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1. Introduction

The well-known Euler system of conservation laws of energy and momentum in special relativity reads

2

<(p+p(22)62(c;7v2) +p>t + <(p+pc2)czviv2)z =0,

; .2 (1.1)
2 2
=0
((p+pc )2 _UQ)t + ((p+pc i +p>$ ;
where p, v and p represent the proper energy density, particle speed and pressure, c¢ is the speed of light, and
the physically relevant region for solution is {(p,v) | p > 0,|v| < c}. The system (1.1) models the dynamics
of plane waves in special relativity fluids, see [19-22] in a two-dimensional Minkowski space-time (2, z1)
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div T =0,

with the stress-energy tensor for a fluid

where all indices run from 0 to 1 with 2° = ct, n = n;; = diag(—1,1) denotes the flat Minkowski metric, u
the 2-velocity of the fluid particle, and p the mass-energy density of the fluid as measured in units of mass
in a frame moving with the fluid particle.

In general, the solution to the system (1.1) strongly depends on the state equation p = p(p). In this
paper, we are concerned with the polytropic gas, whose state equation can be formulated as

p(p) = K", 4> 1, (1.2)
where k is a positive constant satisfying x < ¢. When v = 1, (1.2) models an isothermal gas, which
corresponds to the extremely relativistic gases, when the temperature is very high and the particles move
near the speed of light. This case will be studied in the future.

The study of the relativistic Euler equations (1.1) has been attracting more and more challenging attention
of mathematics and physics researchers due to its importance and extreme complexity. Smoller and Temple
[16] studied the Riemann problem and Cauchy problem of the system (1.1) when v = 1. While for the
case v > 1, Chen [4] analyzed the properties of elementary waves, and solved the Riemann problem and
Cauchy problem. Further, Chen and Li [1] established the uniqueness of Riemann solutions in the class of
entropy solutions with arbitrarily large oscillation. Li, Feng and Wang [13] established the global existence
of the entropy solutions with a class of large initial data which involve the interaction of shock waves and
rarefaction waves. Recently, Ding and Li [6] studied a kind of multidimensional piston problem for (1.1).
They established the local existence of shock front solutions to the spherically symmetric piston problem,
as well as the convergence of the local solution as ¢ — oo to the corresponding solution of the classical
non-relativistic Euler equations. Cheng and Yang [5] solved the Riemann problem of (1.1) for the Chaplygin
gas.

As the pressure vanishes, that is k — 0, the limit system of (1.1) formally becomes the following pres-

P pv _
(a23), (a%), =
2
pv pv
:()7
(#%5),+ (#%%),

which are fully linearly degenerate. The classical elementary waves only involve contact discontinuities.

sureless relativistic Euler equations

(1.3)

Interestingly, delta shock waves and vacuum states do occur in solutions. As for the delta shock waves,
there have been rich results for various strictly or nonstrictly hyperbolic systems of conservation laws, see
[7-10,12,14,15,17,18,23,27,28] and the reference cited therein.

In the past decade, the vanishing pressure limit method has been introduced to explore the phenomena
of concentration and cavitation and the formation of delta shock waves and vacuum states in solutions, say
Li [11] for the compressible Euler equations with zero temperature, Chen and Liu [2,3] for the isentropic and
nonisentropic fluids. Recently, Yin and Sheng [29,30] for the system (1.1) and the relativistic fluid dynamics,
Yin and Song [31] for the Chaplygin gas, and Yang and Wang [26] for the modified Chaplygin gas, etc. It
is noticed that all these works on this topic are only focused on the pressure level.
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In the present paper, by introducing a flux approximation in (1.1), we consider the following perturbed
Euler system

'U2 v
((p + PCQ)W + P)t + ((P + PC2)m - 25U> =0,

((p+pc2)02fv2>t+ ((p+p02) . gvz+p> 9;7 (1.4)

x

2

c2—w

in the physical region {(p,v) | p > 2¢(1 —v?/c?),|v] < ¢}, where € and £ in (1.2) are small scaling param-
eters modeling the strength of flux and pressure, respectively. It is a physically reasonable perturbation
which result from the small external shear forces imposed on the fluids. So it can be used to govern some
dynamical behaviors of fluids. The flux approximation approach, in contrast to the previous works in [2,3,
11,26,29-31], which contains the pressure perturbation portion, was proposed by Yang and Liu [24] to study
the isentropic Euler equations of gas dynamics. Furthermore, in [25] they also studied the Euler equations
for nonisentropic fluids. One of the main objectives of this paper is to show rigorously that the occurrence
of delta-shocks and vacuum states can be regarded as a singular flux-function limit of entropy solutions to
the perturbed Euler system (1.4).

As a special situation, when the pressure vanishes, the system (1.4) becomes the following family of
pressureless relativistic Euler equations

2 2
pc pue
(702—v2>t+<702—v2 —280>x:0,
2 2.2
ve vl
<2p 2) +</2) 25”2) =0,
2 -2/, 2 —v .
8

which is a pure flux approximation of special curiosity. We first solve the Riemann problem of (1.5) with
the initial data

(1.5)

(p,v)(0,2) = (ps,vy), =Lz >0, (1.6)

where p+ and vy are arbitrary constants. There are two kinds of Riemann solutions of somewhat surprising
features. One consists of two contact discontinuities and a pseudo-vacuum state besides two constant states,
another one is a family of delta-shock solution. More precisely, one can observe that, compared with the
pressureless relativistic Euler equations, the vacuum state is moved into a curve, while for the delta shock
wave, both the propagation speed and the weight decrease. Also, there is a great similarity to the classical
nonrelativistic Euler system in which a constant-density state and a parameterized delta shock wave develop
in solutions [24]. These results show that the flux perturbation works in the pressureless relativistic Euler
equations.

Then, we show that, as the flux approximation vanishes, that is, the parameter ¢ — 0, the limits of the
pseudo-vacuum state and the parameterized delta-shock solutions of (1.5) are exactly the corresponding
vacuum state and the delta-shock solutions of (1.3) with the same initial data, respectively.

Second, we consider the system (1.4) together with the state equation (1.2). The elementary waves of
(1.4) consist of backward rarefaction wave R, forward rarefaction wave R}, backward shock wave S and
forward shock wave 5. With the phase plane analysis method and Lorentz transformation technique, by
analyzing the properties of the elementary wave curves, we construct five different structures of Riemann
solutions depending on the two parameters ¢, x > 0.

Furthermore, we study the limits of Riemann solutions of (1.4), (1.6) as the flux perturbation vanishes,
that is, the two parameters ¢,k — 0. It is shown that, as e,k — 0, any Riemann solution containing
two shock waves to the perturbed Euler system (1.4) tends to a delta-shock solution to the pressureless
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relativistic Euler equations (1.3), and the intermediate density between the two shocks tends to a weighted
d-measure that forms a delta shock wave. By contrast, it is also shown that any Riemann solution involving
two rarefaction waves to the perturbed Euler system (1.4) converges to a two-contact-discontinuity solution
to the pressureless relativistic Euler equations (1.3), whose intermediate state in between tends to a vacuum
state as €,k — 0.

The above results show that the delta-shock and vacuum state of the pressureless relativistic Euler equa-
tions can be obtained as flux-approximation limits of Riemann solutions to the relativistic Euler equations
for polytropic gas. Therefore, both the delta shock wave and vacuum state are stable for the pressureless
relativistic Fuler equations under some flux small perturbations. Moreover, the above results also identify a
fact of interest, that is, the flux approximations of difference have their respective effects on the formation
of delta-shock and vacuum state in relativistic fluids. In this regard, it differs from those only in pressure
level [2,3,11,26,29-31]. Our work therefore extends in some sense the previous results and proofs in [29].

This paper is organized as follows. In Section 2, we discuss the delta-shocks and vacuum states for
the pressureless relativistic Euler equations. In Section 3, we solve the Riemann problem of the perturbed
pressureless relativistic Euler equations, and analyze the limits of Riemann solutions. Section 4 solves the
Riemann problem (1.4), (1.6), and examines the dependence of Riemann solutions on parameters ¢ and .
At last, we consider the limits of Riemann solutions of (1.4), (1.6) by letting &, x — 0, which will be shown
in Sections 5 and 6, respectively.

2. Delta-shocks and vacuum states

In this section, we discuss the delta shock waves and vacuum states in Riemann solutions to the pres-
sureless relativistic Euler equations (1.3).

The system (1.3) has a repeated eigenvalue A = v and only one associated right eigenvector r = (1,0)7. It
is obviously linearly degenerate by VA-r = 0. By seeking the self-similar solution (p, v)(t,x) = (p,v)(§), (£ =
x/t), the Riemann solution of (1.3), (1.6) can be constructed in the following two cases.

When v_ < vy, the solution consists of two contact discontinuities and a vacuum state between them
and can be expressed as

(p,,U,), _OO<£SU73
(P, 0)(€) =4 (0,), v <E<wy, (2.1)

(p+,v+), vy < 5 < +00.

When v_ > v, a solution with Dirac delta distribution can be constructed. To do so, let us define a
weighted delta function supported on a curve as follows.

Definition 2.1. A two-dimensional weighted delta function w(s)ds supported on a smooth curve S parame-
terized as t = t(s), x = z(s) (a < s < b) is defined by

b

(w(t(s))ds, p(t(s), x(s))) = /w(t(S))w(t(S),z(S)) a!(s)? +1'(s)%ds (2.2)

a

for all test functions ¢(¢,z) € C§°(RT x RY).

Using this definition, a family of delta-shock solutions with the parameter ¢ can be introduced to construct
the solution of (1.3), which is

p(t,x) = po(t,x) + w(t)ds, v(t,x) = vo(t,x), (2.3)
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where S = {(t,0t) : 0 <t < o0}, and

po(t,x) = p—
vo(t, x)

w(t) =

[plx(z = ot),
( 27}7 [vx(z — at), (2.4)

e ] - [5%5])

in which [h] = hy — h_ denotes the jump of function & across the discontinuity, o is the velocity of the delta
shock wave, and x(x) the characteristic function that is 0 when < 0 and 1 when z > 0.

Similar to [12,15], for the system (1.3), the definition of solutions in the sense of distributions is introduced
as follows.

+ o+

Q

Definition 2.2. A pair (p,v) consists of a solution of (1.3) in the sense of distributions if it satisfies

p pv B
<masﬁt> + <m,@z> =0,

" o (2.5)
<ma%> + <m’§0x> =0,
where
+00 400
P Po w
<02 v2’<p> - / 2 —v(%(pdxdt+ <m65’¢>’
0 (2.6)

v ow
2 — 2 pdrdt + <m5s7 ©),

for any ¢(t,z) € C§°(R* x RY).

Then, a unique solution of (1.3), (1.6) involving a d-measure with the parameter o can be constructed as

)s (2.7)

in which z(t), o and w(t) satisfy the generalized Rankine-Hugoniot relation

dr

a7

d (w(t)V1+ o2 v

dt<(c)2—a_z> JLQ fUQ] B LQP—UQ]’ (2:8)
d (w(t)oV1+ a2 _ pU pv?

E( c? — o2 >_0L2v2}_{c2v2}

which reflects the relationship among the location, weight and propagation speed of the delta shock wave,
and the entropy condition

vy <o <wv_, (2.9)

which means that all characteristics on both sides of the discontinuity are in-coming.
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Under the entropy condition (2.9), by solving the generalized Rankine-Hugoniot relation (2.8) with the
initial data w(0) = 0 and x(0) = 0, we have

P Pt
V@ T e w(t) \/ PP+ (0= —vy)(c® = o)t (2.10)
0- = B = . .
Ve @)@ =) Vito?

Thus we obtain the delta-shock solution defined by (2.2) with (2.3) and (2.10).
3. Riemann solutions and limit analysis of (1.5) as € — 0

This section solves the Riemann problem (1.5), (1.6), and studies the limit of solutions.
3.1. Riemann problem of the system (1.5)

The system (1.5) has a double eigenvalue A* = v and only one right eigenvector 7 = (1,0)%. The system
is also obviously linearly degenerate by VA®-r¢ = 0. Considering the self-similar solution, then the Riemann
problem (1.5), (1.6) is transformed into a boundary value problem

2

2
_f(ich_c U2)E + (—CQMLC# — 251))E =0,
5 o (3.1)

pvc? pvic _
_5(02 — v2)g + <02 —v? 6U2)§ =0,
and
(p,v)(£00) = (px,v). (3.2)

For any smooth solution, (3.1) can be rewritten as

ve? — €£c? pc?(c? +v? — 2£v)
TR — 2¢
2 —v? (2 —v2)? dp\ _ 0
v2c® — vt 2pvct — Epc? (P + 0v?) 9 dv )
— 2ev
2 _ 2 (2 —12)2
which provides, besides the constant state, the singular solution
P = 25(1 - 1)2/62), (3 3)
v=¢, '
which is called as a pseudo-vacuum state. Noticing that p, = —4ev/c? and p,, = —4¢/c? in (3.3), one can
easily check the following conclusions which show the properties of the pseudo-vacuum solution.
Lemma 3.1. Let L be the curve determined by the equation
p=2e(1—v%/c?), (3.4)

then L: (1) lim,_ 1. p = 0; (2) passes through the point (0,2¢) in (v, p)-plane; (3) monotonely increases as
—c < v <0, and monotonely decreases as 0 < v < ¢; (4) is convet.
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1 t
(04, p2) i
: Jix/t=v_ Jizft=v4
J | = 2e(1|—v?/c?
(0,2¢) i
jWZ)\ (2, pa) i (=) (+)
—c 0 C v 0 T
Fig. 1. Pseudo-vacuum state.
t
d:x/t=0°
o/t =v, T/t =wv_
Q
=) )
0 T
Fig. 2. Characteristic analysis of delta shock wave.
For a bounded discontinuity at £ = w, the Rankine-Hugoniot condition
2 2
pc pvc
w = — 2¢ev|,
9 9 o (3.5)
pvc pvec 9
w = — eV
|:C2_U2:| |:62_U2 :|
holds. By solving (3.5), one can obtain the contact discontinuity
J: w=E&=v_=uvy,
which is characterized by x/t = v_ = vy in the (z,t)-plane. Any two states (p_,v_) and (p4,v4) can be

connected by J if and only if they are located on the line v = v_ = v,.

Now, with the constant state, pseudo-vacuum state and contact discontinuity, we construct the solutions
of the Riemann problem (1.5), (1.6) by two cases.

For the case v_ < w4, the solution consists of two contact discontinuities and a pseudo-vacuum state
besides two constant states, that is

(p,,’(),), _OO<£<U77
(00)(€) = { (2601 -/e2).¢), v <<y, (3.6)
(p-l-av-‘r)v vy < g < 400,

as shown in Fig. 1, where the intermediate states connecting two contact discontinuities and the pseudo-
vacuum state are (p1,v1) = (26(1 —v? /c?),v_) and (pa,v2) = (26(1 — v3/c?),v4), respectively.
In the case v_ > vy, since the characteristic lines will overlap in the region €2 as indicated in Fig. 2, so
the singularity of solutions must develop in this region and the delta shock wave will occur in solution.
Similarly, we seek the parameterized delta-shock solution in the form
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(p_,v_), x < x(t),
(p,0)(t,2) = { (w(3(z = (t),0%), = =a(0), (3.7)
(p+av+)7 1’>£E(t)7

where w®(t) and o¢ are the weight and velocity of the parameterized delta shock wave, respectively. The
parameterized delta shock wave (p°,v°,0%,w®) of the form (2.2), (2.3) is subjected to the generalized
Rankine-Hugoniot relation

dz -
a7
d (we(t)/1+(0%)2\ [ pc? pvc? 5
at 2 — (0°)2 A Pl R e R (3.8)
d (we(t)Po®\/1+ (0°)2\ [ pvc? pv?c? 5
dt 2 — (0¢)2 A e I i
and the entropy condition
vy <of <w_. (3.9)

In what follows, the Riemann problem (1.5), (1.6) for the case v_ > vy is reduced to solving the
generalized Rankine-Hugoniot relation (3.8) with initial conditions ¢t = 0 : z(0) = 0,w*(0) = 0.
From (3.8), we have

Et 2 1 £\2 2 2
we(t)e + (09) _ [ 2pc 2}5— [ puc —2€v}t,
2 —wv c

2 — (0¢)2 2 _ 2
(3.10)
we(t)c2o®\/1 + (0°)2 _ pvc? . pv2c? ol
2~ (o°)2 2 _ 2 2 _ 2 :

Noticing that o€ is a constant, multiplying the first equation by ¢¢ and together with the second equation
gives

2 2 2 2.2
pe 9 pue puc pvic 2|
|:CQ—U2:|(JE) _ (|:4C2—1}2 —261):| + |:—62—U2:|)0—8+ [m—év :| =0. (3.11)
When [A] =0, (3.11) is a quadratic equation. Since

22
2 2
p-c pC
A5:4(v—v+)2<62_v2 —s) (02—U2 —6) >0

in the relevant region of solutions, we obtain
2 2 2
pvc p-c p+C€
] *\/(@—w ) (e wo

pc? ’
C2—U2

under the entropy condition (3.9). As a result, we can get from (3.10) that

of =

(3.12)
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wE(t) = lev] + \/(Czpiczg - 6) (Cgptcii - s) (v_ —wvy)

ENIERCoE (¢® = (0°)*)t. (3.13)
When [;ﬁ%} = 0, we have
2ev — puc?
e U—tuy e\ _ G £\2 4
0f =g W (t) = e — (o))t (3.14)

Then we reach the following result.

Theorem 3.2. For every fized € > 0, there exists a unique entropy solution of Riemann problem (1.5), (1.6),
which consists of two contact discontinuities and a pseudo-vacuum state when v_ < vy and a parameterized
delta shock wave when v_ > vy.

3.2. Limiting behavior of Riemann solutions to the system (1.5) ase — 0

Now we proceed to study the limiting behavior of the solution of (1.5), (1.6) as € — 0 for the situation
2
[£53] # 0 by two cases.

c2_p2

For the case v_ < vy, by letting e — 0 in (3.3) and (3.6), one can obviously find that the pseudo-vacuum
state of the perturbed system (1.5) converges to the vacuum state of the pressureless relativistic Euler
equations (1.3).

While for the case v_ > v, we calculate the limits of ¢ and w® as ¢ — 0 from (3.12) and (3.13), then

= 0', (3.15)
e—0 \/ -4 \/ P+
c2—v? c2—vi
P—P+ (v— —vy)(c? — o)t

N G o

= w(t). (3.16)

In a simple way similar to that in [2,26,29], the following results can be easily concluded.

Theorem 3.3. Let v_ > vy. For each fixed € > 0, assume that (p°,v¢) is a delta-shock solution of (1.5), (1.6).

Then, when ¢ — 0, the pair of limit functions (p,v) is a delta-shock solution of (1.3), (1.6). Moreover, the

pv
212

o (] [25]) o e (2] - [25))

limit functions 2= and are all the sums of a step function and a Dirac delta function with weights

respectively.
4. Riemann problem (1.4), (1.6)
In this section, we put the Riemann problem (1.4), (1.6) and examine the dependence of elementary

waves on the parameters € and k.
The system (1.4) can be rewritten as
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2)le)

where
ct+p (p)o? 2(p(p) + pc*)v
2(c2 — v2) (2 —12)2
A - )
@ (p) + v (plp) + pc*)(* +v°)
C2 _ ’U2 (C2 _ ’U2)2
(' (p) + v (plp) +p?)( +0°) 9e
5o 2 _ 2 (2 —12)2
| ) 2P+,
02 _ U2 (C2 _ 1)2)2

A routine computation shows that the system (1.4) has two eigenvalues

e — 20c?(c® — p') — V/Q + Mop' e — 20c?(c® — p') + Q + Mup'
' 2(ct —v2p') C 2(c* — v?p) ’

and the associated right eigenvectors are

ER

B —1 202]7/( 2 ’1)2) o 1 2C2p/( 2 ,02)
TN\ @S VA M)t ) P T\ @0 (VG- Mup)(p+ o)

where

25(02_02)2 4.1/ 2 2\, .2 2 2.2 72
M(P,U):W, Qlp,v) = 4cp'(c” —v°)(¢” —v° = M) + M*v7p'".

It can be verified that VAS® - r5% £ 0, (i = 1,2). Therefore, the system (1.4) is strictly hyperbolic and the
characteristics are genuinely nonlinear.

Looking for the self-similar solutions (p,v)(t,z) = (p,v)(§)(§ = x/t), the Riemann problem (1.4), (1.6)
is reduced to a two-point boundary value problem

v? v
—f((p + 002)762(62 — 7 + ,0)E + <(p + p(:2)c2 —a 251})§ =0,
2

v v
—5((p+p62)62 _U2> + ((p+062)62 — —5v2+p) =0,
¢ ¢

with boundary condition (3.2).
For any smooth solution, (4.1) satisfies

’ 2 4 ’ 2 2 2 2 2
WG _ g WSt . _ c2plegtn (dp> 0
02(1/2(0)-5;12) _ E(p’(/;)-ﬁ-c;)v 22 (p(p)+pct)v o, 5(1)(0)+/2ch)gcz+v2) dv

c2—v c2—v (c2—v2)2 (c2—v?)

which provides the general solution (constant state) and the backward rarefaction wave E(p_, v_):



1170 Y. Zhang, H. Yang / J. Math. Anal. Appl. 435 (2016) 1160-1182

yor _ 206~ ) = VT + My

2(ct —v?p’) ’

P (4.2)
1 2 2./ 2 _ 2
_lnc—l-v / cp'(s)(c? —v?) ds=C. p<p_.
2¢c c—v

i Q(s,v) + M(s,v)vp'(s) ) (p(s) + sc?
» (v ) )

and the forward rarefaction wave R(p_, vo):

2ve*(c? — p') + VQ + Mup/

AEK, —
? 2(ct —0%p) ’
; (43)
1 2 2./ 2 _ 2
_lnc—i-v_/ p'(s)(c? —v?) ds=C. p>p_.
2c c—wv

. ( Q(s,v) — M(s, v)vp’(s)) (p(s) + 502)
The rarefaction wave curves possess the following geometric properties.

Lemma 4.1. For the back and forward rarefaction waves based on the given left state (p—,v_), we have

dv .
E(p_,v_): & <0, p1_1>%1+vfla§c,
ﬁ(p_v_):dl>0 lim v=10 <ec
) dp ) p-Foo >~

Proof. From the second equations of (4.2), (4.3), by differentiating v with respect to p, respectively, it
follows that

S :@77 2c2(c? — v2)2p/
o) O = G T Mot + o)
and
3 e :@: 2c2(c2 — v2)2p’
() G = VT = Mo+ )
for € small.

In addition, on the F(p,, v_), we can calculate that

c((c +o_)e 2¢lPv) _ (¢ — v,))

v (c+v_)e2cpv) 4 (c—w_)

where

2¢° (2 = v*)p'(p) '
VQ(p,v) + M(p, v)vp’(p)) (p(p) + pc?)

I(pw):/f(s,v)ds and  f(p,v) = (

For the integral

p

(p) :/g(s)ds, g(p) = p\/m _ /Y7t

(p) +pc*  K2pY + pc’
p—
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we have

~ 12 ~N— 12 =1
I(p) = L2y arctan (EpTl) — = \/z arctan (Epi2 )
c c

cy—1 cy—
Since lim, o+ %{’f)’) = 0, then according to the comparison test, we know that I(p,v) is convergent if
f(p) converges as p — 07. As a result, we conclude that lim,_,o+ v exists, denoted by I,. Obviously, [, < c.

f(Em)f)
g(p
gence and divergence as p — +oo. Then, we can verify that lim, .4 v =l < c on E(p,,v,). So this

lemma is true. O

Similarly, the limit lim,_, 4 = 1 shows that I(p,v) and I(p) have the same properties of conver-

For a bounded discontinuity at & = 0%, the Rankine-Hugoniot condition

U2 v
O'ER |:(p+ p02)62(62 — ’UQ) + p:| - [(p+ pC2)762 — 'U2 — 2€U:|7

,02

oe" {(p+pc2) 2] = {(p+pc2) 5 — v’ +P}

2 —v 2 —v

holds, where 0% denotes the velocity of the shock.

To solve the shock wave curves for the system (1.4), we will make the most of the Lorentz transformation
properties of the system, see also [4,22], etc. In fact, we can find, under any Lorentz transformation (¢, x) —
(t,7), an identical system in the barred coordinates once the velocity states are renamed in terms of the
coordinate velocities as measured in the barred coordinate system. Particularly, p(¢, ) is a scalar invariant
under the Lorentz transformations and it owns the same value in the barred and unbarred coordinates that
name the same geometric point in the background space-time manifold. However, since the velocity v is
formed from the entries of the vector quantity (u®,u!), so it is not a scalar.

In the following, we will exploit the transformation law for velocities by two steps. At first, we calculate
the shock waves and shock speeds in a frame in which the particle velocity v is zero. Then we apply the
Lorentz transformation law for velocities to obtain these curves in an arbitrary frame. So, by introducing a
velocity transformation law, we can prove the following lemma which parameterizes the shock wave curves.

Lemma 4.2. The shock wave curves based on the left state (p—,v_) are given by

—v_ (C] _
Y 112 =— (p.p-) v<u_, (4.5)

—vi 22—y \/O(pp-)

with p > p_ for g(p,,v,), and p < p_ for?(p,,v,), where

E(p,p-) =2¢*(p—p-)(p - p-), G(p,p-) =4e(p- +p)p—p-)(p—p-),
C2 702
F(p,p_) = B=F2 )5“” ) cptpt o), Opp) = L

C

F+VF?+G
with p— = p(p-).

Proof. Due to the Lorentz transformation, if the barred coordinate (¢, Z) moves with the velocity 7 measured
in the unbarred coordinate (t,z), and the corresponding states are denoted by (p—,v_) = (p—,v_) for the
left state, (p+,v+) = (p,v) for the right state measured in the coordinate (¢,z), which satisfy

_ t— 2 — 7t v
fo tzrwe L moTt b= T (4.6)
V1—712/c? V1—12/c2 1+7v/c
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By taking 7 = v_, we have v_ = 0. Then we can use the above transformations to obtain the corresponding
shock wave curves in arbitrary coordinate. From the Rankine-Hugoniot condition (4.4), we get

2

K 2 v _ 2y U =
o° <(p+pc )m +P—P—) = (p+ pc )m — 2¢ev,
5 - (4.7)
K 2 _ 2 =2
o¢ <(p+pc )W) = (p+pc )m +p—p- —ev’.
Eliminating o€ in (4.7) yields
E
0> (4.8)

- =0 )
Y E R Gl

For shock waves, the speed on the right is always less than the speed on the left. Thus v < v_ = 0 on the
shock curves, and © = —/O(p, p_). Then, (4.5) follows immediately from the Lorentz transformation (4.6).
From (4.8) we see that there are two branches of shock wave curves, with p > p_ on one and p < p_ on
the other. We call the branch with p > p_ backward shock wave curve, denoted by S , the other forward
shock wave curve, denoted by S.
It can be proved as done in [4] that, for small €, the shock wave g associating with A§" has to be satisfied
with the Lax shock condition

o <A (o) < A (po,v), AP (p o) < 0% < A5 (p,v), (4.9)
and S associating with A" should satisfy
X (poyv) < 07 < XS (poyvs), XS (p,0) < A (p,0) < 07" (4.10)
The proof of Lemma 4.2 is complete. 0O
The following lemma shows the geometric properties of the shock wave curves.

Lemma 4.3. For the shock wave curves based on the given left state (p—,v_), we have

dv .
S(p_,v_): g, <0 Jlim v=—c (4.11)
g’(p,,v,) : & >0, lim v=—c (4.12)
dp p—07F
Proof. Due to the Lorentz invariance, it is enough to prove those in a frame with v_ = 0. Then, we can get

from (4.8) that

v (iﬂgfépfpfcg) —&-hlpp—0), (4.13)

where

_ v 2(2p + pc? + p_c?)v?
h’(p?p—)v) = 2 B} 2N -
p—+pc>  (p—+pc2)(p+p-c?)

Differentiating v with respect to p in (4.13) yields
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Fig. 3. Curves of elementary waves.

P +p)p—p)+p—p)p+pc?
(- +pe) 0+ p-c2)

20— =cp_ +p_c?)- —e-W(p,p-,0). (4.14)

Noticing that v < 0, for ¢ small, we can check from (4.14) that 2—2 < 0 on S since p > p—,p > p_, and
g—g >0o0nS since p < p_,p < p_.
Furthermore, we obtain from (4.8) that

2 — o 2
HI_P v = ligl 5 Gl )zc =c?
p—r+0o0 p—r+0o0 2
I#_Qg—i—\/(]#_zg) de(p—p_)
c c
and
2 2¢%p_p— 2

lim+17 = 1im+ =c°.
p=0 P2 o p—ep 4 \/ (p—p- —ep-c?)? +4ec?pip_

Therefore, lim, 4o ¥ = —con S, and lim,_,o+ v = —con S. Then (4.11) and (4.12) hold due to the Lorentz
invariance. This completes the proof of Lemma 4.3. O

From Lemmas 3.1, 4.1 and 4.3, it follows that the backward rarefaction wave curve R and the forward
shock wave curve S must intersect with the pseudo-vacuum state curve (p = 2e(1 —v?%/c?)) at two different
points. Therefore, given a left state (p—,v_), all the possible states can be connected on the right by a
backward (forward) rarefaction wave R (ﬁ) or a backward (forward) shock wave g (?) So the phase plane
can be divided into five regions, as illustrated in Fig. 3.

According to the right state (p,v4) in the different regions, one can obtain five kinds of configurations of
solutions. Particularly, when (p4,v4) € 53 (p—,v_), the Riemann solution of (1.4), (1.6) involves a backward
shock wave S. , a forward shock wave ?, and a nonvacuum intermediate constant state whose density may
become singular as e,k — 0; When (py,vy) € Eﬁ(p,7v,)7 the solution contains a backward rarefaction
wave E, a forward rarefaction wave ﬁ, and an intermediate constant state, maybe a pseudo-vacuum state
solution (p = 2¢(1 — v?/c?)). As both ¢ and & drop to zero, it is sufficient for us to consider only the limit
process for the above two cases, because the regions ﬁ(p_, v_) and m(p_, v_) both have empty interior.

5. Formation of delta shock wave for the system (1.4)

In this section, as €,k — 0, we analyze the formation of delta shock waves in the Riemann solutions of
(1.4), (1.6) for the case (p+,vy) € ﬁ(p_,v_) with v_ > vg.
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5.1. Limit behavior of the Riemann solutions as €,k — 0

veF) are

When (py,v4) € ?(p, ) for each pair of fixed € and &, suppose that (p_,v_) and (p5",

ER

connected by a § with speed 05", and that (pg*,vE") and (p4,v4) are connected by a S with speed 5"

Then, from (4.5), (pS",vZ") are determined by

Vst — v O(ps~, p-) .
2 2 T T, ;P> (5.1)
¢t — v ¢ —v_\/O(p5”, p-)
and
vy —vg" O(p+, p¥)
2+ N2 2 ) pi*@>p+_ (52)
c? — (vgr) c? — v/ O(py, pSF)

Combining (5.1) and (5.2), we have

vo vy VO p) + VOlps, ) (5.3)

¢ —v_vy 4 \/O(pF, p-)O(p+, i)

As a start, we assert that

Lemma 5.1. lim E_>0 P = +o0.
k—0

In fact, if limgﬁ% P = p € (max(p_, py),+00), then by taking the limit of (5.3) as €,k — 0, one can
K—
easily obtain that v_ = vy, which contradicts with v_ > v,.
By Lemma 5.1, letting ¢,k — 0 in (5.3), we get immediately the following result.

Lemma 5.2.

p—prct(v- —vy)?

lim k2(pSF)7 =

"0 (p— + p)(e® —v2)(? —v}) +2(c* — v—v+)\/p—p+(02 —v2)(c? = v})
Lemma 5.3. Set lim g vS* = o, then
rk—0
lim vE" = hm oi® = hm o5t =0 € (vy,v-). (5.4)
€0 =0 =0
Kk—0 m—>0 m—)O

Proof. From the first equation of (4.4) for S, we get

2 2 vg" : 2
. (1200277 + p27°6?) vz — 220" — (29 + pc®) e + 220
lim 07" = lim .
0 1 e—0 K2(pEr)T+pshc?  (vEr)? + Kw2pY +p_c2 w2 _
k—0 Kk—0 o2 Z—(vsr)2 Pt — e — 22 — P-

By Lemma 5.1, it is easy to know that the limit above is nothlng but o, which means that lim =20 o5
lim =20 vi® = 0. The equality lim. ¢ 05" = lim. g v® = o can be similarly obtained from the first
equatlon of (4.4) for 5. e e

On the other hand, passing to the limit £,k — 0 in (5.1) and (5.2) and noticing Lemma 5.1, we have

vy < o =lim -0 ve" < v_. Therefore, Lemma 5.3 holds. O
KR—r

Combining the Rankine-Hugoniot conditions (4.4) with Lemmas 5.1-5.3, we can prove the following

lemma.
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Lemma 5.4.
o5"
ER
. Px
lim ————df =
e—0 c? — (vi"i)Q ¢
r—0 “er
o1
and
o5"
ERHER
. v
lim %df =
e—0 ce — (’Ui”)
r—0 “en
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ERK
. v
lim - (05" — i) = 0| 52— | - | 5|,
e—0 c? — (vEF ct—v =0
K—0

ER

ER 2
. Psx Uy ER ek pPY pv
lim g EHQ(O'Q —oi") =0 5 51— |3 5|
63807(’0*) 2 —v 2 —v
K

Proof. From (4.4) for S and S, we have

gor [ B+ pEr () Rl Apoc? WP
1 2 2 — (ver)2 P 2 22 P-
2 2 0" 2 2 -
= (li (pin)’y + pinc )W — QEUiH — (K} pP_ + p-C )02 — 1}% + 28’077
N e S S s (.4 L L Coil S
2 2 2 — Ui P+ 2 2 — (vEm)2 Py
— ( 2.7 + 2) U+ — 9 _( 2( sn)v + pEF 2) Uiﬁ + 2evEh
= \R7p4 T p+C€ 2 — ’U_Q;,_ U+ K=\ P« P« C 2 _ (viﬁ)g U
which yields
2( ER eR\2 £R .2
K (p* )’Y(/U* ) £ € p* C € £
2@~ (o) T Tt E e T )
O O (A i) L
= 62(6271}%)01 +0270301 — 22 + 2ev_
"32/’1”—2% ex P+¢ . ("32/’1 + pc?)uy
— 5505 — 505" + 5 — 2evy.
c2(c? —v%) et c? —v3

Letting €,k — 0, we get

Kk—0

Similarly, the second equations of

. B p pv
e—0 2 — (vEr)2 (03" —o1") = 0[02 - 1)2} - [02 - 1)2}

(4.4) for S and S yields

2( ER €K SR ER L2
K (p* )’Y/U* ER ER p* /U* C ER ER
? — (v5r)? (0"~ + (v )2 (01" — 03%)
_ (WLt B (k*pL + p_c?)v? 2. 2
B 2 -2 ! 2 —v? TP vt
(K2pl +psc)oy o (L +ppc®ot
- oy + + Kk°p) —evy.
c2 — vgr 2 2 — U‘2|’ + +

Taking the limit €,k — 0, it follows t

hat

1175

(5.6)
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: pErvs" pU pv?
1 _Px Ux ek _ER) _ _ ) 5.8
i 2 tor ot o[ 527] - [ o9

Therefore, (5.5) and (5.6) can be immediately obtained from (5.7) and (5.8). O

Lemma 5.5. For the o mentioned above, we have

2
v v v2 p_ 2
|:_C2p_v2} + \/|:C2p_v2} - |:C2_pv2} [czp_vz] U—\/Cz_vz + U+\/c2—+vi

o = =

P P— P+
|:C2—U2:| \/627’02_ + \/czfvi

when [£—] #0, and

22

when [ﬁ} =0.

Proof. It is clear according to Lemmas 5.3-5.4 that

ERKER ER

. Px Uk £k = . Px
lim —2 = (g5F — 05F) = lim —r
R LI F R e o

o] - [25) - (o) - [ =

from which, the desired conclusions are easily obtained thanks to ¢ € (v4,v_). O

Thus we have

From Lemma 5.1 and Lemmas 5.3-5.5, one can observe that, when ¢,k — 0, the velocities of shocks g
and S and the intermediate velocity v5" of solution of (1.4), (1.6) approach to o. This implies S and 5

coincide, and the intermediate density p$* becomes singular which determines the delta-shock solution of
(1.3), (1.6).

5.2. Delta shock waves

Now, in the case v_ > vy, the following theorem gives a very nice depiction of the limit.

Theorem 5.6. Let v_ > vy. For each fixed pair e,k > 0, assume that (p=",v*") is a solution containing two
shocks § and S of (1.4), (1.6) constructed in Section 4. Then (p=F,v=*) converges in the sense of distributions

as €,k — 0, and the limit functions = 2

and are all the sums of a step function and a Dirac delta

Sfunction with weights

([ a] [2]) o i [52] - [25)

respectively, which form the delta-shock solution of (1.3), (1.6).
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Proof. (i). For each fixed pair €, k > 0, the two-shock Riemann solution to the perturbed Euler system (1.4)
can be expressed as

(P—,’U—)a 5 < O—ina
(P ™) (&) = § (pE7(£),vE"(§)), ot <& < o3,
(P+,U+)y §> USH’

which, for any ¢ € C§°(—o0, +00), satisfies the following weak formulations

toe pEK’UEKCz é‘pEK,CQ , tee pEHCQ
€K
/ 2 — (v°r)? T2 (ver)2 —2ev ¢'dg — / pdg

82 _ (UEK)Q
—o00

— 00

- 7 KQ(psn)’y(Uen)Q £¢,d£ B 70 HQ(pEH)’)’UEH ¢/d€ N 7 KQ(psn)’y(Uen)Q ¢d§ (5 9)
o P 2 (02 — (Um)2) J 2 — (veK)2 P ) (02 — (Uam)z) ’ '

and

Heo pem(vam)QCQ gpamvarQCQ 5 , tee pEK,UEKCQ
/ <02 — ()2 2 - (en)2 e(v™) >¢ dg — / poRmw L3

2 — (ver)
_+<>o HQ(pE"i)’Y’UEN " +oo HZ(pan)fyCQ " too ,{2(PEK)%UEH J 510
- | Wi | Blpapeter [ Gl (5.10)

(ii). Consider the limits of — _’EZ;)Z) and cfj;’:: B depending on £. The first integral on the left hand side
of (5.9) can be rewritten as

oL 3 oo penvanc2 é-psan
ER /
(T D) (e e e -
—00 UTH a.gK/
The limit of the sum of the first and last term of (5.11) is
r p-v_c®  Epc® o prvgc®  Epic®
lim 2 2 | ¢ldE + lim S 2cuy | ¢de
e—0 2 —v2 202 e—0 2 —vi -]
r—0 oo kr—0 o5t

= <a LQ ? 02} - LQ”_“UQng(U) +c2 7OH(§ — 0)ode, (5.12)

where

P

2 2 £<03
H(é.*O'): Pt

02_?&, E>o0

For the second term of (5.11), it equals
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. piK’UEKCz gpen 2 . ,
lim — — 20" d
i [ (£~ -
a1
— lim pin > ( ek __ Uen) ¢(U§K) — d)(a?{)vsn _ O-SKQS(O%N) B afﬁd)(a?{)
238 2 — (,Uin)Q 2 1 Jgn _ Uim * ng — Uin

+ 027 / ¢d§> — lim 2e0S (¢(a§"‘) - ¢(0T“)>

O

= <a [CQ ? vz] - [CQ”_“UZD (06/(0) = 06 (0) = 6(0) + 6(0))

=0. (5.13)

Meanwhile, the first and the second integral in (5.9) on the right can be composed into

(/- / (e oo

K plv k2plv? e K2p v_ o
= o= ) ) T G gy ) - g ol

2 —
2 (pE")Y (vEm)?

2.7
Gl TR

g o)+ W(a “6(05") — 0i6(05"))
- S (0005 - o) - % ZW&
cfcf Ik / ot vm / bt (5.14)
While for the last term of (5.9) on the right, we have
:ﬁzaxzﬁ ’Zf )7¢d5+%2¢d5 (5.15)

Owing to (5.14) and (5.15), we deduce that the expression of the right-hand of (5.9) converges to 0 as
e,k — 0.
Returning to (5.9), we immediately obtain that

lim +: (% - H(E- a>> i = (a [ _”UQ} - [CQT’UQDWL (5.16)

r—0

for any test function ¢ € C§°(—o0, +00).
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Let us proceed to consider the limit of % In a similar way as before, noticing the facts that
k2 (psF)7 is bounded and lim .0 05" = lim ., 05" = 0, one can get that
k—0 ~k—0
+oo EK,\E 2
. pERvER ~ B pv | _pv
i [ <C2 - e a)) o — ("{02 S EES U2D¢<o>, (5.17)
r—0 o
where
p—v_
H(—0) = -
P+V+
R &E>o.
+

(iii). Examine the limits of sz(z;)g and cfj;’::)Q depending on time t. Let ¥ (¢,2) € C§°(RT x RY).
Noticing (5.16), we obtain that

+o00 400

. P (z/t)
i | | et
=0 0 —oo
TOT e
— 213‘18 t(/(?_p(vww(t,gt)df)dt
k= 0 —o00
+

o .
B [’5<((’sz@2} B Lf_wDW’UtH/H(&a)w(t,wds)dt
/t(/H £ — o)t &t d§>dt+/ ( [ fvz}—[czp_vvz}>z/}(t,ot)dt
0

o0 400 +oo ’ N
{_/Oon—Jt) Y(t, x)dxdt + {( [ —U2:| — [02_U2}>t¢(t,at)dt. (5.18)

Then by Definition 2.1, for the last term on the right-hand side of (5.18), we have

7(0{02 fvg} - Lgp_vv2]>tl//(t,at)dt (0 (Y65, 0(,))

0

where

Similarly, we can show that

. EK Jj/t 5/-@ .Tf/t)
Eh_r)r%) { / (= (/1) (t,x)dxdt

k—0

+oo +o0 +oo

:/ /f[(x—at)w(t,x)dxdt—k/ G—Lf_”w} - LQW th(t,o—t)dt, (5.19)

— 2
0 —oo 0
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in which

70 (0{02 /iuqﬂ} - {02/)52@2})751/’@7“)& = (w2()ds, (")),

where

(2 — o)t pU pv?
wa(t) = o - .
Vito? 2 _ 2 2 _ 2
The proof of Theorem 5.6 is finished. O

6. Formation of vacuum states for the system (1.4)

This section focuses on the limit behavior of the solution of Riemann problem (1.4), (1.6) in the case
(p4,v4) € F—R)(p,,v,) with v_ < vy as e,k = 0.
According to Section 4, we know that on the rarefaction waves the solution satisfies

_ 2,1)6/{02 (02 7p/(p€n>) _ Q(pg/{’,vgn) + M(pan,ven)venp/(pen)

3 2(04 _ (vsn)2p/(pan))

= K(p™, o),

and

¢ = A =P () + VU v £ MO W ()
2(ct — (o720 (o)) ' o

for each fixed €,k > 0, respectively. Precisely, on the backward rarefaction wave, the solution satisfies

E=K(p™v™), K(p-,v-) <& < K(pI"v5"), pL" <p-, (6.1)
and, on the forward rarefaction wave,

§= L(psm7v£n>7 L(pinvviﬁ) <¢< L(erv 1}+), P < p+. (62)
Now, we conclude the following theorem.

Theorem 6.1. Let v_ < vy. For each fixed pair e,k > 0, assume that (p=*,v"*) is a two-rarefaction wave
solution of (1.4), (1.6) constructed in Section /. Then, there exists g > 0, as 0 < e < &g and 0 < Kk < &g, the
pseudo-vacuum state solution p = 2e(1 — v?/c?) appears in solution. And as e,k — 0, the two-rarefaction
waves become two contact discontinuities connecting the constant states (p+,v+) and the vacuum state p = 0,
which form a vacuum solution of (1.3), (1.6).

*

Proof. Set ¢ = k = ¢¢. Since (p=*,vE") is on the curve F(p_, v_), then we have

£k

0% o=
ER
A N U / f(s,05%)ds <In <= 1 oc / f(s,vi")ds = A%
c— Uika c—v_ C— V_
P 2e(1—(vgr)?/c?)

When In % <In (C:—Zj: < A®0 there is no pseudo-vacuum state in the solution. That is, there exists €91
such that (py,vy) € I(p_,v_) when In &= < In &8 <Aoo

c—v_ c—vg
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CH}* , the pseudo-vacuum state solution appears, which implies that there exists

However, when A%° < In

€02 such that (pi,vy) € V( _
Let

_) when A%02 < In ifg*

ctu- —1In

C—V_

C+U+
c—uvy

J(g;v5") = 2¢ f(s,v5%)ds + In

2e(1—(vg")?/c?)

P

As done in Section 4, we can deduce that the integral f(s,vE%)ds is uniformly convergent in

2e(1—(v5")?/c?)
e with v¢" a parameter, then the function J(g;v5") is continuous with respect to € and J(ep1;
vE") < 0. Thus, there exists g9 € [g02, £01] such that J(eg; vE") = 0.
Asaresult,as 0 < € < gg and 0 < K < g¢, the density of the intermediate state becomes a pseudo-vacuum

Ui”)t](foz;

state with
(P27, 0E")(€) = (26(1 = vZ¥/c?),€), i < €< v5”, (6.3)
where
p—
c<(c +v_)exp (20 f(s, vi“)ds) —(c— v))
—(vER)2 /2
per — 2e(1 (pj )?2/e?) 7 (6.4)
(c+wv_)exp (20 / f(s, Uif@)dg) +(c—vo)
2e(1—(vr)?/c?)
and
P
c<(c+v+)exp (— 2¢ / f(s,vi"‘)ds) - (c—v+)>
" 2e(1=(v5r)?/e?)
U; = ot ’ (65)
(c+vs)exp (— 20 f(s,vi“)d8> F(e—vy)
2e(1=(vg")?/c?)
where

2¢%(? — v?)zp%p)

(V@G 0) — M(p,0)w () (p(o) + pe2)

Thus, letting €, — 0, one can find that lim, .0 p$® = 0. Using the boundedness of p** with respect to €
and k, it follows that

flp,v) =

lim v =v_ li = V4.
e—0 1 =Y 51—1% ’1)2 U
k—0 k—0

lim v**(§) =& for &€ (v_,vy).
e—0

k—0

In summary, the limit solution can be expressed as (2.1), which is a solution of (1.3) containing two contact
discontinuities £ = z/t = v1 and a vacuum state in between. This completes the proof of Theorem 6.1. O
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