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The dual space X∗ of a Banach space X is said to admit a uniformly simultaneously 
continuous retraction if there is a retraction r from X∗ onto its unit ball BX∗ which 
is uniformly continuous in norm topology and continuous in weak-∗ topology. We 
prove that if a Banach space (resp. complex Banach space) X has a normalized 
unconditional Schauder basis with unconditional basis constant 1 and if X∗ is 
uniformly monotone (resp. uniformly complex convex), then X∗ admits a uniformly 
simultaneously continuous retraction. It is also shown that X∗ admits such a
retraction if X = [

⊕
Xi]c0 or X = [

⊕
Xi]�1 , where {Xi} is a family of separable 

Banach spaces whose duals are uniformly convex with moduli of convexity δi(ε) with 
infi δi(ε) > 0 for all 0 < ε < 1. Let K be a locally compact Hausdorff space and let 
C0(K) be the real Banach space consisting of all real-valued continuous functions 
vanishing at infinity. As an application of simultaneously continuous retractions, we 
show that a pair (X, C0(K)) has the Bishop–Phelps–Bollobás property for operators 
if X∗ admits a uniformly simultaneously continuous retraction. As a corollary, 
(C0(S), C0(K)) has the Bishop–Phelps–Bollobás property for operators for every 
locally compact metric space S.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let X be a real or complex Banach space and A be a subset of X. A continuous function r : X → A is 
said to be a retraction if r is the identity on A. Retractions have various applications in nonlinear geometric 
functional analysis [11,10,12]. Benyamini introduced the notion of simultaneously continuous retraction from 
the dual space X∗ onto BX∗ . More precisely, the dual space X∗ of a Banach space X is said to admit a 
(resp. uniformly) simultaneously continuous retraction if there is a retraction r from X∗ onto BX∗ which is 
both weak-∗ continuous and norm continuous (resp. uniformly norm-continuous). Benyamini [11] showed, 
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in particular, that E∗ admits uniformly simultaneously continuous retraction if E∗ is a separable uniformly 
convex space, or E is the space C(K) of all real-valued continuous functions on a compact metric space K.

As remarked in Proposition 4.22. [12], there is a connection between simultaneously continuous retrac-
tions and the denseness of norm attaining operators into C(K). In this paper, we deal with the existence 
of uniformly simultaneous continuous retraction in a certain Banach space and its applications to Bishop–
Phelps–Bollobás type theorem.

2. Uniformly simultaneously continuous retraction

Let {ej} be a normalized unconditional Schauder basis for X with unconditional basis constant 1. Its 
biorthogonal functionals will be denoted by {e∗j}. In fact, it is easy to see that X and X∗ are Banach lattices 
and, for every x∗ ∈ X∗, we have

x∗ = weak ∗
∞∑
j=1

x∗(j)e∗j ,

where x∗(j) = 〈x∗, ej〉. Recall that a Banach lattice X is uniformly monotone if, for all ε > 0,

M(ε) = inf
{∥∥|x| + |y|

∥∥− 1 : ‖x‖ = 1, ‖y‖ ≥ ε
}
> 0.

It is easy to check that ε 	→ M(ε) is a monotone increasing function and M(ε) ≤ ε for all ε > 0. This M
is called the modulus of monotonicity of X. It is easy to check that if X is uniformly monotone, then X is 
strictly monotone. That is, ‖|x| + |y|‖ > ‖x‖ for all x ∈ X and for all nonzero element y in X. The uniform 
monotonicity of a Banach lattice is equivalent to the uniform complex convexity of its complexification 
[30,31]. The complex convexity has been used to study density of norm-attaining operators between Banach 
spaces [1,18].

Benyamini showed [11] that if X has a shrinking Schauder basis {ej} with {e∗j} being strictly monotone, 
then X∗ admits a simultaneously continuous retraction. It is also shown that for X = �p, 1 ≤ p < ∞ or 
X = c0, X∗ admits a uniformly simultaneously continuous retraction.

For t ≥ 0, we define M−1(t) = sup{ε ≥ 0 : M(ε) ≤ t} for a monotone increasing function M . The 
modulus of continuity for a function ϕ is defined by

ωϕ(t) = sup
{∥∥ϕ(x∗)− ϕ

(
y∗
)∥∥ :

∥∥x∗ − y∗
∥∥ ≤ t

}
.

Let f be a nonnegative function on a deleted neighborhood of 0 with limt→0+ f(t) = 0. We say that X∗

admits an f -uniformly simultaneously continuous retraction if there is a uniformly simultaneously continuous 
retraction ϕ with ωϕ(t) ≤ f(t).

Theorem 2.1. Suppose that a Banach space X has a normalized unconditional Schauder basis {ej} with 
unconditional basis constant 1. If X∗ is uniformly monotone with modulus of monotonicity M , then X∗

admits a uniformly simultaneously continuous retraction with modulus of continuity 2M−1.

Proof. Notice that X∗ is uniformly monotone and it is order-continuous (cf. [30]) and {e∗j}∞j=1 is a Schauder 
basis. Given x∗ =

∑∞
j=1 aje

∗
j with x∗ /∈ BX∗ , there is a unique n so that

∥∥∥∥∥
n−1∑
j=1

aje
∗
j

∥∥∥∥∥ < 1, and

∥∥∥∥∥
n∑

j=1
aje

∗
j

∥∥∥∥∥ ≥ 1.

By the strict monotonicity and convexity of norm, there is a unique 0 < t ≤ 1 so that
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∥∥∥∥∥
n−1∑
j=1

aje
∗
j + tanen

∥∥∥∥∥ = 1,

and we define ϕ(x∗) =
∑n−1

j=1 aje
∗
j + tanen. Defining ϕ as an identity on BX∗ , we first show that ϕ is 

uniformly norm continuous.
Notice that if ‖x∗‖ ≥ 1, then by the construction of ϕ and uniform monotonicity,

∥∥x∗∥∥ =
∥∥∣∣ϕ(x∗)∣∣ +

∣∣x∗ − ϕ
(
x∗)∣∣∥∥ ≥ 1 + M

(∥∥x∗ − ϕ
(
x∗)∥∥)

and we have M(‖x∗ − ϕ(x∗)‖) ≤ ‖x∗‖ − 1. That is,

∥∥x∗ − ϕ
(
x∗)∥∥ < M−1(∥∥x∗∥∥− 1

)
.

We claim that for all x∗, y∗ in X∗,

∥∥ϕ(x∗)− ϕ
(
y∗
)∥∥ ≤ 2M−1(∥∥x∗ − y∗

∥∥).
Because M(ε) ≤ ε for all ε > 0, we have M−1(t) ≥ t for all t > 0. Hence this inequality is trivial if ‖x∗‖ ≤ 1
and ‖y∗‖ ≤ 1. If ‖x∗‖ > 1 and ‖y∗‖ ≤ 1, then

∥∥ϕ(x∗)− ϕ
(
y∗
)∥∥ =

∥∥ϕ(x∗)− y∗
∥∥ ≤

∥∥ϕ(x∗)− x∗∥∥ +
∥∥x∗ − y∗

∥∥
≤ M−1(∥∥x∗∥∥− 1

)
+
∥∥x∗ − y∗

∥∥
≤ M−1(∥∥x∗∥∥−

∥∥y∗∥∥) + M−1(∥∥x∗ − y∗
∥∥)

≤ 2M−1(∥∥x∗ − y∗
∥∥).

We assume that ‖x∗‖ > 1 and ‖y∗‖ > 1 and write

ϕ
(
x∗) =

n−1∑
j=1

x∗(j)e∗j + tx∗(n)e∗n and ϕ
(
y∗
)

=
m−1∑
j=1

y∗(j)e∗j + sy∗(m)e∗m

where x∗(i) = x∗(ei) and y∗(i) = y∗(ei) for every i ∈ N.
For each n ∈ N, let Pn be a projection on X defined by Pn(

∑
αiei) =

∑n
i=1 αiei and P ∗

n be the 
adjoint operator. We may also assume that m ≥ n and then ϕ(x∗) = ϕ(P ∗

m(x∗)), ϕ(y∗) = ϕ(P ∗
m(y∗)) and 

‖P ∗
mx∗−P ∗

my∗‖ ≤ ‖x∗−y∗‖ shows that we can replace x∗ and y∗ by P ∗
m(x∗) and P ∗

m(y∗) respectively. That 
is,

x∗ =
m∑
j=1

x∗(j)e∗j and y∗ =
m∑
j=1

y∗(j)e∗j .

If m > n, x∗(m) and y∗(m) can be replaced by sy∗(m) and x∗(m) − y∗(m) + sy∗(m) without changing 
‖x∗ − y∗‖, ϕ(x∗) and ϕ(y∗). On the other hand, if n = m and t ≤ s, then, letting

x∗
1 =

n−1∑
j=1

x∗(j)e∗j + sx∗(n)e∗n,

we have ‖x1‖ ≥ 1, ϕ(x∗) = ϕ(x∗
1) and ‖x∗

1 − ϕ(y∗)‖ ≤ ‖x∗ − y∗‖. Hence we get
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∥∥ϕ(x∗)− ϕ
(
y∗
)∥∥ =

∥∥ϕ(x∗
1
)
− ϕ

(
y∗
)∥∥ ≤

∥∥ϕ(x∗
1
)
− x∗

1
∥∥ +

∥∥x∗
1 − ϕ

(
y∗
)∥∥

≤ M−1(∥∥x∗
1
∥∥− 1

)
+

∥∥x∗ − y∗
∥∥

≤ 2M−1(∥∥x∗ − y∗
∥∥),

since ‖x∗
1‖ ≤ ‖ϕ(y∗)‖ + ‖ϕ(y∗) − x∗

1‖ ≤ 1 + ‖ϕ(y∗) − x∗
1‖ and t ≤ M−1(t) for all t ≥ 0.

Now, we will show that ϕ is weak-∗ continuous. Suppose that a net {x∗
α} converges weak-∗ to x∗. Since 

the range of ϕ is bounded and X has the Schauder basis {ej}, it is enough to check that limα〈ϕ(x∗
α), ej〉 =

〈ϕ(x∗), ej〉 for all j. Given x∗ ∈ X∗, suppose first that there exists a unique n such that
∥∥∥∥∥
n−1∑
j=1

x∗(j)e∗j

∥∥∥∥∥ < 1 and

∥∥∥∥∥
n∑

j=1
x∗(j)e∗j

∥∥∥∥∥ ≥ 1

and ϕ(x∗) =
∑n−1

j=1 x∗(j)e∗j + tx∗(n)e∗n for some 0 < t ≤ 1. Since P ∗
n−1(x∗

α) converges to P ∗
n−1(x∗) in norm, 

it is clear that limα〈ϕ(x∗
α), ej〉 = limα〈x∗

α, ej〉 = x∗(j) for each 1 ≤ j ≤ n − 1. Hence, we may assume that 
‖P ∗

n−1(x∗
α)‖ < 1 for all α. We claim that limα ϕ(x∗

α)(j) = 0 = ϕ(x∗)(j) for all j ≥ n + 1. Otherwise, there 
exist a j0 ≥ n + 1, a subnet (x∗

β) and an ε0 > 0 such that |ϕ(x∗
β)(j0)| ≥ ε0 for all β. Then

ε0 ≤
∣∣ϕ(x∗

β

)
(j0)

∣∣ ≤ ∣∣x∗
β(j0)

∣∣ → ∣∣x∗(j0)
∣∣.

Hence ‖P ∗
j0

(x∗)‖ > 1 and we may assume that ‖P ∗
j0

(x∗
α)‖ > 1. So there exist n ≤ nβ ≤ j0 such that for 

some 0 < tβ ≤ 1,

ϕ
(
x∗
β

)
=

nβ−1∑
j=1

x∗
β(j)e∗j + tβx

∗
β(nβ)e∗nβ

.

Since ϕ(x∗
β)(j0) �= 0, we have j0 ≤ nβ . So nβ = j0 for all β. We may assume that limβ tβ = t0. Then

1 = lim
β

∥∥ϕ(x∗
β

)∥∥ = lim
β

∥∥∥∥∥
j0−1∑
j=1

x∗
β(j)e∗j + tβx

∗
β(j0)e∗j0

∥∥∥∥∥ =

∥∥∥∥∥
j0−1∑
j=1

x∗(j)e∗j + t0x
∗(j0)e∗j0

∥∥∥∥∥.

Because j0 ≥ n + 1, we get t0 = 0, which is a contradiction to that |tβx∗
β(j0)| = |ϕ(x∗

β)(j0)| ≥ ε0 for all β.
We have only to show that limα ϕ(x∗

α)(n) = ϕ(x∗)(n) = tx∗(n). If ‖x∗
α‖ ≤ 1 or xα(n) = 0, then set 

tα = 1. If ‖x∗
α‖ > 1 and x∗

α(n) �= 0, then choose 0 ≤ tα ≤ 1 so that ϕ(x∗
α) = tαx

∗
α(n). So we have for all α, 

ϕ(x∗
α)(n) = tαx

∗
α(n). Notice that if tα < 1, then

ϕ
(
x∗
α

)
=

n−1∑
j=1

x∗
α(j)e∗j + tαx

∗
α(n)e∗n.

For any subnet (xγ), we can find a further subnet (xβ) such that limβ tβ = t0. Suppose first that t0 < 1. 
Then we may assume that tβ < 1 for all β. This means that

1 = lim
β

∥∥ϕ(x∗
β

)∥∥ =

∥∥∥∥∥
n−1∑
j=1

x∗(j)e∗j + t0x
∗(n)e∗n

∥∥∥∥∥.

By the strict monotonicity, we get t0 = t and

limϕ
(
x∗
γ

)
(n) = lim tγx

∗
γ(n) = tx∗(n) = ϕ

(
x∗)(n).
γ γ
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Secondly, suppose that t0 = 1. Then we have

1 = lim
β

∥∥ϕ(x∗
β

)∥∥ ≥ lim
β

∥∥∥∥∥
n−1∑
j=1

x∗
β(j)e∗j + tβx

∗
β(n)e∗n

∥∥∥∥∥ =

∥∥∥∥∥
n−1∑
j=1

x∗(j)e∗j + x∗(n)e∗n

∥∥∥∥∥ ≥ 1.

This shows that t = 1 and

lim
β

ϕ
(
x∗
β

)
(n) = lim

β
tβx

∗
β(n) = x∗(n) = ϕ

(
x∗)(n).

Hence we conclude that limα ϕ(x∗
α)(n) = ϕ(x∗)(n).

Finally, suppose that ‖P ∗
n(x∗)‖ < 1 for all n. So, ‖x∗‖ ≤ 1. Fix n ∈ N. Then there exists αn such that 

‖P ∗
n(x∗

α)‖ < 1 for all α ≥ αn. Hence this shows that

lim
α

〈
ϕ
(
x∗
α

)
, ej

〉
= lim

α

〈
x∗
α, ej

〉
=

〈
x∗, ej

〉
=

〈
ϕ
(
x∗), ej〉

for all j ≤ n. Since the equality holds for arbitrary n, we get the desired result. �
Example 2.2. It is easy to check that every �p (1 ≤ p < ∞) is uniformly monotone. There has been an 
extensive study about the uniform monotonicity of Orlicz–Lorentz spaces (cf. [24,25]).

Recall that the uniform complex convexity is equivalent to the uniform monotonicity on Banach lattices 
[30,31]. Hence we have the following.

Corollary 2.3. Suppose that a complex Banach space X has a normalized unconditional Schauder basis 
{ej} with unconditional basis constant 1. If X∗ is uniformly complex convex, then X∗ admits a uniformly 
simultaneously continuous retraction.

It is observed [11] that if Y ∗ admits a (f -uniformly) simultaneously continuous retraction and X is a 
norm-one complemented subspace of Y , so does X∗. Concerning the stability under the direct sum, it is 
shown that if we take pn = 1 − 1

n , and X = [
⊕

n �pn
]1, then X∗ does not admit a simultaneously continuous 

retraction. However we get the following affirmative result.
Now, we see some stability results. The following is clear and we omit the proof.

Proposition 2.4. Let {Xi}i∈N be a family of Banach spaces and let X = [
⊕

Xi]c0 or X = [
⊕

Xi]�p for 
1 ≤ p < ∞. If X∗ admits an f -uniformly simultaneously continuous retraction ϕ, then each X∗

i admits an
f -uniformly simultaneously continuous retraction.

Proposition 2.5. Let {Xj}j∈J be a family of Banach spaces and let X = [
⊕

Xj ]1. Suppose that each X∗
j

admits a uniformly simultaneously continuous retraction ϕj. If

lim
ε→0+

sup
j∈J

ωϕj
(ε) = 0,

then X∗ admits a uniformly simultaneously continuous retraction. In particular, the dual of a finite �1 sum of 
Banach spaces whose duals admits a uniformly simultaneously continuous retractions also admits uniformly 
simultaneously continuous retraction.

Proof. For each x∗ ∈ X∗, define ϕ(x∗) = (ϕj(x∗))j∈J . Then it is easy to check that ϕ is uniformly norm-
continuous and weak-∗ continuous. �
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We do not know if the similar result of Proposition 2.5 holds for c0 or �p sums for 1 < p < ∞. However, 
we provide a positive result for separable uniformly smooth spaces. Recall that a Banach space X is said 
to be uniformly convex if the modulus of convexity

δX(ε) = inf
{

1 −
∥∥∥∥x + y

2

∥∥∥∥ : x, y ∈ SX , and ‖x− y‖ ≥ ε

}

is positive for all 0 < ε < 1. A Banach space X is uniformly smooth if and only if X∗ is uniformly convex. 
In the proof, we will use the following lemma.

Lemma 2.6. (See [3, Lemma 3.3].) Let {cn} be a sequence of complex numbers with |cn| � 1 for every n, 
and let η > 0 be such that for a convex series 

∑
αn, Re

∑∞
n=1 αncn > 1 − η. Then for every 0 < r < 1, the 

set A := {i ∈ N : Re ci > r}, satisfies the estimate

∑
i∈A

αi � 1 − η

1 − r
.

Theorem 2.7. Let X = [
⊕

Xi]c0 , where Xi’s are Banach spaces and let δi(ε) be the modulus of convexity 
of X∗

i . Suppose that each space Xi is separable and infi δi(ε) > 0 for all 0 < ε < 1. Then, X∗ admits a 
uniformly simultaneous continuous retraction.

Proof. For each i ∈ N there exists a sequence of finite-dimensional subspaces E1
i ⊂ E2

i ⊂ E3
i ⊂ ... such that 

dimEn
i = n and 

⋃∞
n=1 E

n
i is dense in Xi. Let ei be the standard basis of c0 which ensures that 

⋃∞
i=1(Xi⊗ei)

is dense in X, where

Xi ⊗ ei = {x⊗ ei : x ∈ Xi}.

For each i, j ∈ N, we define a sequence of spaces

Ek =
( ⋃

p+q<i+j

Ep
q ⊗ eq

)
∪
( ⋃

q�j

Eq
i+j−q ⊗ ei+j−q

)

where k = (i+j−1)(i+j−2)
2 + j. We clearly see that Ek ⊂ Ek+1 for every k ∈ N.

Let Rk : Ek → X be a natural embedding (for the convenience, we set E0 = {0} and R0 : {0} → X). By 
the uniform convexity, it is easy to check that there is a unique Hahn–Banach extension of every element 
of E∗

k to X∗. So let Hk : Ek
∗ → X∗ be the map defined by the Hahn–Banach extension theorem.

We also define a map ψk : Ek
∗ → Ek+1

∗ by ψk = Rk+1
∗ ◦Hk. For each x∗, let n(x∗) = inf{k : ‖Rk

∗x∗‖ ≥
1}, where we use the convention that inf ∅ = ∞.

We define a retraction φ : X∗ → BX∗ . If ‖x∗‖ � 1, then φ(x∗) = x∗. If ‖x∗‖ > 1 and 
n(x∗) = 1, then we put φ(x∗) = H1(R1

∗x∗/‖R1
∗x∗‖). We assume that ‖x∗‖ > 1 and n(x∗) > 1. 

For the convenience we write n = n(x∗). Since Rn
∗x∗|En−1 = ψn−1(Rn−1

∗x∗)|En−1 = x∗|En−1 , we 
have ‖Rn−1

∗x∗‖ = ‖ψn−1(Rn−1
∗x∗)‖ < 1. Hence, there exists a unique 0 < λ � 1 such that 

‖λRn
∗x∗ + (1 − λ)ψn−1(Rn−1

∗x∗)‖ = 1. We put φ(x∗) = Hn(λRn
∗x∗ + (1 − λ)ψn−1(Rn−1

∗x∗)).
We now show that a retraction φ is weak-∗ continuous. Suppose that (x∗

α) converges to x∗ in the weak-∗
topology.

First assume that n = n(x∗) < ∞. Since Rn
∗x∗

α converges to Rn
∗x∗ in norm, we have Rn

∗φ(x∗
α) converges 

to Rn
∗φ(x∗) in norm. This implies that every weak-∗ limit point of a net (φ(x∗

α)) is an extension of Rn
∗φ(x∗). 

Since ‖Rn
∗φ(x∗)‖ = 1 = ‖φ(x∗)‖ and the Hahn–Banach extension is unique, φ(x∗

α) weak-∗ converges to 
φ(x∗). On the other hand, assume ‖Rn

∗x∗‖ < 1 for every n ∈ N. Since the net (φ(x∗
α)) is bounded, we have 
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only to show that φ(x∗
α)(x) converges to φ(x∗)(x) for all x ∈ En and for all n ≥ 1. Fix N . Then RN

∗x∗
α

converges to RN
∗x∗ in norm and there exists α0 such that ‖R∗

Nx∗
α‖ < 1 for all α > α0 and φ(x∗

α) is an 
extension of R∗

Nx∗
α for all α > α0. That is, φ(x∗

α)(x) = (RN
∗x∗

α)(x) for each α > α0 and x ∈ EN . Hence 
φ(x∗

α)(x) converges to φ(x∗)(x) for all x ∈ EN . Because N is arbitrary, φ(x∗
α) converges to φ(x∗) in the 

weak-∗ topology.
We calculate the norm-modulus of continuity of φ. For ε > 0, we fix x∗, y∗ ∈ X∗ satisfying ‖x∗ − y∗‖ <

δ(ε)2, and let n = n(x∗) � n(y∗) = m. If n = ∞, then it is clear. So assume first that n ≤ m < ∞.
Without loss of generality, we assume that φ(y∗) is an extension of Rn

∗y∗. Indeed, if n < m, then this 
follows from the definition of φ. On the other hand, if n = m, then we choose u∗ ∈ X∗ which annihilates 
En−1. Since Rn

∗y∗ − ψn(Rn−1
∗y∗) and Rn

∗x∗ − ψn(Rn−1
∗x∗) both annihilate En−1, we see that they are 

multiples of Rn
∗u∗. This fact and the convexity of ‖ · ‖ imply that there exists α so that either

∥∥Rn
∗(y∗ + αu∗)∥∥ = 1 and

∥∥Rn
∗(x∗ + αu∗)∥∥ � 1 or∥∥Rn

∗(y∗ + αu∗)∥∥ � 1 and
∥∥Rn

∗(x∗ + αu∗)∥∥ = 1.

Hence, we assume ‖Rn
∗(y∗ + αu∗)‖ = 1 and ‖Rn

∗(x∗ + αu∗)‖ � 1 (otherwise, we change the role of x∗

and y∗.) We now take x∗ + αu∗ and y∗ + αu∗ instead of x∗ and y∗.
For any element z in a space of vector-valued sequence like X and X∗, we write z = (z(1), z(2), ...). 

Choose x ∈ SEn
so that Rn

∗φ(x∗)(x) = 1, then we see that 1 = Rn
∗φ(x∗)(i)

‖Rn
∗φ(x∗)(i)‖ (x(i)) = Rn

∗φ(x∗)(i)
‖φ(x∗)(i)‖ (x(i)) for 

every i ∈ C, where C = {i : Rn
∗φ(x∗)(i) �= 0}.

From the definition of φ, we have ReRn
∗(x∗)(x) � 1, and so

1 − δ(ε)2 < Re
(
Rn

∗(x∗))(x) −
∥∥Rn

∗(x∗ − y∗
)∥∥

� ReRn
∗(y∗)(x) =

∑
ReRn

∗(y∗)(i)(x(i)
)

Define a set A = {i : Re Rn
∗(y∗)(i)

‖φ(y∗)(i)‖ (x(i)) > 1 − δ(ε), ‖φ(y∗)(i)‖ �= 0}. Then, Lemma 2.6 shows that

∑
A

∥∥φ(y∗)(i)∥∥ > 1 − δ(ε), and
∑
Ac

∥∥φ(y∗)(i)∥∥ < δ(ε).

Since φ(y∗) is an extension of Rn
∗y∗, for each i ∈ A ∩ C, we get

∥∥∥∥ φ(y∗)(i)
‖φ(y∗)(i)‖ + φ(x∗)(i)

‖φ(x∗)(i)‖

∥∥∥∥ � Rn
∗(y∗)(i)

‖φ(y∗)(i)‖
(
x(i)

)
+ Rn

∗φ(x∗)(i)
‖φ(x∗)(i)‖

(
x(i)

)

> 2 − δ(ε)

and so,
∥∥∥∥ φ(y∗)(i)
‖φ(y∗)(i)‖ − φ(x∗)(i)

‖φ(x∗)(i)‖

∥∥∥∥ < ε.

Moreover, for each i ∈ A ∩ C,

∥∥φ(y∗)(i) − φ
(
x∗)(i)∥∥ =

∥∥∥∥ φ(y∗)(i)
‖φ(y∗)(i)‖ − φ(x∗)(i)

‖φ(y∗)(i)‖

∥∥∥∥∥∥φ(y∗)(i)∥∥

<

(∥∥∥∥ φ(y∗)(i)
‖φ(y∗)(i)‖ − φ(x∗)(i)

‖φ(x∗)(i)‖

∥∥∥∥ +
∥∥∥∥ φ(x∗)(i)
‖φ(x∗)(i)‖ − φ(x∗)(i)

‖φ(y∗)(i)‖

∥∥∥∥
)∥∥φ(y∗)(i)∥∥

< ε
∥∥φ(y∗)(i)∥∥ +

∣∣∥∥φ(y∗)(i)∥∥−
∥∥φ(x∗)(i)∥∥∣∣.
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So we have for all i ∈ A,

∥∥φ(y∗)(i) − φ
(
x∗)(i)∥∥ < ε

∥∥φ(y∗)(i)∥∥ +
∣∣∥∥φ(y∗)(i)∥∥−

∥∥φ(x∗)(i)∥∥∣∣.
On the other hand, the assumption ‖x∗ − y∗‖ < δ(ε)2 implies that ‖Rn

∗x∗ − Rn
∗y∗‖ < δ(ε)2, and 

so 
∑

|‖Rn
∗x∗(i)‖ − ‖Rn

∗y∗(i)‖| �
∑

‖Rn
∗x∗(i) − Rn

∗y∗(i)‖ < δ(ε)2. Since ‖Rn
∗y∗(i)‖ � ‖φ(y∗)(i)‖, 

‖Rn
∗x∗‖ � 1, and ‖φ(y∗)‖ = 1, we have, setting P = {i : ‖φ(y∗)(i)‖ ≥ ‖Rn

∗x∗(i)‖} and Q = {‖φ(y∗)(i)‖ <
‖Rn

∗x∗(i)‖},
∑∣∣∥∥φ(y∗)(i)∥∥−

∥∥Rn
∗x∗(i)

∥∥∣∣
=

∑
P

(∥∥φ(y∗)(i)∥∥−
∥∥Rn

∗x∗(i)
∥∥) +

∑
Q

(∥∥Rn
∗x∗(i)

∥∥−
∥∥φ(y∗)(i)∥∥)

= 1 −
∑
Q

∥∥φ(y∗)(i)∥∥−
∑
P

∥∥Rn
∗x∗(i)

∥∥ +
∑
Q

(∥∥Rn
∗x∗(i)

∥∥−
∥∥φ(y∗)(i)∥∥)

≤
∑
Q

∥∥Rn
∗x∗(i)

∥∥−
∑
Q

∥∥φ(y∗)(i)∥∥ +
∑
Q

(∥∥Rn
∗x∗(i)

∥∥−
∥∥φ(y∗)(i)∥∥)

≤ 2
∑
Q

(∥∥Rn
∗x∗(i)

∥∥−
∥∥R∗

ny
∗(i)

∥∥) < 2δ(ε)2.

Notice also that R∗
nx

∗ and R∗
n−1x

∗ may have only one different term. Suppose that this different term 
is n1th term of R∗

nx
∗. Then ‖R∗

n−1x
∗(i)‖ = ‖R∗

nx
∗(i)‖ = ‖φ(x∗)(i)‖ for all i �= n1. Therefore we have ∑

i�=n1
|‖φ(y∗)(i)‖ − ‖φ(x∗)(i)‖| < 2δ(ε)2.

Since 
∑

‖φ(y∗)(i)‖ =
∑

‖φ(x∗)(i)‖ = 1, we have |‖φ(y∗)(n1)‖ − ‖φ(x∗)(n1)‖| < 2δ(ε)2. Moreover, the 
fact that 

∑
|‖φ(y∗)(i)‖ − ‖φ(x∗)(i)‖| < 4δ(ε)2 shows

∑
Ac

∥∥φ(x∗)(i)∥∥ �
∑
Ac

∥∥φ(x∗)(i) − φ
(
y∗
)
(i)

∥∥ +
∑
Ac

∥∥φ(y∗)∥∥

< 4δ(ε)2 + δ(ε).

Hence, we deduce that

∥∥φ(x∗)− φ
(
y∗
)∥∥ =

∑
A

∥∥φ(y∗)(i) − φ
(
x∗)(i)∥∥ +

∑
Ac

∥∥φ(y∗)(i) − φ
(
x∗)(i)∥∥

�
∑
A

ε
∥∥φ(y∗)(i)∥∥ +

∑
A

∣∣∥∥φ(y∗)(i)∥∥−
∥∥φ(x∗)(i)∥∥∣∣ +

∑
Ac

∥∥φ(y∗)(i)∥∥ +
∑
Ac

∥∥φ(x∗)(i)∥∥

< ε + 4δ(ε)2 + 4δ(ε)2 + δ(ε) + δ(ε)

= ε + 8δ(ε)2 + 2δ(ε).

Finally, assume that n < m = ∞. In this case, ‖y∗‖ ≤ 1. If ‖x∗‖ ≤ 1, then the desired result clearly 
holds. So assume that ‖x∗‖ > 1. Let y∗t = tx∗ + (1 − t)x∗ and let

t0 = sup
{
0 < t < 1 :

∥∥y∗t ∥∥ = 1
}
.

It is clear that 0 ≤ t0 < 1. For each t0 < s < 1, ‖y∗s‖ > 1 and ‖x∗ − y∗s‖ ≤ ‖x∗ − y∗‖ < δ(ε)2. From the 
previous result, we have

∥∥φ(x∗)− φ(ys)
∥∥ < ε + 8δ(ε)2 + 2δ(ε).
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Since y∗s converges to yt0 as s tends to t0, the weak-∗ continuity of φ shows that

∥∥φ(x∗)− φ(yt0)
∥∥ ≤ ε + 8δ(ε)2 + 2δ(ε).

Since ‖yt0‖ ≤ 1, we have

∥∥φ(x∗)− φ(y)
∥∥ ≤

∥∥φ(x∗)− φ(yt0)
∥∥ +

∥∥y∗t0 − y∗
∥∥ ≤ ε + 9δ(ε)2 + 2δ(ε).

This completes the proof. �
For the �p sum of a countable family of Banach spaces, we get the following.

Proposition 2.8. Let {Xi}i∈N be a family of Banach spaces whose dual spaces are separable uniformly convex 
with moduli of convexity δi(ε) such that infi δi(ε) > 0 for all 0 < ε < 1 and let X = [

⊕
Xi]�p for 1 ≤ p < ∞. 

Then, X∗ admits a uniformly simultaneous continuous retraction.

Proof. Benyamini [11] showed that if X is a separable Banach space whose dual space is uniformly convex 
with modulus of convexity δ, then X∗ admits a δ−1-uniformly simultaneously continuous retraction. For 
1 < p < ∞, the �p sum of a countable family of separable uniformly convex spaces with uniformly lower 
bounded moduli of convexity is separable uniformly convex [21] and we get the desired result.

Finally, suppose that p = 1. By the assumption, for each i ∈ N, we get a δ−1
i -uniformly simultaneously 

continuous retraction ϕi on X∗
i . By Proposition 2.5, it is enough to show that

lim
ε→0+

sup
i

δ−1
i (ε) = 0.

Otherwise, there exists t0 ∈ (0, 1) such that, for each n ∈ N, there is in ∈ N satisfying δ−1
in

( 1
n ) > t0. Hence 

we have, for all n,

1
n
≥ δin(t0) ≥ inf

i
δi(t0).

It is a contradiction to infi δi(t0) > 0 and this completes the proof. �
Proposition 2.9. Let L be a locally compact Hausdorff space, K be the one-point compactification of L and 
let M(L) and M(K) be the Banach spaces of all scalar-valued Borel regular measures on L and K with 
the total variational norms, respectively. Suppose that M(K) admits a uniformly simultaneously continuous 
retraction as a dual of C(K). Then M(L) admits a uniformly simultaneously continuous retraction as a 
dual of C0(L).

Proof. Let K = L ∪{∞} and let φ be an f -uniformly simultaneously continuous retraction from C(K)∗ onto 
BC(K)∗ . Then for each μ ∈ M(L) = C(L)∗ and for each Borel subset E of K, define μ̃(E) = μ(E \ {∞}). 
Then it is clear that μ̃ ∈ M(K). Define the map ψ : M(L) → BM(L) by, for each f ∈ C0(L),

〈
f, ψ(μ)

〉
=

∫
L

fdφ(μ̃).

Then it is easy to check that ψ is weak-∗ continuous on M(L) = C0(L)∗ and it is f -uniformly continuous 
with respect to the norm. �
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Corollary 2.10. Let L be a locally compact metrizable Hausdorff space. Then the real space C0(L)∗ admits a 
uniformly simultaneously continuous retraction.

Proof. It is shown that if K is compact metrizable space, then the real space C(K)∗ admits a uniformly 
simultaneously continuous retraction. Since L is metrizable, its one-point compactification L̂ is compact 
metrizable. Hence the result follows from Proposition 2.9. �
3. Retraction and Bishop–Phelps–Bollobás property

The Bishop–Phelps theorem [13] states that for a Banach space X, every element in its dual space X∗

can be approximated by ones that attain their norms. Since then, there has been an extensive research to 
extend this result to bounded linear operators between Banach spaces [15,26,32,34,36,37] and non-linear 
mappings [2,5,9,17,19,29]. On the other hand, Bollobás [14] sharpened the Bishop–Phelps theorem which is 
called the Bishop–Phelps–Bollobás theorem.

Theorem 3.1 (Bishop–Phelps–Bollobás theorem). Let X be a Banach space. If x ∈ SX and x∗ ∈ SX∗ satisfy 
|x∗(x) −1| < ε2/4, then there exist y ∈ SX and y∗ ∈ SX∗ such that y∗(y) = 1, ‖x∗−y∗‖ < ε and ‖x −y‖ < ε.

Acosta, Aron, García and Maestre [3] introduced the Bishop–Phelps–Bollobás property to study exten-
sions of the theorem above to operators between Banach spaces.

Definition 3.2. (See [3, Definition 1.1].) A pair of Banach spaces (X, Y ) is said to have the Bishop–Phelps–
Bollobás property (BPBp in short) for operators if, for every ε ∈ (0, 1), there is η(ε) > 0 such that for every 
T0 ∈ L(X, Y ) with ‖T0‖ = 1 and every x0 ∈ SX satisfying

∥∥T0(x0)
∥∥ > 1 − η(ε),

there exist S ∈ L(X, Y ) and x ∈ SX such that

1 = ‖S‖ = ‖Sx‖, ‖x0 − x‖ < ε and ‖T0 − T‖ < ε.

In this case, we will say that (X, Y ) has the BPBp with function ε 	→ η(ε). The pair (X, Y ) is said to have 
the Bishop–Phelps Property (BPp) if the set of all norm-attaining operators is dense in L(X, Y ).

It is clear that BPBp implies BPp. Recall that Bourgain [15] showed that (X, Y ) has the BPp for every 
Banach space Y if X has the Radon–Nikodým property. However, it is shown [3] there exists a Banach 
space Y such that (�1, Y ) does not have BPBp even though �1 has the Radon–Nikodým property.

In the study of the operators from a Banach space into C(K), the following representation theorem is 
useful. We are stating a version of this representation theorem for operators into C0(S) space, which is a 
slight modification of [22, Theorem 1, p. 490] and we omit the proof.

Lemma 3.3. Let X be a Banach space and let L be a locally compact Hausdorff topological space. Given an 
operator T : X → C0(L), define μ : L → X∗ by μ(s) = T ∗(δs) for every s ∈ L. Then the relationship

[Tx](s) = μ(s)(x), ∀x ∈ X, s ∈ L

defines an isometric isomorphism between L(X, C0(L)) and the space of w∗-continuous functions from L
to X∗ which vanishes at infinity, endowed with the supremum norm, i.e. ‖μ‖ = sup{‖μ(s)‖ : s ∈ L}. The 
subspace of compact operators corresponds to norm continuous functions which vanishes at infinity.
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If C(K) is the space of all continuous functions on a compact Hausdorff space K and X is a Banach 
space whose dual X∗ admits a uniform simultaneously continuous retraction, then the norm-attaining 
operators are dense in the space L(X, C(K)) of bounded linear operators from X into C(K) [12, Proposi-
tion 4.22.]. So L∞[0, 1] does not admit a uniformly simultaneously continuous retraction because the pair 
(L1[0, 1], C(S)) does not have the BPp for a certain compact metric space S [37,27]. It is worth-while to 
note that (L1(μ), L∞(ν)) has BPp if μ is any measure and ν is a localizable measure [23,35]. These results 
are refined to show that (L1(μ), L∞(ν)) has BPBp if μ is any measure and ν is a localizable measure [7,20].

Let f be a nonnegative nondecreasing function such that limt→0+ f(t) = 0 = f(0). A map ϕ : X∗ → BX∗

is called an f -approximate nearest point map if ‖ϕ(x∗) −x∗‖ ≤ d(x∗, BX∗) + f(d(x∗, BX∗)) for all x∗ ∈ X∗. 
This notion is introduced by Benyamini [11]. A dual space X∗ is said to admit weak-∗ approximate nearest 
point map if there exists a weak-∗ continuous f -approximate nearest point map ϕ : X∗ → BX∗ . Notice that 
the weak-∗ continuous approximate nearest point map is a weak-∗ continuous retraction. It is easy to check 
that if X∗ admits a uniformly simultaneously continuous retraction ϕ : X∗ → BX∗ , then ϕ is a weak-∗
ωϕ-approximate nearest point map [11].

Theorem 3.4. Let K be a locally compact Hausdorff space and let X be a Banach space. If X∗ admits a 
weak-∗ approximate nearest map, then the pair (X, C0(K)) has the BPBp.

Proof. Let r : X∗ → BX∗ be a weak-∗ f -approximate nearest point map. Given ε > 0, suppose that 
‖T (x0)‖ > 1 − ε2/4 for some T ∈ SL(X,C(K)) and x0 ∈ SX . Let ϕ : K → X∗ be the function ϕ(s) = T ∗(δs)
for all s ∈ K. Choose t0 ∈ K such that |T (x0)(t0)| = |〈x0, T ∗(δt0)〉| = |ϕ(t0)(x0)| > 1 − ε2/4. By the 
Bishop–Phelps–Bollobás Theorem 3.1, there exist a norm-attaining functional x∗

1 ∈ SX∗ and x1 ∈ SX such 
that

‖x0 − x1‖ < ε,

∥∥∥∥x∗
1 −

ϕ(t0)
‖ϕ(t0)‖

∥∥∥∥ < ε.

Since ‖ϕ(t0) − ϕ(t0)
‖ϕ(t0)‖‖ = 1 −‖ϕ(t0)‖ < ε2/4 < ε, we have ‖x∗

1 −ϕ(t0)‖ < 2ε. Choose a function f0 ∈ C0(K)
such that f0(t0) = 1 and 0 ≤ f ≤ 1. Define ψ : K → X∗ by

ψ(t) = r
(
ϕ(t) + f0(t)

(
x∗

1 − ϕ(t0)
))

(t ∈ K).

Then ψ(t0) = r(x∗
1) = x∗

1. Let S be the corresponding operator and

1 ≥ ‖S‖ ≥ ‖Sx1‖ ≥
∣∣〈Sx1, δt0〉

∣∣ =
∣∣〈ψ(t0), x1

〉∣∣ =
∣∣〈x∗

1, x1
〉∣∣ = 1.

Then we have

‖S − T‖ = sup
t∈K

∥∥ϕ(t) − ψ(t)
∥∥ = sup

t∈K

∥∥ϕ(t) − r
(
ϕ(t) + f0(t)

(
x∗

1 − ϕ(t0)
))∥∥

≤ sup
t∈K

∥∥(ϕ(t) + f0(t)
(
x∗

1 − ϕ(t0)
))

− r
(
ϕ(t) + f0(t)

(
x∗

1 − ϕ(t0)
))∥∥ +

∥∥x∗
1 − ϕ(t0)

∥∥
≤ d

(
ϕ(t) + f0(t)

(
x∗

1 − ϕ(t0)
)
, BX∗

)
+ f

(
d
(
ϕ(t) + f0(t)

(
x∗

1 − ϕ(t0)
)
, BX∗

))
+ 2ε

≤
∥∥x∗

1 − ϕ(t0)
∥∥ + f

(∥∥x∗
1 − ϕ(t0)

∥∥) + 2ε

≤ 4ε + f(2ε).

This completes the proof. �
Cascales, Guirao and Kadets [16] (cf. [6]) showed that every Asplund operator T from a Banach space 

X into a uniform algebra A can be approximated by norm-attaining Asplund operators. In particular, 
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(X, C(K)) has the BPBp if X is an Asplund space. Since C[0, 1] is not an Asplund space, the Banach 
space whose dual admits the uniformly simultaneously continuous retraction need not be an Asplund space. 
Benyamini also constructed an example which shows that there is a (Asplund) Banach space which is 
isomorphic to �2 whose dual does not admit a uniformly simultaneously continuous retraction [11].

Proposition 3.5. Let {Xj}j∈J be a family of Banach spaces and let X = [
⊕

Xn]1. Suppose that each X∗
j

admits a weak-∗ f -approximate nearest point map ϕj with a common function f . Then X∗ admits a weak-∗
f -approximate nearest point map.

Proposition 2.5 shows the following.

Corollary 3.6. Let {Xj}j∈J be a family of Banach spaces and let X = [
⊕

Xj ]1. Suppose that each X∗
j admits 

a uniformly simultaneously continuous retraction ϕj. If

lim
ε→0+

sup
j∈J

ωϕj
(ε) = 0,

then (X, C0(L)) has the BPBp for all locally compact Hausdorff spaces L.

For the range spaces, the stability of the BPBp under various direct sums of Banach spaces is studied in 
[8]. We get here some stability results for the domain spaces when the range is C(K).

Example 3.7. Let X be a Banch space whose dual X∗ admits a uniformly simultaneously continuous re-
traction like �p or C(S) spaces for all compact Hausdorff space S. Then (�1(X), C(K)) has the BPBp for 
all compact Hausdorff space K. Moreover, we also have the same result for the finite �1 sums of different 
Banach spaces whose dual admits a uniformly simultaneously continuous retraction. For example, we see 
that (�p ⊕1 C(S), C(K)) has the BPBp.

Recently it is shown [4] that the pair (C(S), C(K)) has the BPBp if C(S) and C(K) are spaces of 
real-valued continuous functions on a compact Hausdorff spaces S and K respectively. However it is still 
open for the spaces of complex-valued continuous functions. It is shown [10] that C(S)∗ admits weak-∗
approximate nearest point map if S is a compact metric space.

Corollary 3.8. Let S be a locally compact metrizable space and L a locally compact Hausdorff space. Then 
for real-spaces C0(S) and C0(L), the pair (C0(S), C0(L)) has the BPBp.

It is worth-while to remark that the first-named author shows that (c0, X) has the BPBp for all uniformly 
convex spaces X [28].

Let K(X, Y ) be a subspace of L(X, Y ) which consists of all compact operators from a Banach space X
into a Banach space Y . Recently the notion of Bk was introduced by Martín [33]. A Banach space Y is 
said to have property Bk if for any Banach space X, the norm-attaining compact operators are dense in 
K(X, Y ). Johnson and Wolfe [26] showed that C(K) space has property Bk. The following result is due to 
Aron, Cascales and Kozhushkina [6]. However, we give another proof using retraction.

Theorem 3.9. Let K be a compact Hausdorff space and let E be a Banach space. Then for each 0 < ε < 1, 
there is η(ε) > 0 such that if T ∈ SK(E,C(K)) and ‖T (x0)‖ > 1 − η(ε), there exist S ∈ SK(E,C(K)) and 

x1 ∈ SE such that ‖S(x1)‖ = 1, ‖x0 − x1‖ < ε and ‖S − T‖ < ε. In fact we can take η(ε) = ε2

64 .

Proof. Given ε > 0, suppose that ‖T (x0)‖ > 1 −ε2/4 for some T ∈ SL(E,C(K)) and x0 ∈ SE . Let ϕ : K → E∗

be the function ϕ(s) = T ∗(δs) for all s ∈ K. Since T is compact, ϕ is norm-continuous. Choose t0 ∈ K such 
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that |T (x0)(t0)| = |〈x0, T ∗(δt0)〉| = |ϕ(t0)(x0)| > 1 − ε2/4. By the Bishop–Phelps–Bollobás Theorem 3.1, 
there exists a norm-attaining functional x∗

1 ∈ SE∗ and x1 ∈ SE such that

‖x0 − x1‖ < ε,

∥∥∥∥x∗
1 −

ϕ(t0)
‖ϕ(t0)‖

∥∥∥∥ < ε.

Since ‖ϕ(t0) − ϕ(t0)
‖ϕ(t0)‖‖ = 1 − ‖ϕ(t0)‖ < ε2/4 < ε, we have ‖x∗

1 − ϕ(t0)‖ < 2ε. Let r : E∗ → BE∗ be the 

retraction defined by r(x) = x if ‖x‖ ≤ 1 and r(x) = 1
‖x‖x if ‖x‖ ≥ 1. Define the norm-continuous map 

ψ : K → E∗ by

ψ(t) = r
(
ϕ(t) + x∗

1 − ϕ(t0)
)

(t ∈ K).

Then ψ(t0) = r(x∗
1) = x∗

1. Let S be the corresponding compact operator and

1 ≥ ‖S‖ ≥ ‖Sx1‖ ≥
∣∣〈Sx1, δt0〉

∣∣ =
∣∣〈ψ(t0), x1

〉∣∣ =
∣∣〈x∗

1, x1
〉∣∣ = 1.

Hence we have ‖S‖ = 1 = ‖Sx1‖. Since 1 ≤ ‖y‖ ≤ 1 + ε implies that

∥∥r(y∗)− y∗
∥∥ ≤

∥∥∥∥r(y∗)− r

(
y∗

‖y∗‖

)∥∥∥∥ +
∥∥∥∥ y∗

‖y∗‖ − y∗
∥∥∥∥ ≤ 2ε,

we have

‖S − T‖ = sup
t∈K

∥∥ϕ(t) − ψ(t)
∥∥ = sup

t∈K

∥∥r(ϕ(t) + x∗
1 − ϕ(t0)

)
− ϕ(t)

∥∥
≤ 2ε +

∥∥x∗
1 − ϕ(t0)

∥∥ ≤ 4ε.

Therefore, by letting η(ε) = ε2

64 , we get the desired result. �
Because C(K) space is a predual of an L1 space, the above theorem is equivalent to the following which 

is proved in [4] and we omit the proof.

Theorem 3.10. (See [4].) For each 0 < ε < 1, there is η(ε) > 0 such that if E is any Banach space, Y is any 
predual of an L1-space, T ∈ SK(E,Y ) and ‖T (x0)‖ > 1 − η(ε), there exist S ∈ SK(E,Y ) and x1 ∈ SE such 
that ‖S(x1)‖ = 1, ‖x0 − x1‖ < ε and ‖S − T‖ < ε.
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