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The objective of this paper is to derive, from the Navier—Stokes equations in a
shallow domain, a new bidimensional shallow water model able to filter the high
frequency oscillations that are produced, when the Reynolds number is increased,
in turbulent flows. With this aim, the non-dimensional Navier—Stokes equations
are time-averaged, and then asymptotic analysis techniques have been used as in
our previous works (Rodriguez and Taboada-Vézquez, 20052012 [8-14]). The small
non-dimensional parameter considered, ¢, is the quotient between the typical depth
of the basin and the typical horizontal length of the domain; and it is studied what
happens when ¢ becomes small. Once the new model has been justified, by the
method of asymptotic expansions, we perform some numerical experiments. The
results of these experiments confirm that this new model is able to approximate
analytical solutions of Navier—Stokes equations with more accuracy than classical
shallow water models, when high frequency oscillations appear. To reach a given
accuracy, the time step for the new model can be much larger (even four hundred
times larger) than the time step required for the classical models.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

As it is well known, the equations governing the behavior of a fluid are the Navier—Stokes equations.

Due to their strong nonlinearity, high frequency oscillations are produced when the Reynolds number is

increased, and the flow becomes unstable and turbulent. It is computationally very expensive to solve the

equations directly, so at the moment, the most common approach in hydraulic engineering practice is to
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solve the Reynolds Averaged Navier—Stokes equations, in which the effect of turbulence is modeled rather
than solved.

We approximate Navier—Stokes equations using a shallow water model, but if the flow is turbulent, a very
small time step must be chosen. This paper is focused on the derivation of a new bidimensional time-averaged
shallow water model able to reduce these oscillations, and then able to achieve good results with larger time
steps.

Filtering has given good results when working with turbulent Navier—Stokes equations (see [15]). In the
literature, we can find that the separation between large and small scales is traditionally assumed to be
obtained by applying a spatial filter to the Navier—Stokes equations (see [1,4]); but time filtering is also
suggested by several authors (see [2,7]). In this work, we shall use a time filter, thus avoiding to model the
spacial filtered stress tensor (see [1]).

Asymptotic analysis has been applied successfully to derive and justify shallow water models. The new
model, developed from the incompressible Navier—Stokes equations with free surface, has been deduced in
the spirit of the method proposed in our previous works [8-14] and [16]. In order to obtain a shallow water
model, we consider a domain with small depth compared with its other dimensions. We use in the sequel the
thin-layer assumption and introduce a “small” non-dimensional parameter ¢ = Ho/Lc where He and Lo
are, respectively, the typical scales for the vertical and the horizontal dimensions of the fluid domain of
interest.

The outline of the paper is as follows. In the next section we introduce and render non-dimensional the
model that serves as our starting point. Then, the time averaging process is described in Section 3 and
asymptotic analysis is applied following the ideas of [8-14] (Section 4) to derive our shallow water model
that is presented in Section 5. We show, in Section 6, that this new model is able to obtain a given accuracy
using time steps larger than the time steps needed by classical shallow water models. Finally, we make some
concluding remarks in Section 7.

2. The three-dimensional model equations

In this section we present the three-dimensional incompressible Navier—Stokes model that serves as the
starting point for our subsequent development. The first subsection gives the basic mass and momentum
balance laws for a basin with varying bottom topography and a free top surface, and supplements them
with appropriate boundary conditions. In Section 2.2 we introduce the shallow water scaling, define a
non-dimensional parameter and non-dimensionalize the three-dimensional model in terms of that parameter.

2.1. Three-dimensional incompressible flow

Let us start with the Navier—Stokes system [5] for incompressible homogeneous fluids, with gravity and
Coriolis force, evolving in a sub-domain of R?. As the domain, the functions and variables involved in this
problem depend on &, we indicate this dependence with superscript €. Therefore, we have the following
general formulation expression:

ous /. . 1 L

€ . 1> € — EPS AE € F€ 1
8t€+(U v:) O VP ATT L F (1)
divU® =0 (2)

and we consider this system for
t°€[0,T], (2°9°) € DCR? B (2% y°) < 2° < S°(t°,25,9°)

where:
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Fig. 1. Notations: water height H®(t°, 2%, y%), free surface S°(t°, 2%, y°) and bottom B®(z°, y©).

o S¢(t°, 2%, y°) represents the free surface elevation (unknown) and B¢ the bathymetry (it is not constant
and it is supposed to be known). The water height is H® = S — B¢ (see Fig. 1)

o US = (UE(t5, 2%, 9%, 2°), U5 (¢, 2%, %, 2°), US (15, 2, yF, 2°)) is the three-dimensional velocity of the fluid

o Pe(t°,2%,y%, 2°) is the pressure

e po denotes the density of the fluid

e v is the kinematic viscosity

. Fé = —gE —2& x U is the volume force per unit mass, where g is the gravitational acceleration (assumed
constant) and —2& x U* is the Coriolis acceleration (where the angular velocity of rotation of the Earth
isd=2a (sin goE + cos cpj') with @ = 7.29 x 10~° rad/s; 7, 7and k denote the unit vectors pointing East,

North and vertically upward (respectively); ¢, the North latitude, is considered constant).

The kinematic continuity condition

€ 8H6 EaSE EaSE £ € € € £
U3:8t5 +U1%+U28y5 at 2% = S°(¢%, 2%, y°) (3)

is rewritten in equivalent form (for incompressible fluids):

Se Se

0H*® 7] e, e O e

W—F%/Uldz +a—y5/U2dZ =0 (4)
Be Be

Egs. (1)-(2) must be supplemented by boundary conditions.

e At the bottom,
— the non-penetration condition is satisfied:

U655 =0 at 2z = B(2%,y°) (5)

where n° denotes the outward unit normal to the boundary of the domain;
— tangential forces must be equal to the friction force:

(I- 6" @d)T96° =Fy  at 2 = B*(2",y") (6)

Typically, the friction force per unit of surface area is of the form F5, = — poC}E;C|I_J:E |[_j5 (C% is small),
see for example [3] or [17].
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e On the free top surface we assume that the only external force acting on the fluid is the wind stress.
In particular, we assume that the surface tension and ambient atmospheric pressure variations are
negligible. This leads to the boundary condition

T0® = — P (5,25, y°)d® + ]5:%, at 2 = S°(t%, 2%, y°) (7)

S

where ﬁ%v is the force of the wind and P¢ is the atmospheric pressure at the surface (supposed known).

The stress tensor (T¢) is given by:

e QU:
jjisjz_Ps(sij +M<8UZ + ]> ivj:1a273 (8)

8:6? 0xs
where 2§ = 2%, 2§ = y°, 2§ = 2%, p = pov is the dynamic viscosity and 6;; is Kronecker’s delta.

We also suppose that the incoming and outcoming flows are known at each instant (other kind of boundary
conditions may be considered). Finally, initial conditions must be imposed too.

2.2. Non-dimensionalization

The shallow water approximation is characterized by the smallness of a non-dimensional parameter that
we can identify assuming that the typical depth of the basin (H¢) is much smaller than the typical horizontal
length (L¢), i.e., that

H
== where e <<1 (9)
Le

This small parameter is an aspect ratio.
We introduce the non-dimensional independent variables ¢, z, y and z by

P (10)

te _af _y _
LC7 ELC

Y

where T¢ is a typical time. Recalling (9), the non-dimensional water height and bottom surface are defined
by

He(t€7x€7y€) Be(x€7y5)
h(t =—2 77 ) = 11
(t,z,y) Io (z,y) Lo (11)
so the non-dimensional top surface is given by
Se(t5, 2%, y°)
twy) =27/ 12
s(tya,y) = 2 (12)
We shall now introduce non-dimensional functions and constants:
15 TC € £ 15 £ € .
ui(tvxuyv‘z): Ui(t,fE,y,Z), 1217273 (13)
Le
(t ) Tg PE (tE £ £ E) (t ) Té PE (tE £ 6) (14)
p ) x’ ) Z ) '1: 9 ) Z b p ) x? = ) x )
Yy poL%« Yy s Yy poLZC s Yy
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(t2,9,2) = —pa T(t%,2%9%,2%) 4.5 =1,2,3
c
= Loy, fa= L
poL% poL%

where we have assumed that ps does not depend on ¢.

2.2.1. The non-dimensional equations

(16)

(17)

We now express the three-dimensional incompressible Navier—Stokes system (1), (2) and (4) in terms of

the above non-dimensional variables and functions:

ous oy - Ous 8u1 lu dui  Op° |1 (9% N 82u1 1 0%us
ot "V ox 02 O a2 o 20

+2¢ ((sin ) uj — (COS@) u3)
ous - 0us 5‘u2 1 3u2 _ opt 1 02us 32u2 1 0%us
a "o e dy o T o T2 g ) R0t
ous - 0us LO0uy 1 e _ 1op° 1 (0%us  O%uf 1 0%u§
ot u18m+u26y P zi 58z+Re 8m2+ y2+€28z2

— G+ 2¢ (cosp) uj
Ouj  Ouj n 1 dug _

dy e 0z
hooo ] o [
—l—%/uidz—i—a—y/ugdz:O
b b
Tc 1 . . .
where v— 2 = e The non-penetration condition (5) yields:

b
&€ 1>
u3—5<u1—+u

The non-dimensional stress tensor can be written:

5% at 2 =1b
Qay Z =

1 [(Ous Ou L
afj =—p0i; + — (6:{:] + oz, i,7=1,2
1 /10us Ou

e i 3 .

e — — [-== —-1.2
73~ Re (e 0z 83:,») Th
ot = 0f 2 10uj

33 Ree 0z

so boundary conditions (6)—(7) result

0b
E5p01 TE5 012 — 13
o | 1 2 _Ob* dus
Tox 712 T Ty T2 T 0 P Re (3(,)2 <8b>2 “ox) ou
+leq— | +lex
5?013 + Egba23 — 053 Oz Oy
Y
20b0b (ui  Ous\ b (10ui  Ous\  (_0b\*Ous  10us
¢ or 8y dy or “ox \ = 92 ox an oy € 0z

(23)

(25)

(26)
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b
Ea—x f‘f
b (16@%)” N N (@)1(@)1 o
oy \ ¢ 0z dy 5@ ox dy ffz
-1 fa
at z=1»> (27)
—€§a€ —6@05 + o} ds
92011 oy 12 13 e P
_5§0.8 _€§0.8 +0,8 — as + 1+< 88>2+( 88)2 szI
oz 12 dy 22 23 Ps _Ea_y 681’ €8y fZVQ
—6§0'8 —e§os + o5 1 "
oz713 " g, 2 T 958
at z=s (28)

3. Time averaging process

The formal derivation of our shallow water model has two steps. We first obtain the time-averaged
Navier—Stokes equations and then make the shallow water approximation.
We define:

t+n
1
ui(t,x,y,z;m) = % / ui(ryxyy, z)dr i=1,2,3 (29)

t—mn

and, in the same way, we also define the other averaged functions of the problem.
If we assume that 0 < n << 1, and we approximate u$ by its Taylor’s expansion for r € (t —n,t +n):

ui(ryx,y, z) = ui (t,x z)—i—%(t x z)(r—t)—i——ﬁ(t z,y,2)(r —t)?
3 ) 7% — Yy I ay7 (9t I ay7 28t2 ) aya
1 9%us 3
b 1y, 2) 1) - (30)
then we have:
. 2ug U '
Uf(t%%%ﬁ) = U?(t,l‘,y, Z) =+ 12 (taxvyaz)a + Ol (thay;'z)ﬁ 4 (31)

It is easy to demonstrate for regular enough functions f¢ and ¢°, and small enough 7, that the following
equalities are fulfilled:

of of

W(t,l'ay,’z;n) = E(tvxayaz;n) (32)
_ 52 re nQ
Fitm,y2) = by, 2m) — o (b y, 2m) 6 + 0(n') (33)
etz y, zim) = f(t, 2,9, 25m)5° (2., 25 m)
ofe 0g° n? 4
+ 2wz 2 )+ O (34
2 re € 2 e
Fe e _ f€,€ 77_ af ag _ga_g 4
P = oo+ (2 o+ ) + 0t (39)

felt g, st ,y) = | atz=s (36)
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Applying (29), (32) and (34) to Egs. (18)—(21), they yield:

O | O (VO g (000
3 3

at Vo at 0tox 2y T\ ot atay
8”1 61_1/3 6261 772 4 _ 6136
+E[“3a +<8t8t82 3] PO =%

1 [(0%us  O*us 1 0%uS , . .
+ = ( o2 + 8y2 + €_2 922 > +2¢((Sln¢) Uy — (COSSO) ’LL3)

dus v . 0us N (% 32u§> n? v . 0us N (8u§ 8%5) n?

ot & ox ot otdr ) 3 U dy ot oty ) 3
. 0us oug 9%us \ n? o Op°
+ [‘582+<8t a0 ) 3| TP =%,

1 (0%u5  O%us 1 0%us .
+ = ( 2 + 7 —|——2 52 ) — 2¢ (sin ) uj

ous _. 0u§ (8u1 82u3> n* __0u (8u§ 82u§> n
3

at Vo ot oo ) 3 T 2oy T ot ooy
. 0u§ oug 0%us n2 4 10p°
+E[“3a +<8t8t02 g | TOU) == -

1 [(0%u5  O*us 1 0%u§ _
il ( o + % +8—2 5. > + 2¢ (cos ) u]

ous  ous  10us

9z oy Tco:

To average Eq. (22), in first place we write u§ and u§ using (33) and we get

o 8 [ (. OPu
8t+a:c/(ulat26> */( *atz 6>d”0(> 0
b

This averaging process provides from (23)-(27):

o
o= (2 25) o
()
e s 21
ob =

=&
£5.011 +5a 07y — 013

e2b55, +edb5s, —a55 | + < L 2 5% i
Z;Z 12 5y 722 23 p Re 1 b\ 2 b\ 2 ox or
5310134'533,023_033 ) T Ea_y

00O (0u5 0w\ 0b (10w 0w ( o\ ous
e dy \ Oy ox ‘oz \ & 02 Or gay dy

(39)

(40)
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2 )
_ _ _ ox 5 5 [ f5,
v grons om\ 1om|\ | G| [ L o\ Lo\ [ )
E@y (5 0z + 8y>+5 8z]} 68— ={[l+e Oz +e dy JiR2 at z=2»
! i,

(46)

Condition (28) is time-averaged too and gives and similar but more complex expression, because s depends
on t and we need to use formula (35).

4. Asymptotic derivation of the shallow water model

After obtaining the time-averaged Navier—Stokes equations, we make the shallow water approximation
by formally expanding solutions of the model in powers of e.

4.1. Asymptotic expansion
Our shallow water model derive from the assumption that the aspect ratio ¢ is small. We make the

shallow water approximation by formally expanding solutions of the model in powers of . We seek a formal
solution in the form of an asymptotic series:

s =u) +eul +eui 4+ i=1,2,3

pF=p0 +epl +e2p 4 -

o5 =0g teay 4o+ 0,5 =1,2,3 (47)
fo, =efp, +e2fh +-+ i=1,2

for. =efty, +E2f3, +-+ i=1.2

The developments for f}%“ fﬁ, (i = 1,2) may begin in the term of order 1 because of their small order of
magnitude (see [16] for a rigorous justification).

We substitute now this expansion into the system of Eqgs. (37)—(46), and grouping the terms multiplied
by the same power of €, we arrive at a series of equations that will allow us to determine @?, p°, etc. Let us
show some particular examples.

The value of i can be found from the incompressibility condition (40) written at the leading order O(e~1):

8_0
G2 = 0=} = w(t,,y) (48)

We now consider the boundary condition (42); to the leading order it becomes:
uy =0 for z =b (49)
S0
ug =0 (50)

In the same way, upon inserting the above expansion into (44), to order O(¢~!), one finds that
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Now, incompressibility equation (40), to the leading order O(1), gives

[ (00 0u _
u3 = / (8_; + 8_;) dz' + ui(t, x,y,b) (52)
b
and the boundary condition (42), together with the fact that 4{ and 49 do not depend on z ((51)), allows
us to write:
i = (b—2) a_afera_ag g (53)
3 ox dy Ugy T2 y

Eq. (39), to order O(e~!), together with above expression for u}, leads us to conclude that p° is constant
with respect to the vertical variable:

op° _ 1 9%
8z ~ Re 022

=0 (54)

and with the information that we obtain from boundary conditions we have:

o — 2 (0u}  Ouj
P’ = ps (a; - 3—;> (55)
Eq. (41), to the leading order O(1), together with (51) becomes
oh 0 o n*o*ul 0 o n* 0%y
b A o_ ' 1 i o_ ' 2 -0 4 5
ot " ox {(“1 63752)%3;;[(“2 6 o ") (56)

In summary, we are able to derive the following first terms and equations:

g =0 (57)
ouk—t  ouk! ob b
=k _ (b _ 1 2 k1 —k—1 _
us = (b z)( D + 9 + uy p + uj oy’ k=1,2 (58)
o _ - 2 (0u]  Ouy
P’ = Ds ( o+ a—;> (59)
2 (0ul Oul
—1 _ _ _ =0y _ <2 [(¥Y1 %2
P = (5= 2@~ 20fcos ) — 1 ( G+ 52 (60)
013 =023 =0 (61)
—k =k
7= 5 0 k-0l ®
oy _ oud  nPoud o*ud  _,oul  n?oud 9*ul A
ot TN Y3 o aror Ty T3 ot ooy O
Y A Y A T e o
T o (8372 T T g ) TG (63)

our  _,oul  _,ou? oud 9*ul  oul 9*u ,Oaul _, 0u}
ot +“13_ oy Ty <8t atax+ﬁatax> 2y "y
ous 0%ul 8_11582121 ,18u1 77_28_12;,62711 + o0
ot oty | ot oty ) " 3. 3 ot ooz V!

+§
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opt 1 (0*ul  o*ut  o%ud . _ _
= —% i ( 81‘21 + a 21 + a 21> +2¢ [(Slnw)u% - (COS@)U%]

ou§ | 03 | n?0uy 0uf | 0u3 | u? 0uf 0%ug
ot Yor T3 ot otox | 2 ay 3 ot otdy

o 1 (0%  0*uy  0%ud ) 0
_8—y _(8x2 + a7 + 9.2 —2¢ (sin o) uy
dus v 6u2 v ,18u2 n? (0u] &*uy  duy Iuj 0 ouy _,0uy
ot Yor "t ox 0 3 \ ot otdxr | Ot Otox 2oy oy
n? (0u§ 0*uy  Oub 0*ul ﬂlau; N n? Oul 0%}
3 \ ot oty ot Otdy 392 3 0Ot dtdz
opt 1 [(0%*uy  0*uk  9%*ud N
a—y _(8x2 + 3y + 9.2 — 2¢ (sin ) uy

oh  Ohu?) ohuy) n?2lo [, 0% o (,0%ud\] . 4
o Tar oy 6 lar\"ae )T oy e )| =000

o(ral)  Ohay) o ([, 0\ o [, Pa\] . .
ar oy 6 or\"ae ) Tag e )| =00
1 (aﬂk out

+0(n*")

no

O(n*)

~k =k ..
vo=—pd; — ,ji=1,2k=0,1,---
7 J+ 8$J+8Iz> bJ

—k 3 -
(, —_— g —_— 1 2 k - 1 2 R
i3 ( 0z 8IE1 ! B B

k=01,

_1 2 (,0u)  dug\ db 1 oud  ous .
= — 2— [— J— — = - —
713 Re ox oy oy ) Ox y + or ) Oy Tryatz
o L (0 o o 3% o\
723~ Re dy + Jr ) Ox or + oy ) Oy T, atz=b
5l _ 2 8_11? ) 8u2 s 1 8111 8_118 s
137 Re ox dy ox dy ox ) Oy
2 2 0 = 3
- 42 25‘u1 4 9us 8u2 0°h 9 28u 8u2 0°h
6Re | Ot \' Ox Oy ) otox or | Oy ) ot20x
d (0u] | duy\ 9h owd  0uy\ 93h
+o (L 4+ 2 + 2+ 52
ot \ dy oxr ) Otdy Oy oz ) Ot20y
+0(nh) —l—le at z=s
-1 1 [0 8122 Os 2 3u1 0us\ s
= —_— —_— —_— 2 —
23 Re \ Oy tor or ) Ox Jr Or + oy ) Oy
N 8_+8_ o (ou  ouf) o%h
6Re | Ot \ Oy Oz ) Otox Oy Ox ) Ot20x
o (o) _ou§\ 0%*h ou)  _ouy\ 3h
— 42 2 =—+2
+ at(ax + 3y>8t8 * <8m + ay) aﬂay}

4—0(1})4—]?1}‘/2 at 2 = s

0 0 0 rl
lesz2: W3:fW3:0atZZS

939

(70)

(71)

(72)
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4.2. First order approximation

We can now consider a first order approximation:

5 =ad +eu; (i=1,2), a§=1u3+eus+eui, pF=p°+ep (77)

The terms @4 (k =0,1,2), p* (k=0,1) and 6% (i = 1,2) are known (see (57)-(61)), so the approximations
of the vertical velocity and the pressure are:

agzaué—&—gug:s[(b—z) (%—f—i—%—?) ’ggb +0§_§j
+ &2 [(b—z) (%—Tf + %Zj) + 1gb + QZZ]
—e{(bz)(%fer%f)ﬁLﬁgZJrquﬂ (78)
7= (R 28 e - - 2steos ) - 2 (G2 + G2)]
= ps +e(s — 2)(G — 2¢(cos p)u?) — % (%{f + 3;;5) (79)
= et els = (G~ 20feos i) — - ( G+ )+ 0) (50)

To obtain closed equations for @ and 49 we have to get rid of the terms %3 and 43 in Eqs. (63) and (65).
We can accomplish this with the following procedure. First integrate those equations in the vertical variable z
from b to s:

2.0 20 2,0
o*uj  0%uy 0°ug

972 + 37 +28 3 )—2¢(Singo)ug

ot T T, T oy T Re

w

aa?+,08a9 00wy Ops 1(

1 ([ oug oul n? (00 0% 9ul 0% ;
_ - (9 _ ouy n” _ 1
hRe ( 0z |-, 0z Z_b) T3 ( ot ooz ot 8t8y> otr) (81)
0u | 008 ,0W  0p, L (06 0w 0% R
ot ~ he 2
ot 19y T U2 dy " 9y  Re \ 922 3 By + 28y8m + 2¢ (sin ) uy
1 82u2 8271% n au? 82u2 aag 82’17,8 A
_ _ dul _ )
hie ( 022 |, 02 z—b> ] ( at otoz | ot 8t8y> o0’ (82)
72
Then, we can find the value o 821 (70) and (58), we write:
ou? 0 oud  ou gOb _,Ob .
N A\ T oy | i=1,2
oz = Reo 013 O, {(b z) < O + a2y ) + uy g + g ay i , (83)
Next, substituting z by s and b, we have:
ou ou; 1 g (o) ou )
7 _ 7 — Py _ =l Ouy - A
0z z=s 0z z=b fie (0-13}2:8 Uz3|z:b) + ha ( ox + 8:‘/ > ! ’ (8 )

To obtain the value of 5,5 at the top surface and at the bottom, boundary conditions (72), (73), (74) and
(75) are used
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8_12% _8_11% =2 2%4’_% 6h+ aﬂ1+6ﬂ2 @
0z |,_, Oz|,_, ox dy ) Ox dy oxr ) Oy
2 =0 = 2 = = 3
7 0 (. 0uy Ous\ 0°h ouy  ouy\ 93h
— 4= (22— 22—
+6{at<ax+ay>atax+ oz " oy ) 0%0n
9 (ou)  9uy\ 9h oud oug\ oh
+o (L4 =2 + 52+ 52
ot \ Oy Oz ) Otdy Oy Oz ) Ot20y
- - o (0u) Ou
1 1 O [ouj 2
+Re(fwl+fm)+hax<a +8y>+0( D (85)
3_@% _a_a% :2<8_ﬂ(1)+28_118)%+(8u1+6u2>@
0z |,_, Oz|,_, Ox dy ) Oy dy Oxr ) Ox
2 =0 = 2j, =0 =0 3
n 0 (0uy Oug\ 0 ouy Ougy\ 0°h
LI i e ) o (24 97"
+6{8t(8x+ 8y>8t8+ ox %oy ) ooy
99 9 (0w} L 0w dug\ 9*h N ou} L 0 duy\ 9°h
ot \ oy ' ox ) otox By | Oz ) 0t20x
= = 0 (0u) Ou
1 1 O (Ouj |, Jup 4
s Re (T, + )+ (55 + 88 + o0t (50)
When we substitute expressions (85)-(86) into (81)-(82), we obtain
00 | G OW 0 (08 0 0o
ot oxr 2 3 \ ot otdx = At Otdy

ouy
0
S ops 1 o%a) ol %) . 0
or | Re (4 022 T oy +38x8y) 26 (sinp) i
1 ul  ou\ Oh ou 8&2 Oh
— 99X 2 et} -
hRe { ( Ox ) * ( dy o Ox ) Oy
27 9 (0w 9E\ 9h 0w 97\ &h
6{5@% —Jmﬁ”@%+@>W%
n 22 % L 9up 8u2 9%h n 8u1 L 9up 6u2 9h
ot \ dy oz ) dtdy oy ox ) Ot?dy

+ o (févl + fr,) +00")
0} | o0 | g0 o (00 P | ou 0%
ot 1 ox oy 3 \ Ot dtdx = Ot Otdy
b, 1 oy oy 0% o
-2
oy ' Re <8x2 o +?’ayax) ¢ (sing) iy
0ug\ Oh (08 0ug) o
hRe{(ay (’9:5) +2(8$ +28y Oy
a ol 8u2 d?h 0wy 9ug\ %h
+— —~ 5+ el i
6 Oy otox Oy Ox ) Ot?0x

o (oud _oud\ 9%h ol _oud\ 0%h
+4§(%+28y>ata +2<—+2

Oz Oy ) O0t20y
Ly 1) + 0t
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We repeat the process from Eqs. (64) and (66) to obtain closed equations for 4} (i = 1,2). We yield

duq 8u1 ,1au1 o0ui  _;0uf
o Mgy Ty Ty, Ty,
w7 (0u] Puy | Ouy 9*uy | dup 0*uy | duy 0%y
3 \ ot 010 T ot orox T 0t oty T ot ordy

0s oh _, oud h 8u8 0 0b
a G+2¢(Sln<p)u2+2¢(cosw) (a 1+h6 2 ay Qay

1 ([ 0%ut  O%ui 0%ud 2 out  oul
T e (4axz i ayz'+3axay>‘%ziﬁ <2ax *‘227) P

1 [oul oul\ on n? [.0h 0 0?h
bt B Wt T 2_ 9 S _
* hRe hRe ( oy + dx ) Oy + 6h (2¢(cos )iy — G) otox
+ig 2% L Ous 0&2 0%h 2 28u1 n % 9%h
Re Ot Ox Oy ) Otox Ox Oy ) Ot20x

2 9 8@1 8u2 0%h 1 8111 8112 0%h
+ + 52 + = + 22
Re 0t \ 9y ox ) dtdy Oy oz ) ot2dy

+ = (févl +f) 00"

ous o 3u2 il 5u2 i 5‘u2 _q 8u2
at a Ty Ty, Ty,
L ou} O*uy | duj Pay  duy P uy N duj, 9*u
3 \ 0t otox | Ot otox | Ot otoy | ot dtdy
- ds o howl
= G 26 (sin ) U7 + 2¢(cos p) (8 113 By )
1 [0%u} 0%ul 0%ul 2 oul ous\ oh
il 4 9YM2 ) Yt
+ Re ( Ox? * 0y? +33x8y> ( oz * Oy ) Ay
1 [out oul\ on n* [ 0Oh 0 9?h
Mm(@+m;w+ 25; Foleos )i = G55
L 4o (oul jou) 9h 2 (oat  oab\ 0%
Re 0t \ Oz oy ) Otdy ox Oy ) Ot20y
L2 2 9 (duy L 0w duy\ 9*h TS 1 (dug ] duy\ 9°h
Redt \ 8y = 0z ) dtox Oy = Oz ) 0120z
3 (Fe+ Th) + 00" (90)

Egs. (87)-(90) are used to obtain the following equations for @ (see (77)):

%+ 8u1+ JOus | n? (0us 0%u5 | Oug 0%
ot 0 ox g oy 3 \ ot dtdx = It Otdy

dps  Os 1 [ 9% o%as 0?5
2B 2G4 2 4

o 837G + 2¢ (sing) a5 + — ( 92 + 37 + Saxay
1

ous  oug\ oh ous  0u§\ oh
— 192 - i
+hRe{(8x+8y)3x+(y+f)x dy

2 ~e 2 3
n= |, 0 (, 0uf 8u2 0°h (’9u2 0’h
% [4375 (2 oz oy ) dtox or0r




J.M. Rodriguez, R. Taboada-Vdzquez / J. Math. Anal. Appl. 428 (2015) 930-950 943

+22 %_’_8@2 0%h N aa1+aa2 33h
ot \ dy dx ) dtdy Ay ox ) 0t20y

. n* Oh 02h Oh_. 0w houg __0b
+ (20(cos @) = Gegr S+ 20(cos p)e [%“1 e T2y Qay}
1 ~ -
+ (f5V1 +fk,) +O0(n*) + O(¢?) (91)

oug v 8u2 8u2 77_2 ous 921 n %821}3
ot & ox 3 \ Ot Otdx ' Ot Otdy

Ops Os (82u2 82u2
ui

- —e—G —2¢ (sinp) a +382ﬂ§
oy oy )i+ 022 dydr

n 1 [ [oug n o0us % ou 3u2 @
hRe dy or Bx Or 8y y

n 77_2 22 oug n 8u2 82h 3u1 8ﬁ§ 0%h
Oy Otax ot20x

6 |“o0
0 (0w _0us\ 9%h o o5\ °h
19 1, o0 4 9%
LT <a + ay)atay (8x 0y>8t26y]}
02 oh 9h ds . s
2 ~E
30 0t 010y ¢(C°S‘p)€(a ity 2)

+ o (fivy + Jh) + 02 + O (9)

+ (2¢(cos p)us — G)e

The system of equations for @; (i = 1,2) (91)—(92) is coupled with the following equation for the water
depth deduced from (67)—(68):

Oh o) ohiz) w2 [d ( @\ 0 ( P\ ..
o ar oy 6 lae\"ae ) oy e )| T 00D (93)

Therefore, if Egs. (91)—(93) are solved, we obtain the horizontal velocity and the free surface elevation.
5. Proposed shallow water model

In this section, we go back the original variables:

Hs(ts7xs7y€) = chh(t’x7y)’ Bs(x‘S?ys) = &‘ch(x7 y)7 (94)
T ~
a(t,x,y) = —CUf(ts,acs,ys), 1=1,2,3, (95)
Le
T2 B 2
P(tw,y, 2) = =25 Pt 2%, %, 2%), - palt,a,y) = —5 PI(5, 2%, y7) (96)
poLlc poL¢
€ T2 ze —€ T2 ze
fp = —SF,, fp=—CF 97

and we present the model that we have derived. We begin summarizing the results that we have achieved
in this theorem:

Theorem 1. Let us suppose that there exists asymptotic expansion (47). Then approximated solution
(94)-(96) verifies
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o (PR )] e

=T (n*)

ate 6 0(t)?

22 = A
wc =c 272 (90 \ 00 1. oe o
U .0 O VP4 uAT .U
+V +1 v(atf pie = o VP +3vv (V-0 )

22 D e € 2 17¢€
vV [ae . nT& [, OR . OH 5e 0°H
+ 272 {R VH® + 7 {2 oV (a7 ) TRV (g

rTE

22 € €
+ 2P (sin @) (_U? ) + (2@ (cos ) US — g) [VSs + 1 I o \% <8H )}

Us 3H® ot° ot
2 € ]_ o€
1 5 SIS —
4 2 (cos ) [§H5v( 15)+( U -VB 462H V.U )]

L¢
T2

(Fu +Fr) + 2500 + 25 0(2) (99)

72

~ _ ~ € L2
P® =P+ po (55— 2°) (9 — 2®(cos p)U5) —2uVe - U + 0(62)p(1),—QC (100)
c

€ - €&

U =(B°—25)ve-U +U -VB* (101)

—e L _
where U = (U, U§) is the time-averaged horizontal velocity approzimation, Ps is the time-averaged atmo-

€ =€

spheric pressure at the surface, ¥y, Fr are the wind and friction forces and

ous  _aU;  oUs  9U;
4 2
P e e
ous  oUs ous U3
2 4
o 0w “ow Yoy

We, finally, propose the following model that we have derived neglecting the O(e?) and O(n*) terms in
the above equations. For notational convenience, we henceforth drop the~

22 2T

[z nTg 0°U
H — = 102
(U L 0 (102)

00 e zo T2 (00 90
g= VU U+ ot | ot

22 N 2
v (o <o PTE [ ORF OHT\ . 02H*
VH 2o . .
+ 2 {R VH® + = [ate V(% ) RV 5

e ] T2 9H® _ (OH°
+ 2 (sin ) <5.€> + (2®(cos ©)UT — g) [VSE + Z,Hac ote v ( ote )]
1

0H*

FYE + Ve

- —%vﬁg +AT +30¥ (V- 0)

=g =g

1
1 _ _ . € ZHEY - U 1 o€ —e

— €

P = Py + po (8¢ — 2) (g — 2®(cos p)Us) — 2uV< - U (104)

€ =g

U= (B°—2*)Vve-U +U VB (105)
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Remark 1. In practice, we neglect the term in n? in Eq. (102), because it does not provide significant
improvements in the accuracy of the numerical solutions that we present in Section 6, but it causes some
problems of stability. Therefore, in what follows, we replace (102) by

%1;1: VS (Hffjs) —0 (106)

6. Numerical experiments

In this section we shall compare model (103)-(106) (we shall refer to it as NM) with other shallow water
model, not averaged in time, obtained in [8] using the same asymptotic techniques. We shall refer to it
as SW, and it can be written as in [9]:

OH¢® —
ote +Ve (HEUE> =0
oUe L 1 . 01T -
Us.- U= -——VP? AU® + —[VU*® UV H®
5 +V pov >+ v +HE[V + VUV

G I D) =09 (B ) 20 (o (1)

= 5 1 € e
-U¢-VB +§HV-U>H (107)

+ (cos ) |U1 V.S® + %HEV(Uf) + ( 0
where the horizontal velocity U¢ is not averaged in time.

In order to compare models (103)-(106) and (107), we shall consider some analytical solutions of
Navier-Stokes equations (1)-(8) whose velocity rapidly oscillates in time. Then we solve numerically
Eqgs. (103)—(106) and (107) for the data provided by the analytical solutions of Navier—Stokes equations,
and finally we compute the errors committed by each of the models.

To perform the numerical simulations, we have opted to use MacCormack scheme (see [6]) due to its
good stability properties, its easy implementation, and to the fact that has been applied successfully to the
resolution of similar problems.

Let us introduce now the first family of exact solutions to Navier—Stokes equations that we shall use to
compare models SW and NM. Horizontal and vertical velocity oscillate in time, but the horizontal velocity
depends on variable x¢ while the vertical velocity depends on variable z°:

2 2
Ui = (A1 + Asx®)sin M) + (B1 + Bax®) cos Ty
T, T,
o . 2mng . 2mng
+ (Cy 4 Coxf) sin t° | + (D1 + Doz®) cos t
T 1y
Us =0
2 2 2 2
U =-z° [AQ sin ( 7;:1 t€> + Bs cos ( 7;:1 te) + Cysin < 7;:2 t€> + Dy cos < 7;:2 ts>}
B* =0

oU$
.P‘E :PE(ZE:HE)—2M823+F1§/3
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Table 1

Error bounds for example (108) with data (109) and nTc = 2.5.
At Error bound Error bound Error bound Error bound

for H SW for H NM for U; SW for Uy NM

0.01 0 0 3.1e3 9.7e—3
0.005 0 0 2.6e0 4.8e—3
0.001 0 0 4.0e—1 9.7e—4
0.0001 0 0 3.8e—2 9.7e—5
0.000025 0 0 9.5e—3 2.4e—5

Fy = Fg, =0
2] (108)

where A;, B;, C;, D;,n;(i = 1,2) and T}, are any real value. We are able to calculate an analytical expression
for P¢ from Eq. (1), but it is too long and we have decided not to include it here.

We consider that D is a rectangular basin of length 10 meters and width 2 meters with a 100 x 20 points
grid (that is, the discretization step used is Az® = Ay® = 0.1). We choose the values of the parameters so
the maximum depth is always smaller than 1 meter, and thus the aspect ratio is always smaller than 107!.
We solve in temporal interval [0, 10] with different time steps.

We introduce these two sets of values for the constants:

A =B =20, =D1=05,Ay=By=Cy =Dy =0,E =1 (109)

A =By =1,C, =Dy =054 =By, =05,Co =Dy =0,E = 0.75 (110)

With election (109) U does not depend on z¢, but with election (110) it does. We present in Tables 1 and 3
the infinity-norm errors obtained when we approximate solution (108) using models (103)-(106) and (107)
with these choices of constants. For both examples we take: ® =0, g = 9.8, p = 998.2, v = 1.02 x 1075,
T, =1,n1 = 0.1, ng = 100.

We remark that in model (103)-(106) we must choose 1 and T, where T¢ is the characteristic time and
27 is the length of the averaging interval for the non-dimensional time variable; but the relevant choice here
is the value of the product nT¢ because 21T is the length of the averaging interval for the dimensional
time variable.

In Table 1 we show the error bounds when comparing the computed solution of SW with the Navier—
Stokes solution (108), and when comparing the computed solution of NM with the averaged version of (108).
We can see that, to obtain the same order of accuracy than the new model (103)-(106) with At = 1072,
model (107) has to be solved taking At = 2.5 x 107>, that is, the time step must be 400 times smaller. In
this example, the depth is computed exactly by both models because it just depends on time.

The times (in seconds) required to solve models SW and NM for the example of Table 1 are presented in
Table 2. We have used for these computations a personal computer with an Intel(R) Core(TM) i5 2.80 GHz
processor (6 GB RAM). We can see in this Table 2 that execution time for the new model increased
compared with model SW for the same time step, but we can observe that it is shorter if we want to obtain
the same accuracy. For example in this case, using the new model, in 8.4 seconds we have a more accurate
approximation of the solution than the one obtained with model SW in 268 seconds. We see that the time
needed to achieve the same accuracy with (107) is 1073 seconds.

In Table 3 we observe that, when velocity depends on the spatial variable z¢, the results achieved with
the new model are quite better too. When we introduce data (110), we need to introduce a small value for
n (nTc = 5 x 1073) to guarantee the convergence of the scheme for At = 10~*. For larger values of At, it
is possible to choose larger values of 7.
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Table 2
Execution times (in seconds) of the example of Table 1.
At =10"2 At=15x 1073 At=10"3 At =101 At =25x107°
SW 2.9 5.4 27.0 268.5 1073.0
NM 8.4 16.4 81.5 812.6 3284.9
Table 3
Error bounds for example (108) with data (110) and nTc = 5 x 1073,
At Error bound for H SW Error bound for H NM Error bound for U; SW Error bound for U; NM
0.005 9.8e—3 9.8¢—3 3.1e0 1.4e—2
0.001 1.9e—3 1.9e—3 4.7e—1 2.7e—3
0.0001 1.9e—4 1.9e—4 4.4e—2 2.7e—4

Error bounds for example (108) with data (110) andn TC:S x107°

10°F |
107"k |
A
102} B
e

-3 o
. o —%— U, sw ]
//// time-averaged

Y S -
107F 7
- 0.001 0.005

At

Fig. 2. First order accuracy of the numerical scheme.

In Fig. 2 we show the error bounds of Table 3. It can be well appreciated that the numerical scheme is
first order accurate as it corresponds to MacCormack scheme.
Let us consider now the following solution to Navier—Stokes equations where water depth depends on x*:

2 2 2 2
Ui = Az® |sin e ) +cos [ 2t ) 4osin | 2245 ) + cos ( i tg)}
T, T, T, T,
US =0
2 2 2 2
Ui = —Az° |sin T4 ) 4 cos [ 242 ) +sin [ 24 ) + cos ( T tsﬂ
T, T T, Ty
B =0
AT (m41) |:cos<2;:1 t5>—sin<277r.%t€) cos(z‘;ﬂ;mts)sixl<2;:2t5>:|
27 ni + ng
H® = B(z%)™e
£ £ £ £ 8U€ IS8
PE=P(:*=H )72;1823 + Fyy,
Fﬁvl = F§V2 =0
F} =0 (111)

with m € N, A, B, n;(i = 1,2) and T}, any real value.
For the following values of the constants

A=0.03,B=01,n =011, =100,T, =1,m =1 (112)
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Table 4

Error bounds for example (111) with data (112) and nTo = 1.3034 x 1072,
At Error bound for H SW Error bound for H NM Error bound for U; SW Error bound for U; NM
0.001 - 1.2e—2 - 2.1e—1
0.0001 7.2e—2 2.9e—3 3.6e—1 5.1le—2

U, SW(at=5107%
time—averaged U1 NM (A t=10'2)

Fig. 3. Comparison between U; SW and U; NM.

time step must be very small (At = 10~%) to achieve the convergence of model SW while the new model
gives reasonable results with At = 1073 as we show in Table 4.

We can observe from Tables 3 and 4 that, when the solution depends on z°, we need to take small values
of nTe. This is due to the fact that approximation (31) (and, as consequence, all formula (32)-(36)) is
only valid for small values of 1 (specially when the approximated function is rapidly oscillating), but then,
averaged solution is almost equal to exact solution, and we shall also need a very small time step for model
(103)-(106). Nevertheless, we see in Table 4 that model (103)-(106) achieves better results than the model
(107) even in the worst case.

Finally, we present a more realistic numerical experiment which does not give a precise solution of the
Navier—Stokes equations. Zero—Dirichlet boundary conditions are imposed for horizontal velocity. At the
initial time, horizontal velocity is set to be zero and the water depth is:

1+40.1sin(2rz) if x € [0,3) U (7,10]

Hy(w.y) = { 1.9+ 0.1sin(2rz) if [3,7] (113)

In this case, as we have already commented for the previous example, time step must be quite small
(At = 5 x 107%) to achieve the convergence of model SW while the new model gives reasonable results
even with At = 1072. We have plotted together, in Fig. 3, the approximations of the U; component of the
horizontal velocity that both models provide. We observe that the new model reduces the high frequency
oscillations that appear using the shallow water model. If we compare the execution times, we have that
the time required to solve model SW with this data is 45 seconds while model NM runs in just 7 seconds.

7. Conclusions

We have used asymptotic analysis to obtain from the time-averaged non-dimensional Navier—Stokes
equations a new shallow water model. The new model is able to filter (in some representative cases) the
high frequency oscillations and this allows us to choose a much larger time step.

We have made some numerical comparisons between the new model and the shallow water model proposed
in [8]. Numerical experiments confirm that this new model is able to obtain a given accuracy using larger
time steps than the time step needed by the other shallow water model (see Tables 1, 3-4 and Fig. 3). In
some cases, the time step can be even four hundred times larger. This enhancement leads to much shorter
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execution times compared with the execution times required by the classical shallow water model to obtain
the same precision (see Table 2).

Although the numerical results achieved improve those of the model without time filtering, we have
observed not so good results in some cases. We think that it can be caused by the absence of spacial
filtering, and it would be convenient to use a combination of spacial and time filters, as suggested in [2],
because the use of spacial “projective” filters or modeling of subgride-scale stress tensor is necessary to
reduce the number of degrees of freedom of the problem.
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