∫ r

0 gn2 (t, z)z2m−2 dz. Then we obtain by (g1)

V ∗
〈
Fn

2
(
t, Y n

α (t)
)
, Y n

α (t)2m−1〉
V

= −(2m− 1)
∫

gn1
(
ξ, t, Y n

α

)
Y n
α (t)2m−2∂ξY

n
α (t) dξ

� C

∫ (
1 +

∣∣Y n
α (t)

∣∣)∣∣Y n
α (t)

∣∣2m−2∣∣∂ξY n
α (t)

∣∣ dξ
�

∫ (∣∣Y n
α (t)

∣∣2m−2∣∣∂ξY n
α (t)

∣∣2 + C
∣∣Y n

α (t)
∣∣2m + C

)
dξ.

Now we consider I1. We note that by (f1), (f2), for all y, z ∈ R, t ∈ [0, T ], ξ ∈ (0, 1),

∣∣f(ξ, t, y + z)y
∣∣ =

∣∣(f(ξ, t, y + z) − f(ξ, t, z)
)
y + f(ξ, t, z)y

∣∣
� c2(t)

(
|y|2 + |z|m1 + 1

)
+ c1(t)

(
1 + |z|m

)
|y|

� c(t)
(
1 + |y|2 + |z|m1 + |z|m|y|

)
,

where c(t) = c1(t) + c2(t). Then

I1 � c(t)
∫ [

1 +
∣∣Y n

α (t)
∣∣2 +

∣∣Wn
A(s, t)

∣∣m∣∣Y n
α (t)

∣∣ +
∣∣Wn

A(s, t)
∣∣m1]∣∣Y n

α (t)
∣∣2m−2

dξ.
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Now we obtain

1
2m

d

dt

∫ ∣∣Y n
α (t)

∣∣2m dξ +
∫ ∣∣Y n

α (t)
∣∣2m−2∣∣∂ξY n

α (t)
∣∣2 dξ

� c(t)
∫ [

1 +
(

2 + 2m− 1
2m

)∣∣Y n
α (t)

∣∣2m + 1
2m

∣∣Wn
A(s, t)

∣∣2m2

+ 1
m

∣∣Wn
A(s, t)

∣∣mm1

]
dξ

+ C
∣∣Wn

A(s, t)
∣∣4m
L4m + C

∣∣Wn
A(s, t)

∣∣2m
L2m + C +

(
C
∣∣Wn

A(t)
∣∣2
L∞ + c

)∣∣Y n
α (t)

∣∣2m
L2m . (4.8)

Then c(·) ∈ L1([0, T ]) by (f1), (f2) and Gronwall’s lemma yields that

∣∣Y n
α (t)

∣∣2m
L2m � e

∫ t
s
C|c(t′)|+C(|Wn

A(s,t′)|2L∞+1) dt′
(
|xn|2mL2m + C

t∫
s

(∣∣c(t′)∣∣(∣∣Wn
A

(
s, t′

)∣∣2m2

L2m2

+
∣∣Wn

A

(
s, t′

)∣∣mm1

Lmm1

)
+
∣∣Wn

A

(
s, t′

)∣∣4m
L4m +

∣∣Wn
A

(
s, t′

)∣∣2m
L2m + 1

)
dt′

)

� e
∫ t
s
C|c(t′)|+C(|WA(s,t′)|2L∞+1) dt′

(
|x|2mL2m + C

t∫
s

(∣∣c(t′)∣∣(∣∣WA

(
s, t′

)∣∣2m2

L2m2

+
∣∣WA

(
s, t′

)∣∣mm1

Lmm1

)
+

∣∣WA

(
s, t′

)∣∣4m
L4m +

∣∣WA

(
s, t′

)∣∣2m
L2m + 1

)
dt′

)
. (4.9)

By (G.1), [9, Corollary 3.5] and [10, Exercise 2.16] we know that WA is a Gaussian random variable in
C([s, T ] × [0, 1]). Then we have for any p > 1

E sup
(t,ξ)∈[s,T ]×(0,1)

∣∣WA(s, t)(ξ)
∣∣p < ∞,

and by Fernique’s Theorem (cf. [13, Theorem 2.6]) there exists a constant ε > 0 independent of s such that

Eeε sup(t,ξ)∈[s,T ]×(0,1) |WA(s,t)(ξ)|2 < ∞, (4.10)

where ε > 0 can be chosen independent of s. Indeed, since by the Markov property of WA we have for any
r > 0 that

P
(

sup
t∈[s,T ]

∣∣WA(s, t)
∣∣
L∞ � r

)
= P

(
sup

t∈[s,T ]

∣∣WA(t− s)
∣∣
L∞ � r

)
� P

(
sup

t∈[0,T ]

∣∣WA(t)
∣∣
L∞ � r

)
,

we can choose common ε and r such that

log
(1 − P (supt∈[0,T ] |WA(t)|L∞ � r)

P (supt∈[0,T ] |WA(t)|L∞ � r)

)
+ 32εr2 � −1.

Then (4.10) follows from Fernique’s Theorem.
Taking expectation in (4.9) we obtain for s � t � t0 such that t0 − s is small enough,

E
∣∣Y n

α (t)
∣∣2m
L2m � C|x|2mL2m + C, (4.11)

where C is a constant independent of α, n. By (4.8) and (4.9) we have

E
∣∣Y n

α (t)
∣∣2

2 1 � C|x|2mL2m + C.

L ([s,t0],H )
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Moreover, since by (f1), (g1) we have

t0∫
s

(∣∣AY n
α

(
s′
)∣∣2

H−1 +
∣∣Fα

1
(
s′, Y n

α

(
s′
)

+ Wn
A

(
s′
))∣∣2

H−1 +
∣∣Fn

2
(
s′, Y n

α

(
s′
)

+ Wn
A

(
s′
))∣∣2

H−1

)
ds′

� C

t0∫
s

∣∣Y n
α

(
s′
)∣∣2

H1 ds
′ + C

t0∫
s

(
c1
(
s′
)2 + K2)(1 +

∣∣Y n
α

(
s′
)

+ Wn
A

(
s′
)∣∣2m

L2m

)
ds′,

we obtain

E
∣∣Y n

α (t)
∣∣2
W 1,2([s,t0],H−1) � C|x|2mL2m + C.

Thus by [18, Theorems 2.1, 2.2] we get Y n
α in L2([s, t0], H) ∩ C([s, t0], H−2) are tight. Also Wn

A

in L2([s, t0], H) ∩ C([s, t0], H−2) are tight. Therefore, we have (Y n
α ,Wn

A) are tight in (L2([s, t0], H) ∩
C([s, t0], H−2)) × (L2([s, t0], H) ∩ C([s, t0], H−2)). Hence there exists a subsequence (still denoted by
(Y n

α ,Wn
A)) converging in distribution. By Skorokhod’s embedding theorem, there exist a stochastic

basis (Ω̃, F̃ , {F̃t}t∈[s,t0], P̃ ) and, on this basis, L2([s, t0];H) ∩ C([s, t0], H−2)-valued random variables
Ỹ n
α , Ỹα, W̃

n
A, W̃A, n � 1, such that for every n ∈ N, (Ỹ n

α , W̃n
A) has the same law as (Y n

α ,Wn
A) on

(L2([s, t0];H)∩C([s, t0], H−2))×(L2([s, t0];H)∩C([s, t0], H−2)), and Ỹ n
α → Ỹα, W̃n

A → W̃A in L2([s, t0];H)∩
C([s, t0], H−2), P̃ -a.s. Then (4.11) holds for Ỹ n

α , Ỹα. For each n � 1, define the process

M̃n(t) := Ỹ n
α (t) + W̃n

A(t) − xn −
t∫

s

AỸ n
α

(
s′
)
ds′ −

t∫
s

AW̃n
A

(
s′
)
ds′ −

t∫
s

Fα
1
(
s′, Ỹ n

α

(
s′
)

+ W̃n
A

(
s′
))

ds′

−
t∫

s

Fn
2
(
s′, Ỹ n

α

(
s′
)

+ W̃n
A

(
s′
))

ds′.

In fact M̃n is a square integrable martingale with respect to the filtration

{Gn}t = σ
{
Ỹ n
α (r), W̃n

A(r), r � t
}
.

For all r � t ∈ [s, t0], all bounded continuous functions φ on (C([s, r];H−2)∩L2([s, r];H))×(C([s, r];H−2)∩
L2([s, r];H)) and all v ∈ C∞([0, 1]), we have

Ẽ
(〈
M̃n(t) − M̃n(r), v

〉
φ
(
Ỹ n
α �[s,r], W̃n

A �[s,r]
))

= 0

and

Ẽ

((〈
M̃n(t), v

〉2 −
〈
M̃n(r), v

〉2 −
t∫

r

∣∣∣∣
(

1 − 1
n
A

)−1√
Gv

∣∣∣∣
2

H

ds

)
φ
(
Ỹ n
α �[s,r], W̃n

A �[s,r]
))

= 0.

By the Burkholder–Davis–Gundy inequality we have for 1 < p < ∞

sup
n

Ẽ
∣∣〈M̃n(t), v

〉∣∣2p � C sup
n

E

( t∫
0

∣∣∣∣
(

1 − 1
n
A

)−1√
Gv

∣∣∣∣
2

H

dr

)p

< ∞.

Since Ỹ n
α → Ỹα, W̃n

A → W̃A in L2([s, t0];H) ∩ C([s, t0], H−β), we have
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Ẽ

t∫
s

∣∣〈Fn
2
(
s′, Ỹ n

α

(
s′
)

+ W̃n
A

(
s′
))

− F2
(
s′, Ỹα

(
s′
)

+ W̃A

(
s′
))
, v
〉∣∣ ds′

� Ẽ

t∫
s

∣∣〈Fn
2
(
s′, Ỹ n

α

(
s′
)

+ W̃n
A

(
s′
))

− Fn
2
(
s′, Ỹα

(
s′
)

+ W̃A

(
s′
))
, v
〉∣∣ ds′

+ Ẽ

t∫
s

∣∣〈Fn
2
(
s′, Ỹα

(
s′
)

+ W̃A

(
s′
))

− F2
(
s′, Ỹα

(
s′
)

+ W̃A

(
s′
))
, v
〉∣∣ ds′

� CẼ

t∫
s

(∣∣Ỹ n
α

(
s′
)∣∣ +

∣∣W̃n
A

(
s′
)∣∣ +

∣∣W̃A

(
s′
)∣∣ + 1 +

∣∣Ỹα

(
s′
)∣∣)[∣∣Ỹ n

α

(
s′
)
− Ỹα

(
s′
)∣∣ +

∣∣W̃n
A

(
s′
)
− W̃A

(
s′
)∣∣] ds′

+ Ẽ

t∫
s

∣∣〈Fn
2
(
s′, Ỹα

(
s′
)

+ W̃A

(
s′
))

− F2
(
s′, Ỹα

(
s′
)

+ W̃A

(
s′
))
, v
〉∣∣ ds′

→ 0, as n → ∞,

where in the second inequality we used (g2) and we used (4.11) to obtain the convergence. The other terms
can be estimated similarly, which altogether implies that

lim
n→∞

Ẽ
∣∣〈M̃n(t) −M(t), v

〉∣∣ = 0

and

lim
n→∞

Ẽ
∣∣〈M̃n(t) −M(t), v

〉∣∣2 = 0,

where

M(t) := Ỹα(t) + W̃A(t) − x−
t∫

s

AỸα

(
s′
)
ds′ −

t∫
s

AW̃A

(
s′
)
ds′ −

t∫
s

Fα

(
s′, Ỹα

(
s′
)

+ W̃A

(
s′
))

ds.

Taking the limit we obtain that for all r � t ∈ [s, t0], all bounded continuous functions on (C([s, r];H−β)∩
L2([s, r];H)) × (C([s, r];H−β) ∩ L2([s, r];H)) and v ∈ C∞([0, 1]),

Ẽ
(〈
M(t) −M(r), v

〉
φ(Ỹα �[s,r], W̃A �[s,r])

)
= 0,

and

Ẽ

((〈
M(t), v

〉2 −
〈
M(r), v

〉2 −
t∫

r

|
√
Gv|2H ds′

)
φ(Ỹα �[s,r], W̃A �[s,r])

)
= 0.

Thus, the existence of a martingale solution for (4.4) follows by a martingale representation theorem (cf.
[13, Theorem 8.2], [24, Theorem 2]). Now we obtain X̃α = Ỹα + W̃A is a martingale solution of (4.4) in
[s, t0]. Thus, by Girsanov’s Theorem and the pathwise uniqueness of the solution to (4.4) when f ≡ 0, we
obtain the uniqueness of (the distributions for) the martingale solution of (4.4), which implies that X̃α has
the same distribution as Xα. By this and (4.11) we have for s � t � t0,

E
∣∣Yα(t)

∣∣2m
2m � C|x|2mL2m(0,1) + C.
L (0,1)
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Moreover,

E
∣∣Xα(t, s, x)

∣∣2m
L2m(0,1) � C|x|2mL2m(0,1) + C, (4.12)

where C is a constant independent of α, s. Furthermore, by [16, Theorem 4.2] and the uniqueness of
the distributions for the martingale solution of (4.4) we obtain that the laws of the martingale solutions
Xα(t, s, x) of (4.4) form a Markov process. We use μα

s,t(x, dy) to denote the distribution of Xα(t, s, x), x ∈ H.
Then by the Markov property we have for 0 � s � t1 � t2 � T , x ∈ H

μα
s,t2(x, dz) =

∫
H

μα
s,t1(x, dy)μ

α
t1,t2(y, dz).

By this and (4.12) we obtain by iteration that for any t ∈ [s, T ]
∫

|z|2mL2mμα
s,t(x, dz) =

∫ ∫
|z|2mL2mμα

t1,t(y, dz)μ
α
s,t1(x, dy) � C|x|2mL2m(0,1) + C,

which is exactly our assertion. �
Since c1 ∈ L2([0, T ]) by (f1), the set B in Theorem 2.3 is L2m(0, 1). By Theorem 2.3 we now obtain the

following:

Theorem 4.2. Suppose that (f1), (f2), (g1), (g2), (G.1) hold. For each initial value x ∈ L2m(0, 1) there
exists a martingale solution to problem (4.1)–(4.3), i.e. there exists a stochastic basis (Ω,F , {Ft}t∈[0,T ], P ),
a cylindrical Wiener process W on H and a progressively measurable process X : [0, T ]×Ω → H, such that
for P -a.e. ω ∈ Ω,

X(·, ω) ∈ L∞(
[0, T ];L2(0, 1)

)
∩ C

(
[0, T ];H−2)

and for all φ ∈ C2([0, 1])

〈
X(t), φ

〉
= 〈x, φ〉 +

t∫
0

〈
X(r), ∂2

ξφ
〉
dr +

t∫
0

〈
f
(
r,X(r)

)
, φ

〉
dr

−
t∫

0

〈
g
(
r,X(r)

)
, ∂ξφ

〉
dr +

t∫
0

〈
φ,

√
GdW (r)

〉
, ∀t ∈ [0, T ], P -a.s.

We also have

X −WA ∈ L2([0, T ], H1), P -a.s., E

T∫
0

∣∣X(t)
∣∣2m
L2m dt < ∞. (4.13)

Moreover, if P , P ′ are the laws of two martingale solutions on C([0, T ];H−2) to problem (4.1)–(4.3) with
the same initial value x ∈ L2m and

T∫
0

∣∣ω(t)
∣∣2m
L2m dt < ∞, P + P ′-a.s.,

then P = P ′, where ω(·) is the canonical process on C([0, T ];H−2).
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Proof. (4.13) follows from (4.8)–(4.11). The weak uniqueness follows by (f1), [23, Theorem 3.3] and the
pathwise uniqueness of the solution of (4.4) when f ≡ 0. Here we can extend a solution to C([0,∞), H−2)
by taking X(t) = X(T ), t � T and apply the results in [23]. �

Likewise, Theorem 3.1 applies to all ζ ∈ P(H) such that

∫
H

|x|2mL2m(0,1)ζ(dx) < ∞.

More precisely, we have:

Theorem 4.3. Let ζ ∈ P(H) be such that

∫
H

|x|2mL2mζ(dx) < ∞.

Then there exists a solution μt(dx) dt to the Fokker–Planck equation (1.3) such that

sup
t∈[s,T ]

∫
H

|x|2μt(dx) < ∞

and

t 	→
∫
H

u(t, x)μt(dx)

is continuous on [s, T ] for all u ∈ D(L0). Finally, for some C > 0 and δ ∈ (0, 1
4 ) as in Hypothesis 2.1 (iii)

T∫
s

∫
H

(
|x|2mL2m +

∣∣(−A)δx
∣∣2 + |x|2

)
μr(dx) dr � C

∫
H

|x|2mL2mζ(dx).

Remark 4.4. (i) Here we choose the L2m-norm as a Lyapunov function J in Hypothesis 2.2. In [26], the
first named author of this paper and Sobol studied the above semilinear stochastic partial differential
equations with time independent coefficients. They also choose the L2m-norm as a Lyapunov function with
weakly compact level sets for the Kolmogorov operator L0 and by analyzing the resolvent of the operator L
they constructed a unique martingale solution to this problem if the noise is trace-class. In this paper, we
concentrate on space–time white noise for which the method of constructing Lyapunov functions with weakly
compact level sets for the Kolmogorov operator L0 is more delicate than in the case, where TrG < ∞.

(ii) If g ≡ 0, we can obtain the uniqueness of the solution to the Fokker–Planck equation by [7, Theo-
rem 4.1].

To obtain pathwise uniqueness, we additionally assume that f satisfies the following inequality: for
t ∈ [0, T ], ξ ∈ [0, 1], z1, z2 ∈ R,

〈
f(ξ, t, z1) − f(ξ, t, z2), z1 − z2

〉
� L

(
1 + |z1|m−1 + |z2|m−1)|z1 − z2|2. (4.14)

Now we give the definition of a (probabilistically) strong solution to (4.1)–(4.3).
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Definition 4.5. We say that there exists a (probabilistically) strong solution to (4.1)–(4.3) over the time
interval [0, T ] if for every probability space (Ω,F , {Ft}t∈[0,T ], P ) with an Ft-Wiener process W , there exists
an Ft-adapted process X : [0, T ] ×Ω → H such that for P -a.s. ω ∈ Ω

X(·, ω) ∈ L∞(
[0, T ];L2(0, 1)

)
∩ C

(
[0, T ];H−2),

and for all φ ∈ C2([0, 1]) we have P -a.s.

〈
X(t), φ

〉
= 〈X0, φ〉 +

t∫
0

〈
X(r), ∂2

ξφ
〉
dr +

t∫
0

〈
f
(
r,X(r)

)
, φ

〉
dr

−
t∫

0

〈
g
(
r,X(r)

)
, ∂ξφ

〉
dr +

t∫
0

〈
φ,

√
GdW (r)

〉
, ∀t ∈ [0, T ].

Theorem 4.6. Suppose that f satisfies (4.14). Then there exists at most one probabilistically strong solution
to (4.1)–(4.3) such that

T∫
0

∣∣X(t)
∣∣2m
L2m dt < ∞, P -a.s.,

and

X −WA ∈ L2([0, T ], H1
0
)
, P -a.s.

Proof. Consider two solutions X1, X2 of (4.1)–(4.3) in the interval [0, T ]. Since X − WA ∈ L2([0, T ], H1
0 )

P -a.s. and X1 −X2 ∈ L2([0, T ], H1
0 ) P -a.s., we have

〈
X1(t) −X2(t), φ

〉
=

t∫
0

〈
X1(r) −X2(r), ∂2

ξφ
〉
dr +

t∫
0

〈
f
(
r,X1(r)

)
− f

(
r,X2(r)

)
, φ

〉
dr

−
t∫

0

〈
g
(
r,X1(r)

)
− g

(
r,X2(r)

)
, ∂ξφ

〉
dr, ∀t ∈ [0, T ], P -a.s.

Taking φ = ek we obtain

〈
X1(t) −X2(t), ek

〉2 = 2
t∫

0

〈
X1(r) −X2(r), ek

〉[〈
X1(r) −X2(r), ∂2

ξ ek
〉

+
〈
f
(
r,X1(r)

)
− f

(
r,X2(r)

)
, ek

〉

−
〈
g
(
r,X1(r)

)
− g

(
s,X2(r)

)
, ∂ξek

〉]
dr, ∀t ∈ [0, T ], P -a.s.

Summing over k, we obtain

∣∣X1(t) −X2(t)
∣∣2 + 2

t∫
0

∣∣∇(
X1(r) −X2(r)

)∣∣2 dr � 2
t∫

0

〈
f
(
r,X1(r)

)
− f

(
r,X2(r)

)
, X1(r) −X2(r)

〉
dr

− 2
t∫ 〈
g
(
r,X1(r)

)
− g

(
s,X2(r)

)
, ∂ξ

(
X1(r) −X2(r)

)〉
dr.
0
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For the first term on the right hand side by (4.14) we have

t∫
0

〈
f
(
r,X1(r)

)
− f

(
r,X2(r)

)
, X1(r) −X2(r)

〉
dr

� C

t∫
0

∣∣X1(r) −X2(r)
∣∣2
L4

(
1 +

∣∣X1(r)
∣∣m−1
L2m +

∣∣X2(r)
∣∣m−1
L2m

)
dr

� C

t∫
0

∣∣X1(r) −X2(r)
∣∣2
H1/4

(
1 +

∣∣X1(r)
∣∣m−1
L2m +

∣∣X2(r)
∣∣m−1
L2m

)
dr

� C

t∫
0

∣∣X1(r) −X2(r)
∣∣1/2
H1

∣∣X1(r) −X2(r)
∣∣3/2(1 +

∣∣X1(r)
∣∣m−1
L2m +

∣∣X2(r)
∣∣m−1
L2m

)
dr

�
t∫

0

ε
∣∣X1(r) −X2(r)

∣∣2
H1 + C

∣∣X1(r) −X2(r)
∣∣2(1 +

∣∣X1(r)
∣∣2m
L2m +

∣∣X2(r)
∣∣2m
L2m

)
dr,

where we used Hölder’s inequality in the first inequality, H1/4 ⊂ L4 in the second inequality, the interpolation
inequality in the third inequality and Young’s inequality in the last inequality. For the second term on the
right hand side we have

t∫
0

〈
g
(
r,X1(r)

)
− g

(
r,X2(r)

)
, ∂ξ

(
X1(r) −X2(r)

)〉
dr

� C

t∫
0

∣∣∂ξ(X1(r) −X2(r)
)∣∣∣∣X1(r) −X2(r)

∣∣
L4

(
1 +

∣∣X1(r)
∣∣
L4 +

∣∣X2(r)
∣∣
L4

)
dr

� C

t∫
0

∣∣∂ξ(X1(r) −X2(r)
)∣∣5/4∣∣X1(r) −X2(r)

∣∣3/4(1 +
∣∣X1(r)

∣∣
L4 +

∣∣X2(r)
∣∣
L4

)
dr

�
t∫

0

ε
∣∣X1(r) −X2(r)

∣∣2
H1 + C

∣∣X1(r) −X2(r)
∣∣2(1 +

∣∣X1(r)
∣∣2m
L2m +

∣∣X2(r)
∣∣2m
L2m

)
dr,

where we used H1/4 ⊂ L4 and the interpolation inequality in the second inequality and Young’s inequality
in the last inequality. Combining the above three inequalities and using Gronwall–Bellman’s inequality,
X1 = X2 follows. �

Combining Theorems 4.3 and 4.6 we obtain the following existence and uniqueness result by using the
Yamada–Watanabe Theorem (cf. [22, Theorem 3.14]).

Theorem 4.7. Suppose that (f1), (f2), (4.14), (g1), (g2), (G.1) hold. Then for each initial condition X0 ∈
L2m(0, 1), there exists a pathwise unique probabilistically strong solution X of Eq. (4.1) over [0, T ] with
initial condition X(0) = X0 such that

T∫ ∣∣X(t)
∣∣2m
L2m dt < ∞, P -a.s.
0
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and

X −WA ∈ L2([0, T ], H1), P -a.s. (4.15)

Remark 4.8. If c1 in (f1) is bounded and (4.14) is modified to the following stronger local Lipschitz condition

∣∣f(ξ, t, z1) − f(ξ, t, z2)
∣∣ � L

(
1 + |z1|m−1 + |z2|m−1)|z1 − z2|,

condition (4.15) can be dropped. Then we can also prove that there exists a unique probabilistically strong
solution X ∈ C([0, T ], L2m) by considering mild solutions and using similar arguments as in [20].

Remark 4.9. If TrG < ∞, we can apply Theorems 2.3 and 3.1 to other stochastic semilinear equations and
to higher dimension. For example, we can consider the 2D stochastic Navier–Stokes equation. Let O be a
bounded domain in R2 with smooth boundary. Define

V :=
{
v ∈ H1

0
(
O;R2), div v = 0 a.e. in O

}
,

and H to be the closure of V with respect to L2-norm. The linear operator PH (Helmhotz–Hodge projection)
and A (Stokes operator with viscosity ν) are defined by

PH : L2(O,R2) → H orthogonal projection;

A : H2(O,R2) ∩ V → H : Ax = νPHΔx.

The nonlinear operator F : V → V ∗ is defined by F (x) := −PH [x · ∇x]. Then if G is a trace-class
symmetric non-negative operator, Hypothesis 2.1 is satisfied. For Hypothesis 2.2 we choose Fα = P 1

[α]+1
F

as in Remark (ii) before Theorem 2.3 and J(t, x) := |x||x|V + 1. Then by Itô’s formula we know that
Hypothesis 2.2 (iv) is satisfied. Consequently, we obtain the existence of a martingale solution for the
stochastic 2D Navier–Stokes equation. Of course, as said in the introduction, this result is well-known and
not the best possible for the 2D Navier–Stokes equation. Therefore, we omit the details here.
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