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1. Introduction

Recall that if ϕ is an analytic self-map of D, a so-called Schur function, the composition operator Cϕ

associated to ϕ is formally defined by

Cϕ(f) = f ◦ ϕ.

The Littlewood subordination principle [3, p. 30] tells us that Cϕ maps the Hardy space H2 to itself for 
every Schur function ϕ. Also recall that if H is a Hilbert space and T : H → H a bounded linear operator, 
the n-th approximation number an(T ) of T is defined as

an(T ) = inf
{
‖T −R‖; rank R < n

}
, n = 1, 2, . . . . (1.1)
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In [9], working on that Hardy space H2 (and also on some weighted Bergman spaces), we have undertaken 
the study of approximation numbers an(Cϕ) of composition operators Cϕ, and proved among other facts 
the following:

Theorem 1.1. Let (εn)n≥1 be a non-increasing sequence of positive numbers tending to 0. Then, there exists 
a compact composition operator Cϕ on H2 such that

lim inf
n→∞

an(Cϕ)
εn

> 0.

As a consequence, there are composition operators on H2 which are compact but in no Schatten class.

The last item had been previously proved by Carroll and Cowen [2], the above statement with approxi-
mation numbers being more precise.

For the Dirichlet space, the situation is more delicate because not every analytic self-map of D generates 
a bounded composition operator on D. When this is the case, we will say that ϕ is a symbol (understanding 
“of D”). Note that every symbol is necessarily in D.

In [8], we have performed a similar study on that Dirichlet space D, and established several results 
on approximation numbers in that new setting, in particular the existence of symbols ϕ for which Cϕ is 
compact without being in any Schatten class Sp. But we have not been able in [8] to prove a full analogue 
of Theorem 1.1. Using a new approach, essentially based on Carleson embeddings and the Schur test, we 
are now able to prove that analogue.

Theorem 1.2. For every sequence (εn)n≥1 of positive numbers tending to 0, there exists a compact composition 
operator Cϕ on the Dirichlet space D such that

lim inf
n→∞

an(Cϕ)
εn

> 0.

Turning now to the question of necessary or sufficient conditions for a Schur function ϕ to be a symbol, 
we can observe that, since (zn/

√
n )n≥1 is an orthonormal sequence in D and since formally Cϕ(zn) = ϕn, 

a necessary condition is as follows:

ϕ is a symbol =⇒
∥∥ϕn

∥∥
D = O(

√
n ). (1.2)

It is worth noting that, for any Schur function, one has:

ϕ ∈ D =⇒
∥∥ϕn

∥∥
D = O(n)

(of course, this is an equivalence). Indeed, anticipating on the next section, we have for any integer n ≥ 1:

∥∥ϕn
∥∥2
D =

∣∣ϕ(0)
∣∣2n +

ˆ

D

n2∣∣ϕ(z)
∣∣2(n−1)∣∣ϕ′(z)

∣∣2 dA(z)

≤
∣∣ϕ(0)

∣∣2 +
ˆ

D

n2∣∣ϕ′(z)
∣∣2 dA(z) ≤ n2‖ϕ‖2

D,

giving the result.
Now, the following sufficient condition was given in [4]:∥∥ϕn

∥∥ = O(1) =⇒ ϕ is a symbol. (1.3)
D
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In view of (1.2), one might think of improving this condition, but it turns out to be optimal, as says the 
second main result of that paper.

Theorem 1.3. Let (Mn)n≥1 be an arbitrary sequence of positive numbers tending to ∞. Then, there exists 
a Schur function ϕ ∈ D such that:

1) ‖ϕn‖D = O(Mn) as n → ∞;
2) ϕ is not a symbol on D.

The organization of this paper will be as follows: in Section 2, we give the notation and background. 
In Section 3, we prove Theorem 1.2; in Section 3.1, we prove Theorem 1.3; and we end with a section of 
remarks and questions.

2. Notation and background

We denote by D the open unit disk of the complex plane and by A the normalized area measure dx dy/π
of D. The unit circle is denoted by T = ∂D. The notation A � B indicates that A ≤ cB for some positive 
constant c.

A Schur function is an analytic self-map of D and the associated composition operator is defined, formally, 
by Cϕ(f) = f ◦ ϕ. The operator Cϕ maps the space Hol(D) of holomorphic functions on D into itself.

The Dirichlet space D is the space of analytic functions f : D → C such that

‖f‖2
D :=

∣∣f(0)
∣∣2 +

ˆ

D

∣∣f ′(z)
∣∣2 dA(z) < +∞. (2.1)

If f(z) =
∑∞

n=0 cnz
n, one has:

‖f‖2
D = |c0|2 +

∞∑
n=1

n|cn|2. (2.2)

Then ‖ . ‖D is a norm on D, making D a Hilbert space, and ‖ . ‖H2 ≤ ‖ . ‖D. For further information on the 
Dirichlet space, the reader may see [1] or [11].

The Bergman space B is the space of analytic functions f : D → C such that:

‖f‖2
B :=

ˆ

D

∣∣f(z)
∣∣2 dA(z) < +∞.

If f(z) =
∑∞

n=0 cnz
n, one has ‖f‖2

B =
∑∞

n=0
|cn|2
n+1 . If f ∈ D, one has by definition:

‖f‖2
D =

∥∥f ′∥∥2
B

+
∣∣f(0)

∣∣2.
Recall that, whereas every Schur function ϕ generates a bounded composition operator Cϕ on Hardy and 

Bergman spaces, it is no longer the case for the Dirichlet space (see [10, Proposition 3.12], for instance).
We denote by bn(T ) the n-th Bernstein number of the operator T : H → H, namely:

bn(T ) = sup
dim E=n

(
inf

f∈SE

‖Tx‖
)

(2.3)

where SE denotes the unit sphere of E. It is easy to see [8] that
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bn(T ) = an(T ) for all n ≥ 1

(recall that the approximation numbers are defined in (1.1)).
If ϕ is a Schur function, let

nϕ(w) = #
{
z ∈ D; ϕ(z) = w

}
≥ 0 (2.4)

be the associated counting function. If f ∈ D and g = f ◦ϕ, the change of variable formula provides us with 
the useful following equation [12,8]:

ˆ

D

∣∣g′(z)∣∣2 dA(z) =
ˆ

D

∣∣f ′(w)
∣∣2nϕ(w) dA(w) (2.5)

(the integrals might be infinite). In those terms, a necessary and sufficient condition for ϕ to be a symbol 
is as follows [12, Theorem 1]. Let:

ρϕ(h) = sup
ξ∈T

ˆ

S(ξ,h)

nϕ dA (2.6)

where S(ξ, h) = D ∩D(ξ, h) is the Carleson window centered at ξ and of size h. Then ϕ is a symbol if and 
only if:

sup
0<h<1

1
h2 ρϕ(h) < ∞. (2.7)

This is not difficult to prove. In view of (2.5), the boundedness of Cϕ amounts to the existence of a constant C
such that:

ˆ

D

∣∣f ′(w)
∣∣2nϕ(w) dA(w) ≤ C

ˆ

D

∣∣f ′(z)
∣∣2 dA(z), ∀f ∈ D.

Since f ′ = h runs over B as f runs over D, and with equal norms, the above condition reads:
ˆ

D

∣∣h(w)
∣∣2nϕ(w) dA(w) ≤ C

ˆ

D

∣∣h(z)
∣∣2 dA(z), ∀h ∈ B.

This exactly means that the measure nϕ dA is a Carleson measure for B. Such measures have been charac-
terized in [6] and that characterization gives (2.7).

But this condition is very abstract and difficult to test, and sometimes more “concrete” sufficient condi-
tions are desirable. In [8], we proved that, even if the Schur function extends continuously to D, no Lipschitz 
condition of order α, 0 < α < 1, on ϕ is sufficient for ensuring that ϕ is a symbol. It is worth noting that 
the limiting case α = 1, so restrictive it is, guarantees the result.

Proposition 2.1. Suppose that the Schur function ϕ is in the analytic Lipschitz class on the unit disk, i.e. 
satisfies: ∣∣ϕ(z) − ϕ(w)

∣∣ ≤ C|z − w|, ∀z, w ∈ D.

Then Cϕ is bounded on D.
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Proof. Let f ∈ D; one has:

∥∥Cϕ(f)
∥∥2
D =

∣∣f(ϕ(0)
)∣∣2 +

ˆ

D

∣∣f ′(ϕ(z)
)∣∣2∣∣ϕ′(z)

∣∣2 dA(z)

≤
∣∣f(ϕ(0)

)∣∣2 +
∥∥ϕ′∥∥2

∞

ˆ

D

∣∣f ′(ϕ(z)
)∣∣2 dA(z).

This integral is nothing but ‖Cϕ(f ′)‖2
B and hence, since Cϕ is bounded on the Bergman space B, we have, 

for some constant K1:
ˆ

D

∣∣f ′(ϕ(z)
)∣∣2 dA(z) ≤ K2

1
∥∥f ′∥∥2

B
≤ K2

1‖f‖2
D.

On the other hand,

∣∣f(ϕ(0)
)∣∣ ≤ (

1 −
∣∣ϕ(0)

∣∣2)−1/2‖f‖H2 ≤
(
1 −

∣∣ϕ(0)
∣∣2)−1/2‖f‖D,

and we get ∥∥Cϕ(f)
∥∥2
D ≤ K2‖f‖2

D,

with K2 = K2
1 + (1 − |ϕ(0)|2)−1. �

3. Proof of Theorem 1.2

We are going to prove Theorem 1.2 mentioned in the Introduction, which we recall here.

Theorem 3.1. For every sequence (εn) of positive numbers with limit 0, there exists a compact composition 
operator Cϕ on D such that

lim inf
n→∞

an(Cϕ)
εn

> 0.

Before entering really in the proof, we may remark that, without loss of generality, by replacing εn with 
inf(2−8, supk≥n εk), we can, and do, assume that (εn)n decreases and ε1 ≤ 2−8.

Moreover, we can assume that (εn)n decreases “slowly”, as said in the following lemma.

Lemma 3.2. Let (εi) be a decreasing sequence with limit zero and let 0 < ρ < 1. Then, there exists another 
sequence (ε̂i), decreasing with limit zero, such that ε̂i ≥ εi and ε̂i+1 ≥ ρε̂i, for every i ≥ 1.

Proof. We define inductively ε̂i by ε̂1 = ε1 and

ε̂i+1 = max(ρε̂i, εi+1).

It is seen by induction that ε̂i ≥ εi and that ε̂i decreases to a limit a ≥ 0. If ε̂i = εi for infinitely many 
indices i, we have a = 0. In the opposite case, ε̂i+1 = ρε̂i from some index i0 onwards, and again a = 0
since ρ < 1. �

We will take ρ = 1/2 and assume for the sequel that εi+1 ≥ εi/2.
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Proof of Theorem 3.1. We first construct a subdomain Ω = Ωθ of D defined by a cuspidal inequality:

Ω =
{
z = x + iy ∈ D; |y| < θ(1 − x), 0 < x < 1

}
, (3.1)

where θ: [0, 1] → [0, 1[ is a continuous increasing function such that

θ(0) = 0 and θ(1 − x) ≤ 1 − x. (3.2)

Note that since 1 −x ≤
√

1 − x2, the condition |y| < θ(1 −x) implies that z = x + iy ∈ D. Note also that 
1 ∈ Ω and that Ω is a Jordan domain.

We introduce a parameter δ with ε1 ≤ δ ≤ 1 − ε1. We put:

θ
(
δj
)

= εjδ
j (3.3)

and we extend θ to an increasing continuous function from (0, 1) into itself (piecewise linearly, or more 
smoothly, as one wishes). We claim that:

θ(h) ≤ h and θ(h) = o(h) as h → 0. (3.4)

Indeed, if δj+1 ≤ h < δj , we have θ(h)/h ≤ θ(δj)/δj+1 = εj/δ, which is ≤ ε1/δ ≤ 1 and which tends to 0
with h.

We define now ϕ = ϕθ:D → Ω as a continuous map which is a Riemann map from D onto Ω, and with 
ϕ(1) = 1 (a cusp-type map). Since ϕ is univalent, one has nϕ = 1Ω , and since Ω is bounded, ϕ defines 
a symbol on D, by (2.7). Moreover, (3.4) implies that A[S(ξ, h) ∩Ω] ≤ hθ(h) for every ξ ∈ T; hence, ρϕ being 
defined in (2.6), one has ρϕ(h) = o(h2) as h → 0+. In view of [12], this little-oh condition guarantees the 
compactness of Cϕ: D → D.

It remains to minorate its approximation numbers.
The measure μ = nϕ dA is a Carleson measure for the Bergman space B, and it was proved in [7] that 

C∗
ϕCϕ is unitarily equivalent to the Toeplitz operator Tμ = I∗μIμ: B → B defined by:

Tμf(z) =
ˆ

D

f(w)
(1 − wz)2 dA(w) =

ˆ

D

f(w)Kw(z) dA(w), (3.5)

where Iμ: B → L2(μ) is the canonical inclusion and Kw is the reproducing kernel of B at w, i.e. Kw(z) =
1

(1−wz)2 .
Actually, we can get rid of the analyticity constraint by considering, instead of Tμ, the operator Sμ =

IμI
∗
μ: L2(μ) → L2(μ), which corresponds to the arrows:

L2(μ)
I∗
μ−−→ B

Iμ−−→ L2(μ).

We use the relation (3.5) which implies:

an(Cϕ) = an(Iμ) = an
(
I∗μ
)

=
√

an(Sμ). (3.6)

We set:

cj = 1 − 2δj and rj = εjδ
j (3.7)

One has rj = εj(1 − cj)/2.
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Lemma 3.3. The disks Δj = D(cj , rj), j ≥ 1, are disjoint and contained in Ω.

Proof. If z = x + iy ∈ Δj , then 1 − x > 1 − cj − rj = (1 − cj)(1 − εj/2) = 2δj(1 − εj/2) ≥ δj and 
|y| < rj = θ(δj); hence |y| < θ(δj) ≤ θ(1 − x) and z ∈ Ω. On the other hand, cj+1 − cj = 2(δj − δj+1) =
2(1 − δ)δj ≥ 2ε1δ

j ≥ 2εjδj = 2rj > rj + rj+1; hence Δj ∩ Δj+1 = ∅. �
We will next need a description of Sμ.

Lemma 3.4. For every g ∈ L2(μ) and every z ∈ D:

I∗μg(z) =
ˆ

Ω

g(w)
(1 − wz)2 dA(w) (3.8)

Sμg(z) =
(ˆ
Ω

g(w)
(1 − wz)2 dA(w)

)
1Ω(z). (3.9)

Proof. Kw being the reproducing kernel of B, we have for any pair of functions f ∈ B and g ∈ L2(μ):

〈
I∗μg, f

〉
B

= 〈g, Iμf〉L2(μ) =
ˆ

Ω

g(w)f(w) dA(w) =
ˆ

Ω

g(w)〈Kw, f〉B dA(w)

=
〈ˆ

Ω

g(w)Kw dA(w), f
〉

B

,

so that I∗μg =
´
Ω
g(w)Kw dA(w), giving the result. �

In the rest of the proof, we fix a positive integer n and put:

fj = 1
rj
1Δj

, j = 1, . . . , n. (3.10)

Let:

E = span(f1, . . . , fn).

This is an n-dimensional subspace of L2(μ).
The Δj ’s being disjoint, the sequence (f1, . . . , fn) is orthonormal in L2(μ). Indeed, those functions have 

disjoint supports, so are orthogonal, and:
ˆ

f2
j dμ =

ˆ
f2
j nϕ dA =

ˆ

Δj

1
r2
j

dA = 1.

We now estimate from below the Bernstein numbers of I∗μ. To that effect, we compute the scalar products 
mi,j = 〈I∗μ(fi), I∗μ(fj)〉. One has:

mi,j =
〈
fi, Sμ(fj)

〉
=
ˆ

Ω

fi(z)Sμfj(z) dA(z)

=
¨

Ω×Ω

fi(z)fj(w)
(1 − wz)2 dA(z) dA(w)

= 1
rirj

¨ 1
(1 − wz)2 dA(z) dA(w).
Δi×Δj



JID:YJMAA AID:19189 /FLA Doctopic: Functional Analysis [m3L; v1.145; Prn:4/02/2015; 9:10] P.8 (1-13)
8 D. Li et al. / J. Math. Anal. Appl. ••• (••••) •••–•••
Lemma 3.5. We have

mi,i ≥
ε2
i

32 , and |mi,j | ≤ εiεjδ
j−i for i < j. (3.11)

Proof. Set ε′i = ri
1−c2i

= εi
2(1+ci) . One has εi4 ≤ ε′i ≤ εi

2 . We observe that (recall that A(Δi) = r2
i ):

mi,i − ε′i
2 = 1

r2
i

¨

Δi×Δi

[
1

(1 − wz)2 − 1
(1 − c2i )2

]
dA(z) dA(w).

Therefore, using the fact that, for z ∈ Δi and w ∈ D:

|1 − wz| ≥ 1 − |z| ≥ 1 − ci − ri = 1 − ci − εi

(
1 − ci

2

)
≥ (1 − ci)

(
1 − εi

2

)
≥ 1 − ci

2

and then the mean-value theorem, we get:

∣∣mi,i − ε′i
2∣∣ ≤ 1

r2
i

¨

Δi×Δi

∣∣∣∣ 1
(1 − wz)2 − 1

(1 − c2i )2

∣∣∣∣ dA(z) dA(w)

≤ 1
r2
i

¨

Δi×Δi

32ri
(1 − ci)3

dA(z) dA(w)

= 32r3
i

(1 − ci)3
≤ 32 × 8ε′i

3 ≤ ε′i
2

2 ,

since εi ≤ ε1 ≤ 2−8 implies that ε′i ≤ 1/(32 × 16). This gives us the lower bound mi,i ≥ ε′i
2
/2 ≥ ε2

i /32.
Next, for i < j:

|mi,j | ≤
1

rirj

¨

Δi×Δj

∣∣∣∣ 1
(1 − wz)2

∣∣∣∣ dA(z) dA(w) ≤ 1
rirj

4
(1 − ci)2

r2
i r

2
j

= 4εiεjδi+j

4δ2i = εiεjδ
j−i,

and that ends the proof of Lemma 3.5. �
We further write the n × n matrix M = (mi,j)1≤i,j≤n as M = D + R where D is the diagonal matrix 

mi = mi,i with mi ≥ ε2i
32 , 1 ≤ i ≤ n. Observe that M is nothing but the matrix of Sμ on the orthonormal 

basis (f1, . . . , fn) of E, so that we can identify M and Sμ on E.
Now the following lemma will end the proof of Theorem 3.1.

Lemma 3.6. If δ ≤ 1/200, we have: ∥∥D−1R
∥∥ ≤ 1/2. (3.12)

Indeed, by the ideal property of Bernstein numbers, Neumann’s lemma and the relations:

M = D
(
I + D−1R

)
, and D = MQ with ‖Q‖ ≤ 2,

we have bn(D) ≤ bn(M)‖Q‖ ≤ 2bn(M), that is:
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an(Sμ) = bn(Sμ) ≥ bn(M) ≥ bn(D)
2 = mn,n

2 ≥ ε2
n

64 ,

since the n first approximation numbers of the diagonal matrix D (the matrices being viewed as well as 
operators on the Hilbertian space Cn with its canonical basis) are m1,1, . . . , mn,n. It follows that, using (3.6):

an(Iμ) = an
(
I∗μ
)

=
√

an(Sμ) ≥ εn
8 . (3.13)

In view of (3.6), we have as well an(Cϕ) ≥ εn/8, and we are done. �
Proof of Lemma 3.6. Write M = (mi,j) = D(I + N) with N = D−1R. One has:

N = (νi,j), with νi,i = 0 and νi,j = mi,j

mi,i
for j �= i. (3.14)

We shall show that ‖N‖ ≤ 1/2 by using the (unweighted) Schur test, which we recall [5, Problem 45]:

Proposition 3.7. Let (ai,j)1≤i,j≤n be a matrix of complex numbers. Suppose that there exist two positive 
numbers α, β > 0 such that:

1.
∑n

j=1 |ai,j | ≤ α for all i;
2.

∑n
i=1 |ai,j | ≤ β for all j.

Then, the (Hilbertian) norm of this matrix satisfies ‖A‖ ≤
√
αβ.

It is essential for our purpose to note that:

i < j =⇒ |νi,j | ≤ 32δj−i, (3.15)

i > j =⇒ |νi,j | ≤ 32(2δ)i−j . (3.16)

Indeed, we see from (3.11) and (3.14) that, for i < j:

|νi,j | = |mi,j |
mi,i

≤ 32εiεjε−2
i δj−i ≤ 32δj−i

since εj ≤ εi. Secondly, using εj/εi ≤ 2i−j for i > j (recall that we assumed that εk+1 ≥ εk/2), as well as 
|mi,j | = |mj,i|, we have, for i > j:

|νi,j | = |mj,i|
mi,i

≤ 32εj
εi
δi−j ≤ 32(2δ)i−j .

Now, for fixed i, (3.15) gives:

n∑
j=1

|νi,j | =
∑
j>i

|νi,j | +
∑
j<i

|νi,j | ≤ 32
(∑

j>i

δj−i +
∑
j<i

(2δ)i−j

)

≤ 32
(

δ

1 − δ
+ 2δ

1 − 2δ

)
≤ 32 3δ

1 − 2δ ≤ 96
198 ≤ 1

2 ,

since δ ≤ 1/200. Hence:
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sup
i

(∑
j

|νi,j |
)

≤ 1/2. (3.17)

In the same manner, but using (3.16) instead of (3.15), one has:

sup
j

(∑
i

|νi,j |
)

≤ 1/2. (3.18)

Now, (3.17), (3.18) and the Schur criterion recalled above give:

‖N‖ ≤
√

1/2 × 1/2 = 1/2,

as claimed. �
Remark. We could reverse the point of view in the preceding proof: start from θ and see what lower 
bound for an(Cϕ) emerges. For example, if θ(h) ≈ h as is the case for lens maps (see [8]), we find again 
that an(Cϕ) ≥ δ0 > 0 and that Cϕ is not compact. But if θ(h) ≈ h1+α with α > 0, the method only 
gives an(Cϕ) � e−αn (which is always true: see [8, Theorem 2.1]), whereas the methods of [8] easily give 
an(Cϕ) � e−α

√
n. Therefore, this μ-method seems to be sharp when we are close to non-compactness, and 

to be beaten by those of [8] for “strongly compact” composition operators.

3.1. Optimality of the EKSY result

El-Fallah, Kellay, Shabankhah and Youssfi proved in [4] the following: if ϕ is a Schur function such that 
ϕ ∈ D and ‖ϕp‖D = O(1) as p → ∞, then ϕ is a symbol on D. We have the following theorem, already 
stated in the Introduction, which shows the optimality of their result.

Theorem 3.8. Let (Mp)p≥1 be an arbitrary sequence of positive numbers such that limp→∞ Mp = ∞. Then, 
there exists a Schur function ϕ ∈ D such that:

1) ‖ϕp‖D = O(Mp) as p → ∞;
2) ϕ is not a symbol on D.

Remark. We first observe that we cannot replace lim by lim sup in Theorem 3.8. Indeed, since ϕ ∈ D, the 
measure μ = nϕ dA is finite, and

∥∥ϕp
∥∥2
D = p2

ˆ

D

|w|2p−2 dμ(w) ≥ cp2
(ˆ

D

|w|2 dμ(w)
)p−1

≥ cδp,

where c and δ are positive constants.

Proof of Theorem 3.8. We may, and do, assume that (Mp) is non-decreasing and integer-valued. Let (ln)n≥1
be a non-decreasing sequence of positive integers tending to infinity, to be adjusted. Let Ω be the subdomain 
of the right half-plane C0 defined as follows. We set:

εn = − log
(
1 − 2−n

)
∼ 2−n,

and we consider the (essentially) disjoint boxes (k = 0, 1, . . .):

Bk,n = B0,n + 2kπi,
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with:

B0,n =
{
u ∈ C; εn+1 ≤ Reu ≤ εn and |Im u| ≤ 2−nπ

}
,

as well as the union

Tn =
⋃

0<k<ln

Bk,2n,

which is a kind of broken tower above the “basis” B0,2n of even index.
We also consider, for 1 ≤ k ≤ ln − 1, very thin vertical pipes Pk,n connecting Bk,2n and Bk−1,2n, of side 

lengths 4−2n and 2π(1 − 2−2n) respectively:

Pk,n = P0,n + 2kπi,

and we set:

Pn =
⋃

1≤k<ln

Pk,n

Finally, we set:

F =
( ∞⋃

n=2
B0,n

)
∪
( ∞⋃

n=1
Tn

)
∪
( ∞⋃

n=1
Pn

)

and:

Ω =
◦
F

Then Ω is a simply connected domain. Indeed, it is connected thanks to the B0,n and the Pn, since 
the Pk,n were added to ensure that. Secondly, its unbounded complement is connected as well, since we take 
one value of n out of two in the union of sets Bk,n defining F .

Let now f : D → Ω be a Riemann map, and ϕ = e−f : D → D.
We introduce the Carleson window W = W (1, h) defined as:

W (1, h) =
{
z ∈ D; 1 − h ≤ |z| < 1 and |arg z| < πh

}
.

This is a variant of the sets S(1, h) of Section 2. We also introduce the Hastings–Luecking half-windows W ′
n

defined by:
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W ′
n =

{
z ∈ D; 1 − 2−n < |z| < 1 − 2−n−1 and |arg z| < π2−n

}
.

We will also need the sets:

En = e−(Tn∪B0,2n+1∪Pn) = e−(B0,2n∪B0,2n+1∪P0,n),

for which one has:

ϕ(D) ⊆
∞⋃

n=1
En.

Next, we consider the measure μ = nϕ dA, and a Carleson window W = W (1, h) with h = 2−2N . We 
observe that W ′

2N ⊆ W and claim that:

Lemma 3.9. One has:

1) w ∈ W ′
2N =⇒ nϕ(w) ≥ lN ;

2) ‖ϕp‖2
D � p2 ∑∞

n=1 ln16−ne−p4−n .

Proof. 1) Let w = reiθ ∈ W ′
2N with 1 − 2−2N < r < 1 − 2−2N−1 and |θ| < π2−2N . As −(log r+ iθ) ∈ B0,2N , 

one has −(log r + iθ) = f(z0) for some z0 ∈ D. Similarly, −(log r + iθ) + 2kπi, for 1 ≤ k < lN , belongs 
to Bk,2N and can be written as f(zk), with zk ∈ D. The zk’s, 0 ≤ k < lN , are distinct and satisfy 
ϕ(zk) = e−f(zk) = e−f(z0) = w for 0 ≤ k < lN , thanks to the 2πi-periodicity of the exponential function.

2) We have A(En) � e−2ε2n+24−2n ≤ 4−2n (the term e−2ε2n+2 coming from the Jacobian of e−z) and we 
observe that

w ∈ En =⇒ |w|2p−2 ≤
(
1 − 2−2n−1)2p−2 � e−p4−n

.

It is easy to see that nϕ(w) ≤ ln for w ∈ En; thus we obtain, forgetting the constant term |ϕ(0)|2p ≤ 1, 
using (2.5) and keeping in mind the fact that nϕ(w) = 0 for w /∈ ϕ(D):

∥∥ϕp
∥∥2
D = p2

ˆ

ϕ(D)

|w|2p−2nϕ(w) dA(w)

≤ p2

( ∞∑
n=1

ˆ

En

|w|2p−2nϕ(w) dA(w)
)

≤ p2

( ∞∑
n=1

ˆ

En

|w|2p−2ln dA(w)
)

� p2
∞∑

n=1
ln16−ne−p4−n

,

ending the proof of Lemma 3.9. �
End of the proof of Theorem 3.8. Note that, as a consequence of the first part of the proof of Lemma 3.9, 

one has

μ(W ) ≥ μ
(
W ′

2N
)

=
ˆ
′

nϕ dA ≥ lNA
(
W ′

2N
)

� lNh2,
W2N
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which implies that sup0<h<1 h
−2μ[W (1, h)] = +∞ and shows that Cϕ is not bounded on D by Zorboska’s 

criterion [12, Theorem 1], recalled in (2.7).
It remains now to show that we can adjust the non-decreasing sequence of integers (ln) so as to have 

‖ϕp‖D = O(Mp). To this effect, we first observe that, if one sets F (x) = x2e−x, we have:

p2
∞∑

n=1
16−ne−p4−n

=
∞∑

n=1
F

(
p

4n

)
� 1.

Indeed, let s be the integer such that 4s ≤ p < 4s+1. We have:

∞∑
n=1

F

(
p

4n

)
�

s∑
n=1

4n

p
+

∑
n>s

F
(
4−(n−s−1)) � 1 +

∞∑
n=0

F
(
4−n

)
< ∞,

where we used that F is increasing on (0, 1) and satisfies F (x) � min(x2, 1/x) for x > 0. We finally choose 
the non-decreasing sequence (ln) of integers as:

ln = min
(
n,M2

n

)
.

In view of Lemma 3.9 and of the previous observation, we obtain:

∥∥ϕp
∥∥2
D � p2

∞∑
n=1

16−ne−p4−n

ln

≤ p2
p∑

n=1
16−ne−p4−n

lp + p2
∑
n>p

16−nln

� lp + p2
∑
n>p

4−n � lp + p24−p � M2
p ,

as desired. This choice of (ln) gives us an unbounded composition operator on D such that ‖ϕp‖D = O(Mp), 
which ends the proof of Theorem 3.8. �
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