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1. Introduction

Learning algorithms aim to find some relationship between the input and the output from given sample
set. A classical setting [2] for such problem can be described as follows. Denote X and Y as input space and
output space, where X is a compact metric space and Y = R in regression problems. Assume p is a joint
probability distribution on the sample space Z := X X Y. px is its marginal distribution on X and p(y|x)
is the conditional distribution on Y given X = z. Then we have

[ t@an=[ [ radptuloidps.
Z XY

For any function f : X — Y we use the least square loss L;s(f(z),y) = (f(z) — y)? to evaluate the
performance. Then the generalization error
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E(f) = / (f(z) - y)%dp

Z

can measure the produced error over the whole sample space for f. Our goal is to find the regression function

fo= /ydp(y\x) = E(ylz),

Y

which minimizes £(f). Since p is hard to be obtained in reality, algorithms are usually based on a sample
z = {z;}", = {(xs,y:)}™, drawn from the distribution p. One of such algorithms is ERM (empirical risk
minimization) learning scheme [15]

m

o = argin — S "(f(1) — ),

Hm 4
i=1

where H is the hypothesis function space. In learning theory, we often use RKHS H g (reproducing kernel
Hilbert space) for hypothesis space. That is, for a given Mercer kernel K : X x X — R which is continuous,
symmetric and positive semi-definite (the induced matrix (K (z;,x;))j—, is positive semi-definite), denote
K,(y) = K(x,y) for any z,y € X, then

Hi = span{K,, v € X},

with inner product (K, Ky)x = K(x,y). Here we recall that the reproducing property is (f, K;)x = f(x)

for any f € Hi and || f|lco < &||f||x where k = \/supz’yex K(x,y).

In this paper, we investigate ERM algorithm with a coefficient penalty term,

fax = arg fénqrgg’z % ;(f(xi) —i)” + AQ(f). (1)

We follow the work of [22], in which the hypothesis space is a sample dependent function space

HK,z: {ZCZK:“ :Ci€R7Z’:1’27...7m}'

=1

Then the regularization term can be of the form Q(f) = mP=1 3" |¢;|P for a function f = Y"1", ¢;K,,.

One important advantage of the coefficient regularization algorithm is we can choose a more general
kernel, such as indefinite kernels, than that we did in the classical K-norm regularization. Note that | f||% =
c'Kxe, ¢ = (c1,-+,¢m) for f = 3" ¢;K,,, here the kernel matrix Ky = (K (xi,25)){%=; 1s positive
definite while choosing positive definite kernel K. When K is indefinite one, it is not suitable to use such
regularization term since K, may not be positive definite and ¢ Kyc may be negative. Instead, £> norm
of ¢ can still remain positive. We refer to [14] for a detail analysis. It is an interesting work to extend our
work in this paper to the algorithms with general indefinite kernels and the MEE (minimum error entropy)
algorithms with regularization, which has been studied in [6].

There are already a large number of literature studying such algorithms. [23,9] and [13,8] respectively
3
etc. In [4,7], the authors did a lot of work for a general 1 < p < 2. In this paper, we extend our previous

discussed the case p = 1 and p = 2. For the algorithms with p = analysis can be found in [24] and

work in [16], and conduct an error analysis based on a constructive stepping-stone functions for the general
pe(L,2]
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2. Main result

Throughout the paper, we assume
lyl < M (2)

for some constant M > 0 almost surely. It is natural to apply a projection technique to improve the learning
rate [12]. The projection operator 7 on the space of measurable function f: X — R is

M f(z) > M,
m(f(x)) =4 flx) M= f(z)>-M,
-M f(x) < —M.

The integral operator Ly : L%X — L%X defined by
Lif(@) = [ 10Kz, )dpx ()
X

is also important in learning theory and our analysis. It has been studied in [10]. In [2], the authors claimed
that for a Mercer Kernel K, the associated L is a compact operator with non-increasing positive eigenvalue
sequence fi;. And the induced fractional operator

Kf(@) =Y i)
i>1
is well-defined, for any f =37, ci¢i € L3 with orthogonal basis {¢;}i>1 of L7, .

For the hypothesis space, we will use covering number to describe the capacity.

Definition 1. Let (M, d) be a pseudo-metric space and S C M. For € > 0, the covering number N(S, ¢, d)
of the set S with respect to d is defined to be the minimal number of balls of radius € whose union covers S.
That is,

N(S,e,d) = min {n e N:3{fi}io; C M such that S C U B(fi,zs)} ,
i=1

where B(f;,e) ={f e M :d(f, f;) <e}.

When metric d is || + ||oo, i-€., d(f,9) = ||f — gllo, it is the classical uniform covering number. It is
widely used in [19,23,18,3] and etc., more detailed analysis can be found in [25,26]. More recent references
5,8,7,16] use £2-empirical covering number to obtain a sharper upper bound for the excess generalization

error E(fz2) —E(f,)-

Definition 2. Denote

Lo 1/2
o) = (43 j o)
=1

for some a,b € R™. For a set F of functions on X and £ > 0, with notation z = (z;)™; C X™ and
Flz = {(f(z:))™, : f € F}, the £*>-empirical covering number of F is given by

No(F,e) = sup sup N(Fls,¢,ds).
meNzeX™m
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Now we can describe the capacity condition of the hypothesis space Hp.

Definition 3. We say that H g has empirical polynomial complexity with exponent s, 0 < s < 2, if there
exists a constant ¢g > 0 such that

log No(B1(Hi),e) <cse™®, Ve >0, (3)
where Br(Hi) = {f € Hk : ||fllx < R} is the ball with radius R in Hg.
Our main result on learning rate for algorithm (1) is stated as follows.

Theorem 1. Assume (2), (3) hold for sample distribution and hypothesis space Hy . The regression function
satisfies f, € LTK(L%X) for some r > 0. fy 5 is obtained from (1). Then by choosing A = (%)a for

2pr+2sr+sp’

2 r>1,

.2 2

2pr—p°r+p r<l,

o =
2s+(2+s)p?

with confidence 1 — 6 for any 0 < § < 1, we have

n
) = £l <8 () 1oe 2 W

for some constant C independent with m or & and

: 2pr
min {r, 72m+28r+5p} , r<l1,

2p
2p+2s+sp? r Z L.

’r):

Remark 1. For > 1, compared with the classical £2 empirical learning algorithm, i.e., p = 2 in our result,

the learning rate is F This is very close as in [8]. However in our analysis we abandoned the tedious
iteration process. And for general p € [1,2], our rate m tends to 1 while s tends to 0. In the case of
r < 1, we still assume p = 2 here. Our rate is min {r, MT

analysis such as [17] when r is small, or precisely, r < 2—+S. Asforp=1and r <1, Wthh is considered as

a sparsity learning algorithm, [9] proposed that the learning rate can achieve However, we here

4r
(24s)(r+3) "
obtained a sharper rate min {r, H;ﬁ} without iteration.

Remark 2. The power 3 in the term log3 10 will lead to a large quantity when § is small. This always happens
in the literature of learning theory, such as [9,8,7] and ete. This will not affect our error bound too much
since we usually consider a sufficiently large sample size m. Still, it might be an interesting problem of how
to reduce the power in our future work. Secondly, the projection technique makes the infinite norm of f, x
bounded, which reduces the upper bound for sample error. On the other hand, since projection only bounds
the infinite norm, it might be possible to additionally use the iteration technique as [19] for the K norm of
fz,» to get a sharper learning rate.

3. Error decomposition

Error decomposition can be regarded as the key point in our error analysis. Such technique can be found in
[1,11,20] and etc. It involves a stepping-stone function which was firstly introduced in [21]. From the analysis
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in [19] we can see that this function can be arbitrarily chosen in Hx which depends on A and converges to
f, while X tends to 0. This idea and analysis in [16] motivated our previous work [17] for algorithms with
K-norm regularization. Now we apply the same idea to a general coefficient regularization algorithm. Let
gs be a function in Hf , to be determined in the following, and denote &,(f) = £ S (f(x;) — y;)? for a

function g : Z — R. Then

far=arg min E,(f) + )

and
g(ﬁ(fz)\)) - 5(fp) < E(W(fz’)\)) - 5(fp) + )‘Q(fZ,A)
§ S(W(fz,)\)) - gz(ﬂ—(fz,)\)) + gz(ﬂ(fz,k)) =+ AQ(fz,A) - g(fp)
S E(m(fan)) = Ea(m(fan)) + Ea(fzn) + AU fzn) — E(fp)
< Em(fan)) = Ealm(far)) + E(fs) + AQ(fs) — E(fp)
< S1+ S+ D(N)
where

82 = (&1) - &l10) - (E() - £(£,))

Here S; and Sy are sample error which can be dealt with by some concentration inequality, while D(\)
is regularization error. The decomposition is almost the same as classical one except for Q(fs) in D(A).
It is constituted by two parts — hypothesis error and drift error in [8] and some related paper. Here we
introduce a constructive function f,; and change the form to the classical one for simplicity in expression.
In our coefficient regularization algorithm, it may be difficult to find a minimizer of D()), as the authors
did in [19]. However, notice that for any fs € Hk , satistying f; — f, while A — 0 in some sense, it can be
taken as a stepping-stone function in the above error decomposition. This induces our construction approach
for fs.
In the sequel we denote

gs = (L?{ + MI)ilL?{_lfpa (5)

and the stepping stone function

9s (i) Ka, (6)

3|~

fs = Z
=1

When u here equals to 1, it turns to be the previous stepping stone function fy = " | (Lxg+A) ™! fo(2;) Ky,
as [16]. Compared with the original one, fy = (Lx + A)"'Lg f, as in [19,10] and etc., our constructive
function includes a parameter u which can be tuned for different conditions, which may lead to a better
learning rate.
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4. Regularization error

We devote this section to the regularization error D(X). Denote || f|12 := [|f]|7. = [ |f(z)[?dpx. Since
3%

m

fs € Hi 2, we can choose fs = ", %gs(zi)Kxi with some g, : X — R, then

D(A) = |Ifs = foll5 +A2(f5)

1 m
m =1

2
+2[|Lxgs — foll3

p

m

[ 2l = [la@Pdox | +2 [ g Pdox.
X

i=1 X

The first and third terms of the right hand side can be bounded by some kind of Bernstein type inequality.
And the left two terms should also tend to 0 while m — oo or A — 0. We can choose g5 in the form of
®(\, L) f,, where operator ®(\, Lx) — Ll}l while A — 0, with an L%X norm upper bound depending on A.

In the following, we assume f, = Lg, where g, = >, pi¢; where {¢;};>1 is the orthogonal basis of

L2 Then L foll, = llgpllp = \/2is1 P7- We recall an inequality proved in our previous work [17].
Lemma 1. Letting a,b,c,d > 0 and a < A, we have
a‘ < bai=l, c<d,
al+b = | A9, e¢>d.

Lemma 2. Let u, > 0 and define g5 and fs by (5) and (6) respectively. Under the condition f, € L’}((sz),
there holds

A/mammmngMwAw;nm,
X
where
p(r—1)

Apw r<l1
B — ) )
e { ARZP=D e >

Proof. From the notations introduced above,

)
2

y/@uW@XgAt/MuW@X
X

= Mgsllt = M(Li +ul) " L fll7

Z Nu—i—r 1p Z /J/?(ujt'rfl)
= . Z¢z 15 = T
= = (uif + )

From Lemma 1 and the fact that ||Lg|| < &2 [2] we have

pi Tt <{u71, r<i,
e T U N P
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and

p(T 1)

v ||ILE r<l,
/ el < 4 V- I Dol
N AT

This proves the lemma. 0O
Next we should deduce the bound for the term [|Lxgs — f,|12.
Lemma 3. Let u > r,u > 0 and define gs and fs by (5) and (6) respectively; we have
|Lkcgs = Folly < n ¥ ILK £l

Proof. Since g5 = (L% + MI)_lL?(_lfw

u
ILxgs = foll; = |l i > Hipidill]

7;21 i>1

=13 J‘fz ool =i 3

1>1
2r 2r
S ZP? Spe LKTpr,%-
i>1

The next to last inequality is from w > r. This is indeed the result of the lemma. O

For the first and third terms in the regularization error, we need Bernstein type inequalities [10] as
follows.

Lemma 4. Let H be a Hilbert space and & be a random variable on (Z, p) with values in H. Assume ||£]| <
B < oo almost surely. Denote o?(&) = E(||€]|?). Let {2}, be independent random drawers of p. For any
0<d <1, with confidence 1 — 9,

2B 2 202 2
< —log - + c (g)log—.
m ) 0

H% > (&~ E)

i=1

Lemma 5. Let u, > 0 and define gs and fs by (5) and (6) respectively. For any 0 < 0 < 1, with confidence
1- —, we have

1 & . P 10
Y o)l = [ lgn(@)Pdpx < Buee (227 + VBT 4 DMLY ) o
i=1

where

N
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Proof. We firstly apply the above lemma to £ = |gs(z)[? on (X, px) with values in the Hilbert space R
Then

I€lloo = (L +nD)T L folloo < (1L

Y u) L follso)”
u—1 p
1
< (m i M) < —
i>1 /Lz +.UJ w

ILLu

and

o*(€) = Elgs|* < llgs 127> Ilgsll}

T o 7 AL

B Sl 7 A
2(r— P)sz 2 L

o IRl <t

i 4(7,_ 1)u2“2p

M2P= 2||LKTfP||;2Jp7 r=>1

By Bernstein type inequality with these conditions, we can see that

=3 (gsl) ~ Egs)

1 m
—_ s i_Es
m;g(w) g

(%Lp + fM” ||L Tfp”p) IOg 5 r <1,
Huwm
<

2MP f»c?(' DMPL i —r

2 + P L lo , T > 1.

(2 + B ) ) o

This proves our result. O
Lemma 6. Let u,u > 0 and define g5 and fs by (5) and (6) respectively. For any 0 < & < 1, with confidence
1- 7, we have

1 m
m

=1

., 10
< Ba- (26°M + V2(r + K ILE £ll,) log 5
P

where

Proof. We apply Lemma 4 to (; = gs(x;) K, on (X, px) with values in the Hilbert space L%X. Since

Iillp = llgs (@) Ko, (@)l < 57|91

= 1| (L + D) ' LE folloo <

1
— k2 M,

and
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() = E[lGI2 = / / G2 K2, (2)dpx (2) | dpx (x:)

X X

< w? /gf(xi)dpx(xi) = &?llgslly = K2 I(Li +nD) T LE foll;

X
ARSI <
B 2r||LI_(TfI)Hp7 r Z 17

we have

H%}]@—Em

i=1

1 m
= ‘ - ng(xl>K:1:1 - LKgs
m =1

22 M 2
(—'ﬂ + 2
"

p

*‘WHLKTf,,n,,) gl p<1,

< pum
- 252 VA" . 10
(:i—m—i_ﬁ'LKTfp”p) log °¢, r>1.

This shows that our conclusion holds. O
Combining the lemmas above, we can derive a bound for the regularization error.

Proposition 1. Let u,u > 0 and define gs and fs by (5) and (6) respectively. For any 0 < § < 1, with
confidence 1 — %6, there holds

10
D(\) < CpuprBx,log? 5

where
Cpupr =1+ K22 L ||L7 fl12 + 2MP + V2(k2 D + 1)MPY L foll,
+ (26M 4 V(s + WO Fll,)
and
A 2r A A 1
—p THY = — + -, <1,
By = wn S I
T 27
A = A A 1 1 >1
R S = sy e =

Proof. By the two lemmas above and decomposition of D(A) in the beginning of this section, we get that
when r < 1,

(r—=1)p 2r —r
D) <A = +pw L fll3

10 A A
+(sz+ﬂ(rﬂ“-”+1>Mp—1||L;pr||p)log;-(Mg i )

A 10 1 1
+ (262M + V25 + 5 )||LK”"f,,||) log” — ( — + — )
Hu wow o m
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< [1 LR 2+ 2P 4 V32D 4 )M LR Ll

N 2 10
+ (2600 4 VE WL ) tog?

A 2r A A 1 1
’ Ty THY = +— 5 + =iy
J/ T 1 u m

and for r > 1,

D(A) < AR2C7VP S L |12

B IR 10 A A
+ (QMP+ \/5(52(T Dy 1)MP IHLK fp”p) IOgF ) (M%m + ,upl\/ﬁ>

2 10 1 1
+ (2620 + V205 + LR Syllp) log? —~( — + —)
) M m2 m

< [W‘”” F LR foll2 4 2MP + V2( VP + D)L foll

2 10
(2004 VAL LR S, ) | 08 2
2r A A 1 1
A =t =+ — | .
Hum ,LLT /m, MzmQ m

This verifies the proposition. O
5. Sample error

A vast amount of literature concentrate on the sample error estimation. Here we will follow the work
of [5]. Since the functions f, and f, » vary while the sample size m is different, we need a concentration
inequality for a set of functions like in [20]. By setting 7 = 1 the inequality becomes

Lemma 7. Let F be a set of measurable functions on Z, and By, By > 0 is constant such that each function
[ € F satisfies || flloo < B1 and E(f?) < BoEf. If for some a >0 and 0 < s < 2,

log Ny (F,e) <ae™®, Ve >0, (7)

then there exists a constant ¢/, depending only on s such that for any 6 > 0, with probability at least 1 — 4,
there holds

1 — 1 2 2B, + 18B 1
— > ) —Ef < SEf 4 (£)7 p22 B85 e r
m 2 m 1)

2-—s 2-—s
where 1’ 1= max {B;*S , Bt }
The result will be used to estimate S; and Ss. Firstly we apply this lemma to the function set

G = {g0.s(2) = (fol@) = 7(F @) (7 (/@) + fo(w) = 2y) : | € Ba(Hi) }

and have the following proposition.
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Proposition 2. Let Gy be defined as above with some R > 1. Assume (2) and (3) hold. Then with confidence

s
1 — 15, we have

1 10
$1 < 5 (E((fun) = €(£,)) + CurR¥Fom ™5 log =
where Cy1 = cé(chsMs)ﬁ + 176 M2.

Proof. From notations introduced above we know that

Si = (E(fan) = £8) = (Ealn(fan)) — Ealfy))
%igﬁ,z(zy) - /gw,z(Z)dp,

Z

where gr .(2) = (fo(x) = 7(fax(2)))(fo(z) + 7(f2,2(x)) —2y) is an element of G;. In the following, we verify
the conditions for G; in Lemma 7. For any function g, ;(z) € G, it holds

97,5 (2)] < |fol@) = 7(f(@))] - [7(f () + folx) — 2y < 8M?
and
B2, < 160° [ (r(f(x)) - £,(0)dpx = 16M°Egs 5.
X
On the other hand, for any g1, g2 € G; depending respectively on fi, fo € Hg,
191(2) = g2(2)| = |(n(f2(2)) — 9)* — (7 (f1(2)) — )|

= |w(f2(2)) = 7(fr(2))] - |7 (fa(2)) + 7(f1(2)) — 2y
< AM|r(f2(z)) — w(fi(2))] < 4M|f2(z) — fi(2)].

This means N2(G1,¢) < No(Br(Hk), 157) and

< < so=S
log N2(G1,¢€) < log N (BR(HK) 4M) log N2 <B1(HK) 4MR> cs(AMR)*s
Now we can see from Lemma 7 that with confidence 1 — %O, there holds
1 : s 2 176M2 10
S1 < SEgr.z + ¢! (16, M#) 7 Ro¥sm ™~ 71+ 85
<1(8(7T(fz>\))*€(f ))+( (165 M) P +176M2> gE.
S5 i o :

This proves the proposition. O
Now we will bound the error term Ss. To this end, we have to deduce upper bounds for || fs||cc and || fs||x

in probability. From the upper bound for D()\) in Proposition 2, we see that we should choose p and u such
that

[ — 00, o A/m — 00, (8)
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Lemma 8. Let u,u > 0 satisfying (8), and define gs and fs by (5) and (6) respectively. Then for any

0 < 6 <1, there exists a subset Wy of Z™ with measure at least 1 — g, when z € Wy
sl < Bylog -
where By s := 2k +V2(k*" + V)| L foll, + M.
Proof. Since f, = L 3" g,(z;)K,,, we have
e < | 2 3 @0k, — Licar| -+ I2ngille
i=1 oo

The second term of right hand side is

(L% + pI) " L folloo < M.

For the first term, we consider random variables § = gs(x) K, note that [|£]/oc = ||gs(2) Kz ||oo < £%||(LY% +
pI) 7 L folloo < 1. And
’LL'U.

7O = Elg. @)Kl < 6t [ a)dpx =gl
X

2(r—1) | _
< KA HLKrfPHga r<l1,
I Wl P o Y 4 r>1

From Lemma 4 we know that with confidence at least 1 — %,

puwm pou/m

20 7 —r
( 2f2 4 ﬂnl\l_ik fp|p> log%’ r <1,
<
PY——
o < 2{{2 _’_\/im l/%‘f"”p>log%7 r>1.

1 m
_— ng<xz)Ka:1 - LKgs
m i=1

So when z € Wy,

il < { R VEIL Dol 4 M) log R, <,
slloo = (21€+ \/iﬁQTHL;(rfp”p + M) log%’ . Z L

Lemma 9. Let u, u > 0 satisfying (8), and define gs and fs by (5) and (6) respectively. For any 0 < § < 1,

there exists a subset Wy of Z™ with measure at least 1 — g, when z € Wy

10
HfSHK < Rs:= CRMYy, log F

where

r—

1/2
mH:M u +1

and cp = (K771 + 1) (2/@ +(V2+ D (K71 41) + 1) L% follp-
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Proof. The same as last lemma, we see that

+ || Lrgsl k-
K

[ fsllre <

1 m
— " gs(@i) Ko, — Licgs
m 1=1

1 _1
For the term ||Lxgs| x, since || f|lx = ||LK2f||L,,X < |[Lg? fll, we have

_1
ILxgsllxc = I(Li +nD) " Lic foll e = (L + D)™ Lic 2 foll,
r—1/2 _r
- {u—u ILE Follos T < 3,
Hzril”‘[’}i{rfp”pa r> %
Then we apply Lemma 4 to the random variable £ = g(2) K, with K norm. As

K

19s(2) Kz |l < Ellgslloo <

1
u

Tk

and

o2(€) = Ellgs (1) K|k < 2 / 2 (@)dpx < #]gal?

X
2(r—1) _
< "{2/1' “ ”LKTfPH;Zw r<l,
K2 LE Sl r>1
From Lemma 4, there holds
o ( 2 my_LTKTmp) bgle, <l
pnum u
Ezgs(xi)Kzi — Lkgs < 8 "

i=1

2 V2R THILE foll 10
: <ufm+ Vo logg, =1

., 10
< (20 + VAT + DILT Sl ) log -
Then we have when z € W,
s (26 + (V2R 4 V24 0 SE)ILE foll, ) log 2, 7 < 4,
sIIK >
(2“"‘((\/54-1)!1%_1 +\/§>||L;<rfp“p) log %7 r> %

And our lemma can be deduced. 0O
Now we can derive the bound for Ss.

Proposition 3. Let u, i > 0 satisfying (8), and define gs and fs by (5) and (6) respectively. For any0 < 6 < 1,
there exists a subset W3 of Z™ with measure at least 1 — 1%, when z € Wi (\Wa (| Zs where Zy and Z3 are
defined in Lemmas 8 and 9, there holds

2s

P 2 10
(E(fs) = E(fp)) + Csamy " m™ 7%= log® —

Sy < 5

| =

2

2 .
where Cso = (204 ¢, + ¢ )(2Bf,s + 3M)CA™ .
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Proof. As in Proposition 2, denote
97,5(2) = (fs(@) =9)* = (fo(2) = 9)? = (fs(@) = fo(@)(fs(2) + folz) — 29).
Then it is easy to see that

SQ = (5z(fs) - gz(fﬁ)) - (g(fs) - 5(fﬂ))
= > et = [ oraelap

z
Since z € Wy which indicates || fs||x < Rs, we apply Lemma 7 to the function set
G2 ={95,s(2) = (fs(x) = fo(@)) (fs(2) + fp(x) = 2) : f € Br,(Hk)}-
Meanwhile, z € W1, so

lgs.slloc < (I fslloe +3M)?* < (Bys +3M)?,

and

E(97..) = E ((fs(2) = £o(2))(fs(@) + fol2) - 29)*)
< (I fslloo +3M)’E(fs(2) — fo(2))* = (By.s + 3M)’Egy,s.

For functions fs, = L 3" gi(21,:) Ky, and fs, = = 3" gs(22,)K,, satisfying fs,, fs, € Br,(Hk), we
denote g1 = (fs, () — )* = (fp(z) —y)* and g2 = (fs,(2) —y)* — (f,(¥) —y)*, then g1, g2 € G2. We have

191(2) = g2(2)] = |(fs, (2) = 9)* = (fua (2) — 9)?|
= |f81(x) - f82($)| : |f51(3?) + f52(1') - 2y|
S 2(Bf,s+M)‘fs1<x) _fsz(x)|'

Therefore
€
1 <1 B FYE - VY
og N2(Ga,e) <log N2 ( Ry (Hi), 2(By. JrM))

£
<log N2 (BI(HK)a m) < cs(2(Bys + M)Rs)%e™".

Now from Lemma 7 we have

1 m
Sy = E ;gf,s(zi) - ]ng,s

—s) 2 10 s 1
2(22+5)Csz+s (2(Bf,510g? _Ar_M)R&)ﬁ ——
m2+s

1 10
< §ng’s + ¢, (By,s log 5 +3M)

20(By s log 19 4+ 301)2 1
n ( f,s l0g 5 + ) log—o
m 1)

2 10 4 2s 1
(E(fs) = E(fp)) + ¢ues™ (2Bys log = + 3M) =+ R

A
DN | =

2
m2+s
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20(By,slog 2 +3M)% 10
log — 5

m

2o 10
(E(f2) — E(f,) + (20 + ¢, + 777 ) 2By + BM)CF 1™ m™ =55 log® =

5

[\'Jlbi +

This proves the proposition. O
6. Total error

From the sections above, we have the bounds for sample error Sy, S and regularization error D(A). Now
we can give the proof of the total error bound by combining the three parts.

Proof of Theorem 1. Firstly we need an expression for the radius R in the bound of S;. Recall that
Br(Hk) ={f € Hk : |||k < R}, it requires to find the upper bound for || f, x| k. Since f,\ € Hk 2, We
assume f, \ = Zi:l CizKy,. Then for 1 < p <2

m m m
farlle = 11D ciaKallx <D leiaKellx <D lcial - 1Ko llx
=1 =1 1=1

m
:Z‘Ciﬂ' \/ (Ko, Ke, K*Z|sz| K(x;, ;) <I€Z\sz|
i=1 i=1

m % m % L m E
<K ( ; ”) : (Z 1q> = Kkma (Z Ci7z|p>
=1 =1 =1

Here ¢ satisfies % + % =1, ie., % = pp%l. On the other hand, from the definition of f, » we can see that

m 1 m
Exfy AmP~1 2P < E,0)+0=— 2 < M2
(fz.x) + Am ZIC,I < &(0) + m;yzf

i=1

Therefore AmP~1 37" | |¢; ,|P < M?, which leads to 37" |¢; 2P < 24— . By substituting this upper bound
to the above inequality, we have

I fanlle < KMPATS,

which indicates R = kM# A" ». It can be verified that the bound for I fzxllx is in the same form when
p = 1. Note that £(f,) — £(f,) in the bound for Sy is indeed || fs — f,[|2, part of D(X). From Propositions 1,
2 and 3 we get that with confidence 1 — 4,

10
5(W(f2,/\)) - g(fp) < 3CD,u,p,rB>\,u 10g2 N

s 10 10
+ 20,1 k75 M@0 = log — + 2ngmﬁ+g m- T log® 5

AP m2+s 0

1 21 510
< (3Cpupr +200 +2Ce2) - ( By + —z—— +mi” — | log’ —.

A @+s)pm2+s m2+s
Denote
C =3Cp.upr + 20 k75 +2C,,.

We will find the best learning rate for different r.
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Case 1: When 0 < r < %, we have

2 22 2 2
m W= om  A@FIPm2Es W) mTH m2+s

~ 10 A A A 1
3 2r
< ClOg < H Mpm /yp_r\/m + fYZmQ

1 1 1 1 1
+ + 2(1—r) + + (1—27r)s +

1 2 1 1
+ mEe+ s 5t a2
u 2+4s m2+s f}/ 2+4s m2+s

~ 10 3\ 2 1
< Clog? 5 (7 +97" + R T Fa— )
mz+s

_ 2s 2
'Y(l rp A C@Fs)pm2+s [T

% to maximize the learning rate,

Here v = /ﬁ. Note that we should choose p such that p — 0 and 72" >
ie., v <1and y"y/m > 1. Then

A A Lo_ A
prmo pPrme pty/m T P AP /m
A A 1

)

— = — . 3
'717 T/m fyP pr ,-yr meEDT
and

1 1 1 1

p2m?  p20=0m p2rm = p20=nm
This leads to our last inequality above. Let A = m~® and v = m~#, this bound becomes
E(m(far)) — E(f,) < 9Clog? 10 (l)n
0 \m
where

n—min{a(lr)pﬂ,Qr@l2(1r)572i 250 2 (12r)sﬂ}.

s (2+4s)p’ 2+s 2+s

Now we will choose appropriate a and § to maximize the rate 7.

. 2 250 2 (1—2r)sp
= — (1 =7)pB,2rB,1—2(1 — )3, - : -
n rg%xmm{a (L—r)pB,2rp (1=7)p 2+s (24s)p’ 2+s 2+ s }

= max min{mgx min{2r3,a — (1 — r)pS}, max min{2r3,1 — 2(1 —r)8},

. 2 (1—-2r)sB 2 25
max min { 2r0, - , -
B 2+s 2+s 24s (24 9)p

. 2ro 4r 2 2sa
= max min , T , -
o 2—pr+p "14+4r—rs’'24+s (2+3s)p
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) { ) { 2ra 2 2sa }}
= min < r, max min , —
o 2-pr+p’2+s (2+s)p
. 2pr
=min{r,—— 5.
2pr + 2sr + sp

2pr—p? 2
Here we choose v = 2BE=PTHP° 554
2pr+2sr+sp

1 o J(@2=s)p 1
5 2 O<T<m1n{2(p+s),§},
B P ; (2=s)p 1 1
2pr+2sr+sp? min { 2(p+s)’ 5} <r< bR

Case 2: % < r < 1. In this case, it is easy to see the analysis is almost the same as in Case 1. And we can

finally deduce that
5 10 "
Em(far)) — £(S,) < 9C10g> 2 (-
with

. 2pr
=minqr, —————
1 "2pr +2sr +sp )’

2pr—p°r+p® and

a = 2pr+2sr+sp

I~

)

l\.’)l»—l
\q,_/

—<r<max{

2(p+s)
__p (2=s)p 1
2pr+2sr+sp’ max { p+s) ) S

\ /\

Case 3: As the same analysis, when r > 1, there holds

p—1
- 10 . A 2\ 1 3 1
<Clog® = [A+pv +—4—+2 4 F—F— b —
0 pum  p pwuem?2  m2s \@ropmIes
- 10 A A 1 4
<Clog” — A+ + + + +
=R 5( T e T ym T e o
5 10

- 1 4
O . ]
5 v2m \T@+op

The last inequality is from that fact that

A _ A "Y2T7P<
,ypm ,y2rm — ,YQTm
and
A A L rHlop A
whmo Tym yrm
Then
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where
2 2sa
=min< o, 2rp3,2 -2, ——— — ——— .
" { g Z 245 (2+5)p}
Then
; 28,2 — 2 250
:m X min o
nmax a T 72+S (2+S)p

(24 s)p

= max min

7a7

2 2
= max min {maxmm{Qr,B, - 28}, a, Oy i}
s

2r 2 B 2sa
24+s (24 9)p

min max < o 2 Zsa
= X S —
1+r’ a 2+s  (2+9)p

. 2r 2p
= min
147 25+ (2+s)p

_ 2p
25+ (24 s)p
_ 1 _ 2
Hereﬁ—manda—m. O

Remark 3. From the proof we can deduce the final condition for choosing parameters u and p in our analysis.
That is,

e =m™"
where
1 0<r<min{ +’)’,%}
b min{é%pi;;,%}s <3
p= 1 1 <r < max {§+ %}
e e max{ 2 il <r<y,
ﬁ, r>1,

which depends on the value of r.
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