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Astala–Zinsmeister [2] introduced a new topology on the set of all strongly qua-
sisymmetric homeomorphisms of the unit circle denoted by SQS(S1) by means of 
BMO norm. Under this new topology, we prove that SQS(S1) is a partial topological 
group, and the characteristic topological subgroup of SQS(S1) consists of strongly 
symmetric homeomorphisms.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

A sense preserving self-homeomorphism h of the unit circle S1 is quasisymmetric if there exists a constant 
C(h) > 0 such that

|h(I∗)| � C(h)|h(I)|

for any interval I ⊂ S1 with |I| � π, where I∗ is the interval with same center as I but with double length and 
| · | denotes the Lebesgue measure. Beurling–Ahlfors [3] proved that a sense preserving self-homeomorphism 
h is quasisymmetric if and only if there exists some quasiconformal homeomorphism of the unit disk Δ onto 
itself which has boundary values h. Later Douady–Earle [7] gave a quasiconformal extension of h to the unit 
disk Δ which is also conformally invariant and bi-Lipschitz continuous for the hyperbolic metric.

The universal Teichmüller space T is a universal parameter space for all Riemann surfaces and one of its 
models can be defined as the space of all normalized quasisymmetric homeomorphisms on the unit circle S1, 
namely, T = QS(S1)/Möb(S1). Here QS(S1) denotes the group of all quasisymmetric homeomorphisms of 
the unit circle S1, and Möb(S1) the subgroup of Möbius transformations of the unit disk Δ. It is known 
that the universal Teichmüller space plays a significant role in Teichmüller theory, and it is also a fundamen-
tal object in mathematics and in mathematical physics. In addition, several subclasses of quasisymmetric 
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homeomorphisms and their Teichmüller spaces were introduced and studied for various purposes in the lit-
erature. We refer to the books [1,13,14,16] and the papers [2,4,9,11,19,20] for an introduction to the subject 
and more details. In the following we shall list two of them, which were introduced and investigated in our 
recent paper [19].

A quasisymmetric homeomorphism h is said to be strongly quasisymmetric if for each ε > 0 there is a 
δ > 0 such that

|E| � δ|I| ⇒ |h(E)| � εh(I)

whenever I ⊂ S1 is an interval and E ⊂ I a measurable subset. In other words, h is strongly quasisym-
metric if and only if h is absolutely continuous with density h′ belonging to the class of weights A∞

introduced by Muckenhoupt (see [10]), in particular, logh′ ∈ BMO(S1), the space of integrable functions 
on the unit circle S1 of bounded mean oscillation (see [10]). Cui–Zinsmeister [4] proved that the complex 
dilatation of the Douady–Earle extension of a strongly quasisymmetric homeomorphism produces a Car-
leson measure λμ(z) = |μ(z)|2/(1 − |z|) ∈ CM(Δ). This sub-class of quasisymmetric homeomorphisms was 
much investigated because of its great importance in the application to harmonic analysis (see [5,8,12,18]). 
Let SQS(S1) denote the set of all strongly quasisymmetric homeomorphisms of the unit circle S1. Then 
Tb = SQS(S1)/Möb(S1) is a model of the BMOA-Teichmüller space. We say a quasisymmetric homeo-
morphism h is strongly symmetric if it is absolutely continuous such that logh′ ∈ VMO(S1), the space of 
integrable functions on the unit circle S1 of vanishing mean oscillation (see [10,16,17,21]). We denote by 
SS(S1) the set of all strongly symmetric homeomorphisms of the unit circle S1. Then Tv = SS(S1)/Möb(S1)
is a model of the VMOA-Teichmüller space.

Recall that a partial topological group is a group with a neighborhood system at the identity which 
is respected by composition and inverse in the following sense: given any two mappings h1 and h2 near 
to the identity, then the product h1 ◦ h2 and the inverse h−1

1 are also near to the identity (see [9] and 
also see Section 3 for details). For any partial topological group the subgroup of elements f for which the 
adjoint action by f is continuous is called the characteristic topological subgroup (see [9]). We know that 
the adjoint action in QS(S1) is not continuous at the identity, so the group QS(S1) is not a topological 
group. However, Gardiner–Sullivan [9] proved that it is a partial topological group, and the characteristic 
topological subgroup S(S1) of the group QS(S1), in the Teichmüller metric, consists of those mappings 
which have vanishing ratio distortion.

It is known that SS(S1) is a subgroup of S(S1). So SS(S1) is a topological group for the Teichmüller 
metric. Astala–Zinsmeister [2] introduced a new topology in SQS(S1) via d(h, k) = ‖ log(h′) − log(k′)‖∗, 
where ‖ · ‖∗ denotes the BMO norm. In the following we call it the A–Z topology. In our previous paper [19], 
we showed that the A–Z topology is stronger than the topology induced by Teichmüller metric. A natural 
problem is whether SS(S1) is a topological group under the A–Z topology.

The purpose of this short paper is to follow the same idea as Gardiner–Sullivan [9] to prove that SQS(S1)
is a partial topological group, and SS(S1) is the characteristic topological subgroup of SQS(S1) for the A–Z 
topology.

2. Some lemmas

In this section, we recall some basic results which will be needed in the following sections. Here and in 
what follows, C will denote a positive constant which may vary from line to line.

Let M(Δ) denote the open unit ball of the Banach space L∞(Δ) of essentially bounded measurable func-
tions in Δ. For any μ ∈ M(Δ), there is a unique quasiconformal map fμ of Δ whose complex dilatation is μ
and normalized by fixing 1, −1 and i. Denote by σ(μ) the Beltrami coefficient of the Douady–Earle extension 
E(fμ|S1). Let ρ(μ) and χ(μ) be the Beltrami coefficients of E(f−1

μ |S1)−1 and E(f−1
μ |S1), respectively.
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Lemma 2.1. Let f be a conformal mapping in Δ and h = f−1 ◦ g be the corresponding quasisymmetric 
conformal welding. Then the following statements are equivalent:

(1) log f ′ ∈ BMOA(Δ) with a small norm,
(2) f(∂Δ) is a Lavrentiev curve with a small norm,
(3) log h′ ∈ BMO(S1) with a small norm,
(4) f has a quasiconformal extension with complex dilatation μ such that |μ|2/(|z| −1) is a Carleson measure 

with a small norm.

Remark 2.1. The equivalence (1) ⇔ (2) is due to Pommerenke [15]. (3) ⇔ (4) was proved by David [6]. 
(4) ⇒ (2), (2) ⇒ (3) and (2) ⇒ (1) were proved by Semmes [18]. (2) ⇒ (1) was also proved by Astala–
Zinsmeister [2]. The above lemma implies that at least in a neighborhood of the origin BMO-Teichmüller 
theory deals with bi-Lipschitz geometry.

Lemma 2.2. (See [18].) Let f be a quasiconformal map of the unit disk Δ onto itself that satisfies

(1) f |S1 ∈ SQS(S1),
(2) f is bi-Lipschitz continuous for the hyperbolic metric in the unit disk Δ.

If λ ∈ CM(Δ), then λ ◦ f |∂f | ∈ CM(Δ), and ‖λ ◦ f |∂f |‖c � C‖λ‖c.

Lemma 2.3. (See [4].) Let (1 + ‖μ‖∞)/(1 − ‖μ‖∞) � K. Then for any w ∈ Δ,

|ρ(μ)(w)|2
1 − |ρ(μ)(w)|2 � C

∫∫

Δ

|μ(z)|2
1 − |μ(z)|2

(1 − |w|2)2
|1 − w̄z|4 dxdy.

Lemma 2.4. (See [19].) Let α > 0, β > 0. For a positive measure λ in Δ, set

λ̃(z) =
∫∫

Δ

(1 − |z|2)α(1 − |w|2)β
|1 − z̄w|α+β+2 λ(w)dudv. (2.1)

Then λ̃ ∈ CM(Δ) if λ ∈ CM(Δ), and ‖λ̃‖c � C‖λ‖c, while λ̃ ∈ CM0(Δ) if λ ∈ CM0(Δ).

For a quasisymmetric homeomorphism h, the kernel function

φh(ζ, z) = 1
2πi

∫

S1

h(w)
(1 − ζw)2(1 − zh(w)) dw, (ζ, z) ∈ Δ × Δ

was introduced in [11]. Set

φh(z) =
( 1
π

∫∫

Δ

|φh(ζ, z)|2 dξdη
) 1

2
, z ∈ Δ.

Hu–Shen [11] proved that

Lemma 2.5. Let E(h) denote the Douady–Earle extension of h, and ν(h) denote the Beltrami coefficient of 
the inverse mapping E−1(h). Then for any w ∈ Δ,

|ν(h)(w)|2
1 − |ν(h)(w)|2 ≤ Cφ2

h(w̄)(1 − |w|2)2.
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Lemma 2.6. (See [4].) Let g be bi-Lipschitz for the hyperbolic metric in the unit disk Δ, and μ be the complex 
dilatation of g. If

λμ(z) = |μ(z)|2
1 − |z| ∈ CM(Δ),

then the same is true for λμ−1 , and ‖λμ−1‖c � C‖λμ‖c, while λμ−1 ∈ CM0(Δ) if λμ ∈ CM0(Δ), where μ−1

is defined through g−1.

Lemma 2.7. Let (1 + ‖μ‖∞)/(1 − ‖μ‖∞) � K. If

λμ(z) = |μ(z)|2
1 − |z| ∈ CM(Δ),

then the same is true for λσ(μ), and ‖λσ(μ)‖c � C‖λμ‖c, while λσ(μ) ∈ CM0(Δ) if λμ ∈ CM0(Δ).

Proof. The first statement was proved by Cui–Zinsmeister [4] by means of real and harmonic analysis theory. 
We will give a new and brief proof by above some lemmas. On the other hand, we also give the proof of the 
second statement.

By Lemma 2.3,

|ρ(μ)(w)|2
1 − |ρ(μ)(w)|2 � C

∫∫

Δ

|μ(z)|2
1 − |μ(z)|2

(1 − |w|2)2
|1 − w̄z|4 dxdy.

Then

|ρ(μ)(w)|2
1 − |w| � C

∫∫

Δ

|μ(z)|2
1 − |z|2

(1 − |w|2)(1 − |z|2)
|1 − w̄z|4 dxdy.

It follows from Lemma 2.4 that λρ(μ) ∈ CM(Δ), and ‖λρ(μ)‖c � C‖λμ‖c. It is known that fμ|S1 ∈
SQS(S1) if λμ ∈ CM(Δ), so f−1

μ |S1 ∈ SQS(S1). Combining the bi-Lipschitz continuity of E(f−1
μ |S1) for 

the hyperbolic metric, Lemma 2.2 implies that λρ(μ) ◦ E(f−1
μ |S1)|∂E(f−1

μ |S1)| ∈ CM(Δ), and ‖λρ(μ) ◦
E(f−1

μ |S1)|∂E(f−1
μ |S1)|‖c � C‖λρ(μ)‖c. On the other hand,

λρ(μ) ◦ E(f−1
μ |S1)|∂E(f−1

μ |S1)| =
|ρ(μ) ◦ E(f−1

μ |S1)(z)|2

1 − |E(f−1
μ |S1)|

|∂E(f−1
μ |S1)|

= |χ(μ)(z)|2
1 − |E(f−1

μ |S1)|
|dE(f−1

μ |S1)(z)|
|dE(f−1

μ |S1)(z)|
|∂E(f−1

μ |S1)|

� C|χ(μ)(z)|2 |dz|
1 − |z|

|∂E(f−1
μ |S1)|

|dE(f−1
μ |S1)(z)|

� C
|χ(μ)(z)|2

1 − |z|
|dz||∂E(f−1

μ |S1)|
|dz||∂E(f−1

μ |S1)|(1 + ‖χ(μ)‖∞)

= C
|χ(μ)(z)|2

1 − |z| .

That is, λχ(μ) ∈ CM(Δ), and ‖λχ(μ)‖c � C‖λρ(μ) ◦ E(f−1
μ |S1)|∂E(f−1

μ |S1)|‖c. Note that σ(μ) = χ ◦ χ(μ). 
This implies λσ(μ) ∈ CM(Δ), and ‖λσ(μ)‖c � C‖λμ‖c. Consequently, the first statement is proved.
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For λμ ∈ CM0(Δ), denote by h = fμ|S1 . By Theorem 4.1 in our previous paper [19], h ∈ SS(S1) and 
φ2
h(w̄)(1 − |w|2) ∈ CM0(Δ). Then by Lemma 2.5, we have

|ν(h)(w)|2
1 − |w| ∈ CM0(Δ).

By the bi-Lipschitz continuity of w = E(h)(z) for the hyperbolic metric and Lemma 2.6,

|σ(μ)(z)|2
1 − |z| ∈ CM0(Δ).

Namely, λσ(μ) ∈ CM0(Δ). This completes the proof of Lemma 2.7. �
Lemma 2.8. (See [10].) For a function ϕ ∈ BMO(R), the following conditions are equivalent:

(1) ϕ ∈ VMO(R).
(2) If ϕx(t) = ϕ(t − x) is the translation of ϕ by x units, then limx→0 ‖ϕx − ϕ‖∗ = 0,

where ‖ · ‖∗ denotes the BMO norm.

Lemma 2.9. (See [9].) The characteristic topological subgroup of partial topological group is a closed topo-
logical subgroup.

3. Strongly quasisymmetric homeomorphisms

In this section, we shall prove that the A–Z topology induces a structure of partial topological group in 
SQS(S1).

First we introduce two systems of neighborhoods of the identity in SQS(S1) in the following way. Let the 
neighborhood U(ε) consist of all strongly quasisymmetric maps h for which

(1) sup|z|=1{|h(z) − z|, |h−1(z) − z|} < ε, and
(2) h is absolutely continuous with log h′ ∈ BMO(S1), and ‖ log h′‖∗ < ε.

Let the neighborhood V (ε) consist of all strongly quasisymmetric maps h for which

(1a) sup|z|=1{|h(z) − z|, |h−1(z) − z|} < ε, and
(2a) h has a quasiconformal extension with complex dilatation μ such that |μ(z)|2/(1 − |z|) is a Carleson 

measure, with norm dominated by ε.

These systems are Hausdorff, that is, the intersection over all ε > 0 of the sets U(ε) consists of the identity, 
and the same statement is true with U replaced by V . Moreover, by Lemma 2.1, the two systems U(ε) and 
V (ε) are cofinal in the sense that for every ε > 0 there is a δ > 0 such that U(δ) ⊂ V (ε) and the same 
statement is true with U and V interchanged. Moreover, we will prove

Theorem 3.1. Both systems are compatible with the group structure in SQS(S1) in the following sense:

(a) for every ε > 0, there exists δ > 0, such that V (δ) ◦ V (δ) ⊂ V (ε), and
(b) for every ε > 0, there exists δ > 0, such that (V (δ))−1 ⊂ V (ε),

and the same two statements are true with V replaced by U .
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Proof. For h1, h2 ∈ SQS(S1), let μi be the complex dilatation of the Douady–Earle extension fi of hi, 
i = 1, 2. It is known that μi induces a Carleson measure, λμi

(z) = |μi(z)|2/(1 − |z|). Note that

μ1 ◦ μ2 = μ2 + (μ1 ◦ f2)τ
1 + μ̄2(μ1 ◦ f2)τ

, τ = (f2)z
(f2)z

,

which is defined through f1 ◦ f2. Then, by the fact that f2 is bi-Lipschitz for the hyperbolic metric,

λμ1◦μ2(z) � Cλμ2(z) + Cλμ1(f)|∂f |.

By Lemma 2.2,

λμ1(f)|∂f | ∈ CM(Δ)

and ‖λμ1(f)|∂f |‖c � C‖λμ1‖c. Consequently, we can conclude that

‖λμ1◦μ2‖c � C(‖λμ1‖c + ‖λμ2‖c).

Lemma 2.7 implies that if a strongly quasisymmetric homeomorphism has a quasiconformal extension with 
complex dilatation μ such that λμ is a Carleson measure with a small norm, then the same is true for the 
Douady–Earle extension. Thus, by Lemma 2.1, it is possible that ‖λμ1‖c and ‖λμ2‖c are sufficiently small. 
On the other hand, for each z ∈ S1,

|h1 ◦ h2(z) − z| � |h1 ◦ h2(z) − h2(z)| + |h2(z) − z|

and

|h−1
2 ◦ h−1

1 (z) − z| � |h−1
2 ◦ h−1

1 (z) − h−1
1 (z)| + |h−1

1 (z) − z|.

Consequently, for any ε > 0, we can choose δ = max( ε
2C , ε2 ), such that h1 ◦ h2 ∈ V (ε) if h1 ∈ V (δ) and 

h1 ∈ V (δ).
Now we prove the statement (b) is valid. By bi-Lipschitz continuity of f1 and the fact that λμ1 ∈ CM(Δ), 

Lemma 2.6 implies that

λμ−1
1

(z) = |μ−1
1 (z)|2
1 − |z| ∈ CM(Δ),

where μ−1
1 is defined through f−1

1 , in particular,

‖λμ−1
1
‖c � C‖λμ1‖c.

On the other hand, for each z ∈ S1,

|h−1
1 (z) − z| = |h1 ◦ h−1

1 (z) − h−1
1 (z)|.

Thus, for any ε > 0, we can choose δ = max( ε
C , ε), such that h−1

1 ∈ V (ε) if h1 ∈ V (δ).
Since the two systems are cofinal, the fact that the two properties hold for V (ε) implies that they also 

hold for U(ε). �
According to the following

Definition 3.1. A partial topological group is a group with a Hausdorff system of neighborhoods of the 
identity satisfying (a) and (b) above.
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We have proved that SQS(S1) is a partial topological group of strongly quasisymmetric homeomorphisms 
of the unit circle under the A–Z topology.

4. Strongly symmetric homeomorphisms

In this section, our objective is to identify the characteristic topological subgroup of SQS(S1).

Theorem 4.1. Let SQS(S1) be the partial topological group of strongly quasisymmetric homeomorphisms of 
the unit circle. Then SS(S1) is the characteristic topological subgroup of SQS(S1).

Combining the theorem with Lemma 2.9 yields the following

Corollary 4.1. The group of strongly symmetric homeomorphisms is a closed topological subgroup of SQS(S1).

In order to prove the theorem, we use a result about topological group by Gardiner–Sullivan [9]. It says 
that the following conditions on a partial topological group are equivalent: it is a topological group with the 
given neighborhood system of the identity if and only if the adjoint map f 	→ h ◦f ◦h−1 is continuous at the 
identity for every h in the group. Thus, to prove the theorem we must show the following two statements.

Lemma 4.1. The following statements hold:

(1) If h ∈ SS(S1) and if f ∈ SQS(S1) and near the identity, then h ◦ f ◦ h−1 is near the identity.
(2) If conjugation by h, f 	→ h ◦ f ◦ h−1, is continuous at the identity in SQS(S1), then h ∈ SS(S1).

Proof. In order to simplify the notations, we prove the analogous statements for the real line R. For any 
f ∈ U(δ), by the definition, limδ→0 ‖ log f ′‖∗ = 0. Note that

‖ log(h ◦ f ◦ h−1)′‖∗ � ‖ log h′(f) − log h′‖∗ + ‖ log f ′‖∗.

In order to prove limδ→0 ‖ log(h ◦ f ◦ h−1)′‖∗ = 0, we use an approximation process to prove 
limδ→0 ‖ log h′(f) − log h′‖∗ = 0. We let UC denote the space of uniformly continuous functions on R. 
Recall that VMO(R) is the closed subspace of BMO(R) which is the closure of UC ∩ BMO(R) under 
the BMO norm (see [17]). By log h′ ∈ VMO(R), there exists a sequence ψn ∈ UC ∩ BMO(R) such that 
‖ψn − log h′‖∗ → 0 as n → ∞. Noting that

‖ log h′(f) − log h′‖∗ � ‖ψn ◦ f − log h′(f)‖∗ + ‖ψn − log h′‖∗ + ‖ψn ◦ f − ψn‖∗
� 2‖ψn − log h′‖∗ + ‖ψn ◦ f − ψn‖L∞ ,

by the inequality |f(x) − x| < δ for any x ∈ R and the uniform continuity of ψn in R, we have 
limδ→0 ‖ log h′(f) − log h′‖∗ = 0. On the other hand, by the Hölder continuity of h, there exist positive 
numbers C, α, such that for any x ∈ R,

|h ◦ f ◦ h−1(x) − x| = |h ◦ f ◦ h−1(x) − h ◦ h−1(x)|

� C|f ◦ h−1(x) − h−1(x)|α

� Cδα.

Similarly, |h ◦ f−1 ◦ h−1(x) − x| � Cδα. Thus, the assumptions that f and f−1 are uniformly near to 
the identity imply that h ◦ f ◦ h−1 and (h ◦ f ◦ h−1)−1 are uniformly near the identity. Consequently, the 
statement (1) is valid.
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Now we prove the statement (2) is valid. Let f(x) = x − t ∈ U(δ1), h ◦ f ◦ h−1 ∈ U(δ2) and δ2 → 0 as 
δ1 → 0. By the definition, ‖ log f ′‖∗ < δ1 and ‖ log(h ◦ f ◦ h−1)′‖∗ < δ2. Note that

‖ log h′(f) − log h′‖∗ � ‖ log(h ◦ f ◦ h−1)′‖∗ + ‖ log f ′‖∗.

We can conclude that limδ1→0 ‖ log h′(f) − log h′‖∗ = limt→0 ‖ log h′(x − t) − log h′(x)‖∗ = 0. By Lemma 2.8, 
log h′ ∈ VMO(R). Thus, h ∈ SS(R). �
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